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Abstract

Fire detection in smart cities requires
intelligent visual recognition systems capable
of distinguishing fire from visually similar
phenomena  while  maintaining  real-time
performance under diverse environmental
conditions.  Existing deep learning approaches
employ attention mechanisms that aggregate
spatial information isotropically, failing to capture
the inherently directional characteristics of
fire and smoke patterns. This paper presents
DirFireNet, a novel fire detection framework that
exploits directional fire dynamics through Strip
Pooling Coordinate Attention (SPCA). Unlike
conventional attention mechanisms, DirFireNet
explicitly models vertical flame propagation and
horizontal smoke dispersion via directional strip
pooling operations that decompose features along
horizontal and vertical axes. @ The framework
integrates a progressive top-down fusion pathway
with attention-guided weighting that synthesizes
multi-scale representations from coarse to fine
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resolutions.  Furthermore, dual global pooling
captures complementary scene statistics holistic
fire intensity and salient flame regions. Built
upon the lightweight EfficientNetV2-S backbone,
DirFireNet achieves superior accuracy while
maintaining computational efficiency. Extensive
experiments on the FD and BoWFire benchmark
demonstrate state-of-the-art (SOTA) performance.
Comprehensive ablation studies validate that
directional attention contributes to accuracy
gain, validating that attention mechanism
provides strong inductive biases for intelligent
fire recognition in smart city applications.

Keywords: fire detection, directional attention, strip
pooling, smart cities, anisotropic feature learning,
multi-scale fusion.

1 Introduction

Fire is one of the most destructive catastrophes due
to its rapid spread and severe environmental impact.
Managing fire remains a challenging task, particularly
in regions with dense combustible materials such
as forests, residential zones, and other sensitive
environments [1, 2]. Fires may arise from human
activities, equipment failures, rising temperatures, or
climate change [3, 4]. Among all types, forest and
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bushfires are the most hazardous because of their
rapid expansion and potential to cause widespread
ecological damage. For instance, the Australian
bushfires in early 2020 devastated about 19 million
hectares of land, destroyed over 3,000 homes, and
resulted in the loss of more than 1.5 billion animals
[5]. Similarly, the US Fire Administration reported
over 350,000 residential fire incidents in 2021, causing
thousands of fatalities and billions of dollars in losses
[2]. These statistics emphasize the critical need for
efficient fire detection and management strategies.

To address this issue, researchers have developed a
wide range of fire detection techniques, commonly
relying on visual cues or environmental sensors.
Early fire recognition is essential to minimize human
casualties and mitigate further damage. Traditional
machine learning (ML)-based systems typically
exploit features such as fire color, texture, motion,
and shape [6, 7]. However, these methods face
limitations, as fire appearance is highly variable due to
airflow, lighting conditions, and differences in burning
materials. Such factors complicate feature selection
and often result in high false alarm rates or reduced
accuracy.

In contrast, deep learning (DL) has significantly
advanced fire detection by enabling end-to-end feature
learning, which generally improves accuracy and
reduces false positives. Nevertheless, most available
datasets remain limited in diversity, often containing
only two classes (fire and non-fire), which restricts
model generalization. Moreover, complex scenarios
such as sunlight resembling flames or objects that
mimic fire continue to challenge even modern DL
algorithms. Another obstacle lies in the deployment
of these models: achieving both high precision and
computational efficiency is essential for real-time
applications, particularly in resource-constrained
environments. Therefore, progress in fire detection
requires the development of large-scale, diverse
datasets that capture the complexity of real-world fire
conditions. Coupled with efficient deep models, such
datasets can significantly enhance the robustness and
practicality of fire detection systems.

To bridge this research gap, we present DirFireNet, a
novel directional attention-based framework designed
specifically for intelligent fire recognition in smart
cities.  Our approach addresses a fundamental
limitation in existing methods: conventional attention
mechanisms aggregate spatial information uniformly,
failing to capture the inherently anisotropic nature
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of fire phenomena. Physically, flames propagate
vertically due to buoyancy forces, while smoke
disperses along both vertical and horizontal trajectories
depending on environmental airflow. DirFireNet
exploits these directional characteristics through Strip
Pooling Coordinate Attention (SPCA ), which explicitly
models horizontal and vertical fire patterns via
axis-aligned feature decomposition.

1.1 Contributions

The following is a summary of the main contributions
of our study:

e We propose DirFireNet, a novel fire detection
framework that explicitly models the anisotropic
propagation patterns of fire and smoke through
Strip Pooling Coordinate Attention (SPCA).
Unlike  conventional isotropic  attention
mechanisms, = SPCA decomposes spatial
teatures along horizontal and vertical axes
via directional strip pooling operations, followed
by cross-dimensional interaction to capture joint
directional dynamics. This physics-informed
attention design enables effective discrimination
of vertical flame propagation and horizontal
smoke dispersion, significantly improving
robustness against visually similar false positives.

e We design a progressive multi-scale feature
aggregation pathway that synthesizes hierarchical
representations  through  attention-guided
top-down fusion with residual refinement. This
coarse-to-fine fusion strategy enables high-level
semantic guidance to resolve ambiguities in
fine-grained features while maintaining gradient
flow. Combined with dual global pooling that
captures complementary scene statistics, holistic
fire intensity via average pooling and salient
flame regions via max pooling, the architecture
achieves comprehensive scene understanding
suitable for diverse fire scenarios.

e We conduct extensive experiments on two
widely-adopted benchmarks, demonstrating
that DirFireNet achieves state-of-the-art
performance: on the large-scale FD dataset
and on the challenging class-imbalanced BoWFire
dataset, surpassing previous best methods.
Comprehensive ablation studies validate that
directional attention contributes substantial
performance gains, confirming that modeling
tire’s physical propagation characteristics
provides strong inductive biases for intelligent
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recognition in smart city applications.

The forthcoming sections of this paper are organized as
follows: Section 2 presents a comprehensive literature
review, providing an overview of traditional ML and
DL-based methods along with hybrid approaches. In
Section 3, we elaborate on the details of our proposed
methodology. Section 4 presents and discusses the
datasets used for performance evaluation, parameter
settings, comparative analysis, ablation study, model
complexity, and detailed results. Finally, in Section
5, we conclude the paper by providing insights into
potential directions for future research.

2 Related Work

Recent years have witnessed growing interest in
computer vision (CV) based fire detection, aiming
to automate recognition and reduce reliance on
manual surveillance. These approaches can be
broadly grouped into three families: conventional
feature-driven methods, deep learning-based models
and hybrid approaches.

2.1 Conventional Feature-Driven Methods

Earlier fire detection techniques predominantly relied
on handcrafted visual cues such as color, texture,
shape, and motion. Many approaches utilized RGB or
YCbCr color spaces to extract fire-like regions, while
fuzzy logic, statistical descriptors, and superpixel
analysis were employed to improve robustness [8-11].
Optical flow has also been explored to capture motion
dynamics of flames, yet its computational expense and
sensitivity to lighting variations often lead to unreliable
performance. Similarly, brightness-based constraints
fail to capture the irregular and dynamic nature of real
fire. To address these challenges, some works applied
trainable classifiers such as support vector machines
(SVM) using spatial-temporal covariance features [14,
15]. Despite their utility, these methods remain prone
to high false alarm rates when dealing with fire-like
colors, shadows, or reflective surfaces, limiting their
generalizability in real-world environments.

2.2 Deep Learning-Based Models

The advent of deep learning (DL) has transformed
tire detection by enabling end-to-end representation
learning. Convolutional Neural Networks (CNNs)
such as AlexNet, VGG, GoogLeNet, and ResNet
have been widely investigated, often outperforming
traditional methods in classification and detection
tasks [16, 17]. For instance, ResNet50 has shown
superior recognition accuracy compared to VGG16,

though limited datasets restrict generalization.
While plain CNN architectures offer notable
improvements, their large size and computational cost
pose challenges for real-time or edge deployment.
To address this, lightweight variants have been
explored, offering a balance between accuracy and
efficiency[35]. Recent studies have also focused on
model compression techniques to deploy DL models
on resource-constrained devices. Approaches such as
pruning redundant filters and quantizing weights to
lower precision have been effective in reducing size
and accelerating inference [19-21]. Hardware-aware
optimizations further enhance the feasibility of
real-time fire detection [18] on embedded systems.

2.3 Hybrid and Attention-Enhanced Approaches

Beyond standalone CNNs, hybrid frameworks have
been proposed to integrate machine learning with
deep models. For instance, recent work has proposed
bilateral fusion strategies integrating transformers
for global representation with CNN architectures for
local feature extraction [37]. Some studies combined
CNN feature extraction with SVM classifiers or fused
motion analysis with CNNs for improved robustness
[22,23]. Advanced hierarchical attention frameworks
employing progressive refinement strategies have
demonstrated effectiveness in emphasizing overlooked
regions through complementary masking and residual
attention learning [33]. Similarly, region-of-interest
extraction using boosting techniques (e.g., AdaBoost)
has been paired with CNN-based recognition for
real-time detection [24]. More recently, attention
mechanisms have gained traction, enabling networks
to selectively emphasize informative spatial and
channel features while suppressing distractors [25-
27, 38]. Such mechanisms have shown promise
in addressing the challenges posed by complex
tire scenes, including flame-like objects or strong
illumination variations.

3 Proposed Architecture

3.1 Multi-Scale Feature Extraction

For robust fire detection across varying scales
and environmental conditions, DirFireNet employs
EfficientNetV2-S as the backbone network to extract
hierarchical features at multiple spatial resolutions.
Fire exhibits significant scale variability from small
ignition points to large spreading flames while smoke
can manifest as both localized plumes and diffuse
atmospheric patterns. This necessitates a multi-scale
representation that captures fine-grained textures,
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Figure 1. Architecture of DirFireNet for intelligent fire detection. Left: Deep learning pipeline comprising
EfficientNetV2-S backbone, Strip Pooling Coordinate Attention (SPCA) modules for directional feature refinement,
progressive multi-scale fusion with attention-guided weighting, and classification head. Right: Emergency alert system
integration dispatching notifications to police stations, hospitals, and disaster management centers upon fire detection.

mid-level spatial patterns, and global contextual
information simultaneously. The backbone extracts
four feature maps from stages 2, 3, 4, and 5, denoted
as {C1,Cy,C3,Cy}, with progressively increasing
semantic abstraction and decreasing spatial resolution:

e Shallow Features (C;): Extracted at 1/4
input resolution with 24 channels. Preserves
fine-grained spatial details essential for detecting
subtle flame edges, smoke textures, and
early-stage ignition points.

o Intermediate Features (C; and C3): Captured
at 1/8 (48 channels) and 1/16 (64 channels)
resolutions, respectively. = Encode mid-level
semantic cues, including fire shape, intensity
gradients, smoke dispersion patterns, and
surrounding contextual elements (e.g., fuel
sources, affected objects).

e Deep Features (C,): Obtained at 1/32 resolution
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with 160 channels. Provides high-level
semantic abstraction, capturing scene-level
understanding, fire severity classification, and
global environmental context.

To enhance discriminative power and suppress
irrelevant background features, each feature map
is refined through SPCA Module that adaptively
emphasizes fire-relevant features while attenuating
noise from visually similar distractors. The resulting
multi-scale feature pyramid provides a comprehensive
representation that balances local fire pattern
recognition with global scene understanding.

3.2 Strip Pooling Coordinate Attention for

Directional Feature Refinement

Fire and smoke exhibit inherently anisotropic spatial
distributions with distinct directional propagation
patterns.  Flames predominantly exhibit vertical
upward motion due to buoyancy and convection,
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while smoke disperses both vertically (rising plumes)
and horizontally (lateral diffusion) depending
on environmental conditions. Standard attention
mechanisms such as Squeeze-and-Excitation (SE)
blocks [34] and Convolutional Block Attention Module
(CBAM) [36], and Coordinate Attention (CA) [39]
aggregate spatial information isotropically through
global average pooling or square convolutional
kernels, lacking explicit modeling of these directional
characteristics critical for fire detection.

To address this limitation, we propose Strip Pooling
Coordinate Attention (SPCA) that explicitly models
spatial dependencies along horizontal and vertical
axes, enabling effective capture of spatially extended
fire structures and directional smoke patterns. As
illustrated in Figure 2, SPCA processes input features
through directional pooling, cross-dimensional
interaction, and attention-based recalibration.

3.2.1 SPCA Architecture

Given an input feature map X €
SPCA module operates as follows:

RBXCXHXW, the

Directional Strip Pooling: The input is decomposed
into two complementary directional representations
through strip pooling operations:

Xy = AVgPOOIheight(X) € RBXOXIxW

(1)
Xy = AvgPool .,y (X) € REXOxHx1

where X captures horizontal spatial context by
pooling along the height dimension (encoding lateral
tire spread), and X, captures vertical spatial context
by pooling along the width dimension (encoding
upward flame propagation).

Channel Reduction: To reduce computational
overhead, both directional features undergo channel
reduction via 1 x 1 convolutions with reduction ratio r,
followed by batch normalization and ReLU activation:

X}, = ReLU(BN(Convy 1 (X)) € REXC/mx1xW

X, = ReLU(BN(Conv 1 (X,))) € REXC/mxHx1
(2)

Cross-Dimensional Interaction: To enable
information exchange between horizontal and
vertical directions, the reduced features are broadcast
to full spatial resolution, concatenated, processed
through a 1 x 1 convolution to learn inter-directional

correlations, and split back into separate branches:

XZXP = Broadcast(X},, H) € REXC/mxHxW
X® = Broadcast(X,,, W) € REXC/rxHxW

Xconcat = COI‘lcat[Xv}elxp7 Xzevxp} c RBX2C/7'><H><W

Xinter = Convy «1(Xconcat) € RBX2C/rxHxW

[X}ilnter’ Xir}ter] _ Split(ther) e RBXC/TXHXW

(3)

This cross-dimensional interaction allows the network
to model complex fire patterns such as diagonal flame
propagation or combined rising-spreading smoke
dynamics.

Attention Map Generation: Each directional branch
is expanded back to the original channel dimension
through 1 x 1 convolutions and activated with sigmoid
to produce attention maps:

Ah _ U(Conlel(X,ilnter)) c RBXCXHXW

- (4)
Aw _ U(COIIV1><1 (Xqir;ter)) c RBXCXHXW
where o denotes the sigmoid activation function, and
Convyyg : RE/m 5 RC performs channel expansion.

Feature Recalibration: The attention maps
are broadcast to match input dimensions and
multiplicatively applied to refine the original features:

SPCA(X) =X © A, ® Ay (5)

where © denotes element-wise multiplication. This
operation emphasizes spatial locations exhibiting
strong directional fire/smoke characteristics while
suppressing background regions, producing refined
features SPCA(X) € REBXCXHXW with enhanced
directional awareness.

3.2.2 Multi-Scale Integration

SPCA is applied independently to each feature
map from the EfficientNetV2-S backbone with
scale-adaptive reduction ratios:

C = SPCA,,(C;),

i e{1,2,3,4) (6)

where r; € {4,8, 8,16} denotes the reduction ratio for
teature map Cj, balancing computational efficiency
with feature expressiveness. The attention-refined
features {C3",C3% C8", C"}  preserve spatial
resolution while encoding directional fire patterns,

providing a robust foundation for progressive feature
aggregation.

267



ICCK Transactions on Sensing, Communication, and Control

ICJK

Input Feature
[B, Ch, H, W]
|
v v
Horizontal Strip Pool Vertical Strip Pool
Pool along Height Pool along Width
[B, Ch, 1, W] [B, Ch, H, 1]
¥ ¥
Conv 1 x 1 Conv 1 x 1
Ch>Ch/r Ch>Ch/r
¥ ¥
[ BN + ReLU [ BN + ReLU
I |
v
1
v L 4
Conv 1 x 1 Conv 1 x 1
Ch>Ch/r Ch>Ch/r
¥ 3
Sigmoid Sigmoid
L2 ¥

Refined Features SPCA

Figure 2. Architecture of the Strip Pooling Coordinate
Attention (SPCA) module. The input feature undergoes
directional strip pooling along horizontal (height) and
vertical (width) axes.

3.3 Progressive Multi-Scale Feature Aggregation

After extracting direction-aware features through
SPCA modules, the network employs a progressive
top-down fusion pathway to aggregate multi-scale
information, as illustrated in Figure 1. Effective fire
classification requires synthesizing complementary
representations across scales: shallow features capture

fine-grained features.

Channel Alignment: All SPCA-refined feature maps
are projected to a unified channel dimension D = 256
through 1 x 1 convolutions:

C; = Convy 1 (C2), 7
éi c RBXQE)GXHiXWi, Z c {1’27374}

This alignment facilitates effective feature fusion across
different scales while maintaining computational
efficiency.

Progressive Fusion and Refinement: The
fusion follows a coarse-to-fine paradigm with
attention-guided weighting:

F; = Refine 04)
F3 = Refine
F5 = Refine
F} = Refine(Fuse(Upsample(F3), C1))

(

(Fuse(Upsample(Fy), C3)) g
(Fuse(Upsample(F3), Cs)) ®)
(

where Upsample denotes bilinear interpolation to
match spatial dimensions. The attention-guided fusion
operation dynamically weights contributions from
upsampled and lateral features:

Fuse(Fup, Flat) =0 © Fyp + (1 —a) © Foe ~ (9)

where the spatial attention map o € R2%6*HxW g

computed as:

a = 0(Convsx3(ReLU(Convsxs(Concat[Fyp, Fiat))))
(10)

This mechanism learns to prioritize deep features in
ambiguous regions (e.g., fire-like sunset colors) while
emphasizing shallow features where fine-grained
texture is critical (e.g., flame edges, smoke boundaries).

fine-grained fire textures and flame boundaries, Each fused feature undergoes residual refinement:

while deep features encode high-level semantic
understanding of fire severity and scene context.

3.3.1 Top-Down Fusion Architecture

The aggregation process consists of three stages: (1)
channel alignment through 1 x 1 convolutions, (2)
progressive top-down fusion with attention-guided
weighting and residual refinement, and (3) multi-scale
pooling followed by classification. Starting from
the deepest feature map C3" and progressively
incorporating shallower layers enables high-level
semantic guidance to resolve ambiguities in
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Refine(F') = F + Convgy3(ReLU(BN(Convsys3(F))))
(11)

facilitating gradient flow and adaptive feature
enhancement without degrading representations.

Multi-Scale Pooling and Classification: To generate
a comprehensive scene-level representation, each
refined feature map undergoes dual global pooling:

gi = Concat[GAP(F;),

12
GMP(F;)] € R*?, e {1,2,3,4} (12)
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where GAP (Global Average Pooling) captures holistic
scene statistics and GMP (Global Max Pooling)
emphasizes salient fire regions. The multi-scale
descriptors are concatenated and processed through a
classification head:

Jelobal = Concat[gy, g2, g3, g4] € R***®
h = Dropout,_ ;(ReLU(FCs12(ggloba1)))

y = Softmax(FCx (h))

(13)

where K represents the number of classes, FCs12
denotes a fully connected layer projecting to 512
dimensions, and Dropout provides regularization.
This progressive aggregation strategy synthesizes
information across all spatial scales, enabling robust
fire classification under diverse conditions, varying
fire sizes, and complex environmental scenarios.

4 Results and Discussion

This section presents a comprehensive evaluation of
the proposed fire detection framework. We begin
by detailing the implementation configuration,
followed by dataset descriptions and evaluation
metrics. Subsequently, we analyze experimental
results through quantitative comparisons with
SOTA methods and ablation studies to validate the
effectiveness of individual components.

4.1 Implementation Details

The proposed network is implemented using PyTorch
framework. All experiments are conducted on a
workstation equipped with an NVIDIA RTX 3090
GPU. The EfficientNetV2-S backbone is initialized
with ImageNet-1K pre-trained weights. During
training, input images are resized to 224 x 224 pixels
and augmented with random horizontal flipping
(probability 0.5), random rotation (£15), color
jittering (brightness: 0.2, contrast: 0.2, saturation: 0.2),
and random Gaussian blur (kernel size: 5, o: [0.1,
2.0]). We employ the AdamW optimizer with an initial
learning rate of 1 x 10~4, weight decay of 1 x 107, and
momentum parameters 8; = 0.9, 52 = 0.999. The
learning rate follows a cosine annealing schedule over
100 training epochs with warm-up for the first 5 epochs.
The batch size is set to 16, and gradient clipping with
a maximum norm of 1.0 is applied to stabilize training.
Cross-entropy loss is used as the optimization objective.
For regularization, dropout with rate p = 0.3 is applied
in the classification head, and label smoothing with
e = 0.1 is employed to prevent overconfidence.

4.2 Datasets

To comprehensively evaluate the effectiveness of our
proposed method, we conduct experiments on two
widely-adopted fire detection benchmarks: FD [29]
and BoWFire [13]. Following standard practice, we
adopt an 80:20 train-test split for both datasets. Figure 3
presents representative samples from each dataset,
illustrating the diversity and challenges inherent in
fire detection tasks.

FD Dataset: The FD (Fire Detection) dataset is
a large-scale benchmark created by merging the
comprehensive Foggia and BoWFire collections
with additional fire and non-fire imagery sourced
from online repositories. This extensive compilation
comprises 50,000 images with balanced class
distribution 25,000 fire images and 25,000 non-fire
images. The dataset encompasses diverse fire scenarios
including indoor fires, outdoor wildfires, industrial
flames, and various environmental conditions (day,
night, fog, rain), alongside challenging non-fire
instances such as sunsets, artificial lights, reflections,
and fire-colored objects. This substantial scale and
representational depth make FD an ideal benchmark
for evaluating model generalization and robustness
across varied fire detection scenarios.

BoWFire Dataset: The BoWFire (Bag of Words for
Fire detection) dataset represents a compact yet
challenging benchmark characterized by significant
class imbalance. It comprises 226 images distributed
across two classes: 107 fire images and 119 non-fire
images. Despite its modest size, BoWFire is
valued for capturing real-world fire detection
complexities, including low-resolution imagery,
varying illumination conditions, and ambiguous
fire-like patterns. The inherent class imbalance and
limited sample size pose unique challenges for model
training and generalization, making it an essential
benchmark for assessing robustness under data
scarcity conditions. Both datasets collectively provide
complementary evaluation perspectives, FD tests
large-scale generalization capability, while BoWFire
evaluates robustness to limited and imbalanced data.

4.3 Evaluation Metrics

We employ a comprehensive suite of evaluation metrics
following established benchmarks and SOTA fire
detection methodologies [17, 29]. These metrics
provide holistic assessment of model performance
across different operational requirements:

e Accuracy (A): Measures overall classification
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Figure 3. Representative samples from the FD and BoWFire datasets.

correctness as the ratio of correctly classified
instances to total instances. While intuitive,
accuracy can be misleading for imbalanced
datasets.

Precision (P): Quantifies the proportion of
true fire detections among all fire predictions,
reflecting the model’s ability to minimize false
alarms critical for practical deployment where
false positives trigger unnecessary emergency
responses.

Recall (R): Represents the proportion of actual
fires correctly identified, measuring the model’s
sensitivity to fire presence. High recall is
paramount for safety applications where missing
a fire (false negative) has severe consequences.

F1-Score (F1): Provides the harmonic mean
of precision and recall, offering a balanced
assessment particularly valuable for imbalanced
datasets. Fl-score is essential when both false
positives and false negatives carry significant
costs.

These metrics are formally defined as:

Accuracy = TP+TN
Y= TPYTN+FP+FN

Precision = e

TP+ FP

(14)
Recall = L

TP+ FN

Fl-Score — 2 x Precision x Recall

Precision + Recall

where T'P (True Positives), TN (True Negatives), F'P
(False Positives), and F'N (False Negatives) denote the
counts of correctly identified fires, correctly identified
non-fires, incorrectly identified fires, and missed fires,
respectively.

4.4 Comparison with State-of-the-Art Methods

To demonstrate the effectiveness of DirFireNet, we
conduct comprehensive comparisons with SOTA fire
detection methods on both FD and BoWFire datasets.
Table 1 presents quantitative results across multiple
evaluation metrics.
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Table 1. Quantitative comparison of DirFireNet with state-of-the-art fire detection methods on FD and BoWFire datasets.
Best results are highlighted in bold.

FD [29 BoWFire [13
Methods P (%) R (%) [Fl](%) A (%) P (%) R (%) Fl[("/J) A (%)
Traditional & Early Deep Learning Methods
FD-GCM [31] - - - - 55.00 54.00 54.00 -
FFD-ANN [32] 7110 7320 7210 @ 71.10 - - - -
FPC [8] 52.00 9990 68.40  53.90 - - - -
EFD-IP [12] 75.00 15.00  25.00 - - - - -
BowFire [13] - - - - 51.00 65.00 67.00 -
CNN-based Methods
GnetFire 88.00 98.00 9280 9230 79.00 93.00 85.00 84.96
ResNetFire [17] - - - - - - - 92.50
ANetFire 83.30 9320 8790 8720 80.00 98.00 88.00  88.05
LW-CNN [30] 82.00 81.00 81.00 81.00 86.00 78.00 77.00  79.00
CNNgFire 8460 9130 8790 8730 83.00 97.00 90.00  89.82
Attention-based Methods
EFDNet [29] 9350 9740 9540 9530 81.81 83.00 81.85  83.33
EMNFire 8830 9870 9320 9280 90.00 93.00 92.00 92.04
DFAN (28] 9550 9630 9590 9570 9430 9200 93.10  93.00
DirFireNet (Ours) 96.20 97.10 96.65 96.50 95.10 94.50 94.80 94.70

4.4.1 Analysis on FD Dataset

On the large-scale FD dataset, DirFireNet achieves
SOTA performance across all metrics, with 96.50%
accuracy, 96.65% Fl-score, 96.20% precision, and
97.10% recall. Compared to the previous best
method DFAN [28] (95.70% accuracy), DirFireNet
demonstrates a 0.80% improvement in accuracy and
0.75% improvement in Fl-score. This performance
gain can be attributed to the directional attention
mechanism that explicitly captures anisotropic fire
patterns vertical flame propagation and horizontal
smoke dispersion which conventional isotropic
attention methods fail to model effectively.

The high precision (96.20%) indicates DirFireNet’s
robustness in minimizing false positives, crucial for
reducing unnecessary emergency alerts in smart
city deployments. Meanwhile, the excellent recall
(97.10%) demonstrates the network’s sensitivity in
detecting actual fire instances, which is paramount
for safety-critical applications where missing a fire
event has severe consequences. Notably, DirFireNet
outperforms traditional methods by substantial
margins (e.g., 25.4% accuracy improvement over
FFD-ANN), validating the effectiveness of deep
learning and attention mechanisms for fire detection.

4.4.2 Analysis on BoWFire Dataset

On the challenging BoWFire dataset characterized by
limited samples (226 images) and class imbalance,

DirFireNet achieves 94.70% accuracy and 94.80%
Fl-score, surpasses DFAN by 1.70% in accuracy
and 1.70% in Fl-score. This performance gain is
particularly significant given the dataset’s constraints,
demonstrating DirFireNet’s superior generalization
capability under data scarcity conditions.

The balanced precision (95.10%) and recall (94.50%)
indicate that DirFireNet effectively handles class
imbalance without sacrificing either metric.
Traditional methods struggle on BoWFire due
to limited training samples, FD-GCM and the BowFire
method achieves only 54-67% F1-scores. Even recent
attention-based methods like EFDNet show relatively
weak performance (81.85% Fl-score), highlighting
the challenge of this dataset. DirFireNet’s substantial
improvement (12.95% Fl-score gain over EFDNet)
underscores the effectiveness of directional strip
pooling attention in learning discriminative features
from limited data by explicitly modeling fire’s physical
propagation patterns.

DirFireNet consistently outperforms methods using
standard attention (EFDNet, DFAN), validating the
importance of modeling directional fire characteristics.
The performance gap between DirFireNet and
baselines is larger on BoWFire (1.70% improvement)
than FD (0.80% improvement), suggesting that
directional priors are particularly valuable when
training data is limited. DirFireNet maintains balanced
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Table 2. Ablation study showing the contribution of each component in DirFireNet. SPCA: Strip Pooling Coordinate
Attention; PFA: Progressive Fusion with Attention; DP: Dual Pooling (GAP+GMP).

Components FD BoWFire
Baseline SPCA PFA DP F1 (%) A (%) F1(%) A (%)
v 9230 9210 8850  88.20
v v 9480 9460 9140  91.10
v v v 9590 9570 9320  93.00
v v v v 96.65 96.50  94.80  94.70

precision-recall trade-offs across both datasets, unlike
some methods (e.g., FPC achieves 99.90% recall but
only 52.00% precision), making it suitable for practical
deployment where both false positives and false
negatives carry costs. These results demonstrate
that DirFireNet establishes new SOTA performance
on both benchmarks, validating the effectiveness
of directional strip pooling coordinate attention for
intelligent fire recognition.

4.5 Ablation Studies

To validate the contribution of individual components
in DirFireNet, we conduct comprehensive ablation
studies on both datasets. Table 2 presents the results
of systematically adding components to a baseline
architecture.

4.5.1 Baseline Architecture

The baseline model consists of EfficientNetV2-S
backbone with standard channel alignment (1x1
convolutions to 256-D), simple element-wise addition
for multi-scale fusion, and single global average
pooling before classification. This baseline achieves
92.10% accuracy on FD and 88.20% accuracy on
BoWFire, providing a strong foundation but lacking
specialized components for fire detection.

4.5.2 Effect of Strip Pooling Coordinate Attention (SPCA)

Integrating SPCA modules after each backbone
stage yields substantial improvements: +2.50%

accuracy on FD and +2.90% accuracy on BoWFire.

This demonstrates that directional attention
effectively captures anisotropic fire patterns. SPCA’s
explicit modeling of horizontal and vertical spatial
dependencies enables the network to distinguish
directional smoke dispersion and vertical flame

propagation from isotropic background patterns.

The larger improvement on BoWFire suggests that
directional priors are particularly valuable when
training data is limited, as SPCA provides strong
inductive bias aligned with fire physics.
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4.5.3 Effect of Progressive Fusion with Attention (PFA)

Adding attention-guided progressive fusion on top
of SPCA brings additional gains: +1.10% on FD
and +1.90% on BoWFire. The top-down fusion
pathway enables high-level semantic information to
guide lower-level feature refinement, helping resolve
ambiguities between fire and fire-like objects (sunsets,
lights). The learnable spatial attention weights in the
fusion module adaptively balance contributions from
different scales based on spatial context prioritizing
deep features in ambiguous regions and shallow
features where fine-grained texture is critical. The
larger improvement on BoWFire again indicates
that sophisticated fusion strategies help maximize
information extraction from limited data.

4.5.4 Effect of Dual Pooling (GAP + GMP)

Combining global average pooling and global
max pooling provides complementary information,
yielding final improvements of +0.75% on both
datasets. While GAP captures holistic scene statistics
(overall fire intensity, smoke coverage), GMP
emphasizes salient local peaks (intense flame regions,
fire hotspots). This dual pooling strategy ensures
the network leverages both diffuse fire characteristics
(captured by GAP) and localized high-intensity
responses (captured by GMP), resulting in more
robust classification decisions.

4.5.5 Component Interaction Analysis

Table 3. Component interaction analysis showing
individual and combined contributions. Results on FD
dataset (Accuracy %).

Configuration Accuracy (%)
Baseline 92.10
Baseline + SPCA only 94.60
Baseline + PFA only 93.80
Baseline + DP only 92.90
Baseline + SPCA + PFA 95.70
Baseline + SPCA + DP 95.30
Baseline + PFA + DP 94.50
Full DirFireNet (All) 96.50
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Table 3 analyzes component interactions. SPCA
provides the largest individual contribution (+2.50%),
validating directional attention as the core innovation.
PFA and DP offer smaller individual gains (+1.70%
and +0.80%), but their combination with SPCA yields
synergistic effects the full model (96.50%) outperforms
the sum of individual improvements, indicating that
components complement each other effectively.

4.5.6 Directional Attention Decomposition

Table 4. Analysis of directional attention components in
SPCA. Results on FD dataset.

SPCA Variant F1 (%) A (%)
Baseline (no attention) 9230  92.10
Horizontal pooling only 93.80  93.60
Vertical pooling only 9350  93.30
H + V (no interaction) 9430  94.10
Full SPCA (with cross-interaction)  94.80  94.60

Table 4 decomposes SPCA to analyze directional
components. Horizontal pooling (+1.50%) slightly
outperforms vertical pooling (+1.20%), suggesting
that horizontal smoke dispersion patterns are
marginally more discriminative than vertical flame
propagation in the tested datasets. However,
combining both directions without cross-dimensional
interaction yields +2.00% improvement, and adding
the interaction module provides an additional
+0.50% gain (94.60% vs 94.10%), demonstrating
that learning correlations between horizontal and
vertical patterns (e.g., diagonal flame propagation,
combined rising-spreading smoke) further enhances
performance.

5 Conclusion

In this paper, we presented DirFireNet, a novel fire
detection framework that exploits the directional
characteristics of fire and smoke through Strip
Pooling Coordinate Attention (SPCA). Unlike
conventional attention mechanisms that aggregate
spatial information isotropically, DirFireNet explicitly
models vertical flame propagation and horizontal
smoke dispersion through directional strip pooling
operations, combined with progressive multi-scale
fusion. Extensive experiments on FD and BoWFire
benchmarks demonstrate that DirFireNet achieves
state-of-the-art performance with 96.50% and 94.70%
accuracy respectively, surpassing previous best
methods. Comprehensive ablation studies validate the
contribution of each component, with SPCA providing
the largest individual performance gain, confirming
that directional attention modeling of fire’s physical

propagation patterns is the core innovation. Future
work will explore multi-modal sensor fusion, temporal
modeling for video-based detection, and real-world
deployment validation in smart city environments.
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