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Abstract
Video summarization (VS) aims to generate
concise representations of long videos by extracting
the most informative frames while maintaining
essential content. Existing methods struggle to
capture multi-scale dependencies and often rely on
suboptimal feature representations, limiting their
ability to model complex inter-frame relationships.
To address these issues, we propose a multi-scale
sensing network that incorporates three key
innovations to improve VS. First, we introduce
multi-scale dilated convolution blocks with
progressively increasing dilation rates to capture
temporal context at multiple levels, enabling the
network to understand both local transitions and
long-range dependencies. Second, we develop
a Dual-Pathway Efficient Channel Attention
(DECA) module that leverages statistics from
Global Average Pooling and Global Max Pooling
pathways. Third, we suggest an Optimized Spatial
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Attention (OSA) module that replaces standard
7 × 7 convolutions with more efficient operations
while maintaining spatial dependency modeling.
The proposed framework uses EfficientNetB7 as the
backbone for robust spatial feature extraction,
followed by multi-scale dilated blocks and
dual attention mechanisms for detailed feature
refinement. Extensive tests on the TVSum and
SumMe benchmark datasets demonstrate the
superiority of our method, achieving F1 Scores of
63.5% and 53.3%, respectively.

Keywords: video summarization, visual intelligence,
surveillance systems, dual-pathway, attention network.

1 Introduction
The proliferation of visual content has fundamentally
transformed the way we capture, process, and analyze
multimedia data in real-time applications. Current
trends indicate that social networks are reporting
unprecedented levels of engagement, exemplified by
Facebook’s daily viewership, which reached 8 billion
video interactions [1]. This exponential expansion
of visual data streams presents both opportunities
and substantial computational challenges for computer
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vision applications, particularly those that require
real-time analysis of continuous visual feeds [2]. The
sheer magnitude of the accumulated visual data
creates significant bottlenecks in extracting actionable
intelligence from video archives. Security and
surveillance infrastructures exemplify this challenge,
in which monitoring personnel face the daunting task
of reviewing extensive footage repositories to identify
critical events [3].

Traditional manual inspection approaches prove
inadequate when confronted with terabytes of
continuous recordings, necessitating intelligent
automated frameworks capable of identifying salient
patterns and events of interest. These limitations
underscore the urgent need for complex computer
vision methodologies that can efficiently process,
interpret, and extract meaningful information from
massive-scale video databases without human
intervention. Modern deep learning paradigms have
emerged as transformative solutions for automating
visual content analysis across diverse application
domains [4–6].

Contemporary approaches to intelligent video
analysis can be taxonomically organized into
unsupervised and supervised methodologies,
each with distinct characteristics and performance
profiles. Unsupervised techniques operate without
explicit human guidance, instead relying on
heuristic measures such as dissimilarity metrics [7],
representativeness criteria [8], reconstruction-error
minimization [9], and memorability assessment
[10] to identify significant visual content. In
contrast, supervised learning frameworks leverage
human-annotated ground truth (GT) labels to guide
training, enabling models to learn task-specific
patterns that better reflect human judgment and
domain expertise. Early supervised approaches
employed recurrent architectures such as long
short-term memory networks [11] to model temporal
dependencies in sequential visual data. Subsequent
research introduced more sophisticated hierarchical
recurrent neural network architectures [12] to
better capture multi-scale temporal relationships.
Alternative strategies, exemplified by fully
convolutional approaches [13], enabled parallel
processing of temporal sequences while modeling
complex structural dependencies across frames.

The advent of attention mechanisms [14, 15]
has catalyzed a paradigm shift in how deep
networks process sequential visual information.

Attention-based architectures have been successfully
integrated into various computer vision tasks, with
encoder-decoder configurations [16] and dedicated
attention modules [15] demonstrating remarkable
capabilities in capturing long-range dependencies.
Recent state-of-the-art methodologies [17–20]
have further advanced the field by incorporating
sophisticated attention mechanisms that enable
models to selectively focus on relevant spatiotemporal
regions while suppressing irrelevant information,
thereby achieving enhanced performance in learning
complex visual patterns across extended temporal
horizons. The main contributions of our work are
summarized below:

1.1 Contributions
• Dual-Pathway Efficient Channel Attention

(DECA) Mechanism: Proposed a novel channel
attention module that exploits both Global
Average Pooling (GAP) and Global Max Pooling
(GMP) pathways to capture complementary
statistical information from feature maps. The
module employs shared 1D convolutions (k=3)
instead of fully connected layers for parameter
efficiency, reducing computational complexity
while maintaining channel interdependencies. A
sigmoid-based gating mechanism with a residual
connection is integrated to adaptively recalibrate
channel-wise feature responses.

• Optimized Spatial Attention (OSA) with
Decomposed Convolutions: Introduced
an optimized spatial attention module that
decomposes the traditional 7 × 7 convolution
kernel into efficient 3× 3 operations, significantly
reducing parameters from 49 to 9 weights
per position while maintaining the receptive
field. This decomposition strategy achieves
approximately 81% parameter reduction in
spatial attention computation without sacrificing
feature extraction capability.

• Multi-Scale Dilated Convolution Architecture:
Designed a hierarchical multi-scale feature
extraction network using three parallel
dilated convolution blocks (D1, D2, D3)
with progressively increasing dilation rates (3, 6,
9). This multi-scale sensing approach captures
temporal dependencies at different granularities,
enabling the network to comprehend both local
frame transitions and long-range video context
simultaneously.
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• EfficientNetB7-based Hierarchical Feature
Learning Framework: Leveraged EfficientNetB7
backbone (Blocks 1-7) for robust spatial feature
extraction from video frames, combined with the
proposed DECA and OSA modules for enhanced
representational learning through optimized
attention-driven feature sensing.

• Extensive Experimental Validation: Conducted
comprehensive experiments on two benchmark
video summarization (VS) datasets, TVSum
and SumMe, demonstrating the effectiveness
and superiority of the proposed multi-scale
sensing network with dual-pathway attention
mechanisms for automatic VS.

2 Related Work
Initial VS research utilized submodular functions,
frame clustering, and low-rank compatibility models
[21–23]. These early techniques faced significant
performance limitations due to hand-engineered
features and constrained model expressiveness.
Contemporary approaches fall into two categories:
unsupervised methods and supervised learning
frameworks. Recently, attention-based mechanisms
have emerged as powerful tools for supervised
VS, enhancing both feature representation and
selection capabilities. This section examines these
methodologies, highlighting critical limitations and
identifying research opportunities.

2.1 Unsupervised Video Summarization
Unsupervised methods select keyshots using heuristic
principles that emphasize diversity, representativeness,
and semantic relevance. Clustering-based techniques
group visually similar shots into unified classes [24].
Various research efforts have integrated clustering into
summarization pipelines: k-means approaches extract
color-based features [25], while optimization-driven
methods identify sparse correlation patterns
[26]. Dictionary learning frameworks construct
representative shot dictionaries from video content
[27], with some work modeling videos as linear
combinations of keyframes [7].
Other research directions include storyline smoothness
modeling combined with importance scoring for
people and objects [28], and patch-based chunk sparse
representations [29]. Memorability-driven approaches
score frames based on entropy and memorability
metrics [10, 30, 31]. Industrial applications include
resource-constrained surveillance systems [32] and
static summarization using sparse autoencoders [33].

Adversarial learning has also been explored, with
frameworks incorporating reward mechanisms for
representativeness and diversity [8], and graph
attention networks combined with bidirectional
LSTMs to reduce keyframe redundancy [34]. The
fundamental limitation of unsupervised approaches
is their inability to leverage GT annotations, leading to
lower accuracy than supervised alternatives that learn
from human-labeled keyframes to maintain consistent
selection criteria.

2.2 Supervised Video Summarization
Supervised methods encompass both traditional
machine learning and deep learning paradigms.
Traditional approaches employ handcrafted
features with classical learning frameworks,
including graph-based first-person summarization
[35], category-specific techniques [36], and
user-video-centric methods [37]. These techniques
struggled with modeling long-range temporal
dependencies, which are essential for effective
keyframe identification.

Deep learning revolutionized sequential modeling
in VS. Early work introduced bidirectional LSTM
architectures with determinantal point processes for
forward-backward temporal modeling [11], inspiring
subsequent LSTM-based developments [16, 18, 38].
Notable contributions include quantitative loss
functions for semantic relevance evaluation [18].
However, standard RNNs face computational
challenges with lengthy sequences due to sequential
processing requirements. Hierarchical RNN
architectures address this through two-layered
structures for improved long-range dependency
handling [12], while integrated frameworks combine
shot detection with significance prediction [39].
Sequence-to-sequence models with attentive encoders
enable weighted feature importance [16], though
training remains computationally intensive for large
datasets.

Alternative architectures using global attention-based
modules replace sequential LSTM processing and
perform transformations in a single backward pass
[40]. Anchor-based and anchor-free hybrid methods
enhance temporal consistency [41]. Despite progress,
supervised approaches require further investigation to
model intricate inter-frame relationships, necessitating
optimized attention mechanisms for capturing
complex dependencies.
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Figure 1. Overall architecture of the proposed multiscale sensing network for VS, using an EfficientNetB7 backbone Blocks
1 to 7 for spatial feature extraction, three parallel dilated convolution blocks, DECA and OSA based feature recalibration,
and fully connected layers for frame importance prediction.

2.3 Attention Mechanisms
Attention mechanisms have driven substantial
advances in visual intelligence, improving feature
extraction and contextual reasoning [42, 43].
Foundation models have significantly enhanced
summarization effectiveness [44]. Various
attention-based architectures have emerged:
LSTM-integrated attention layers capture frame
relationships [45], while decoder-guided attention
blocks utilize encoder outputs and hidden states
[11]. Semantic-preserving embedding networks with
specialized loss functions maintain content integrity
[18], and refined self-attention mechanisms with
preprocessing steps handle diverse visual content
more effectively [17].

Recent work focuses on modeling multi-scale
temporal structure. Multiscale hierarchical attention
frameworks employ intra- and inter-blockmechanisms
for short- and long-range dependencies [19], achieving
competitive performance through two-stream
appearance-motion integration on benchmark
datasets. Transformer-based networks leverage video
feature patterns directly [20]. However, the prevalent
reliance on GoogleNet Pool5 features limits progress,
as generated attention patterns often fail to adequately
capture salient content [46], indicating the need for
more sophisticated attention architectures capable of
modeling complex frame relationships.

3 Proposed Methodology
3.1 Network Overview
The proposed multi-scale sensing network for VS
comprises several key components designed to
extract discriminative features from video frames and
predict their importance scores. The architecture

begins with extracting video frames from benchmark
datasets, followed by spatial feature encoding using
an EfficientNetB7 backbone. To capture temporal
dependencies at multiple scales, we introduce three
parallel dilated convolution blocks with varying
dilation rates. The extracted multi-scale features
are subsequently refined through two attention
mechanisms: DECA for channel-wise recalibration
and OSA for spatial feature enhancement. Finally, the
attended features pass through average pooling, dense
layers with dropout regularization, and an output
layer to generate frame-level importance predictions.
Figure 1 illustrates the complete network architecture.
Figure 2 illustrates the deployment pipeline of the
proposed framework in surveillance systems.

3.2 Backbone Feature Extraction
Effective VS requires robust spatial feature
representations from individual frames. We
employ EfficientNetB7 as the backbone network
due to its superior performance in balancing model
complexity and feature extraction capability. The
EfficientNetB7 architecture uses compound scaling,
uniformly scaling network depth, width, and
resolution, resulting in enhanced feature learning
compared to conventional convolutional networks.
The backbone consists of seven sequential blocks that
progressively extract hierarchical features from input
video frames. Each block incorporates mobile inverted
bottleneck convolutions with squeeze-and-excitation
optimization, enabling efficient feature propagation
while maintaining computational efficiency. Given
an input frame I ∈ RH×W×3, the backbone network
produces feature maps Fbackbone ∈ RC×H′×W ′ , where
C represents the number of channels, and H ′,
W ′ denote the spatial dimensions after backbone
processing. These extracted features serve as input to
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Figure 2. Suggested deployment pipeline of the proposed VS framework where incoming video frames are processed by
the trained network, scores Fn, low importance frames are skipped, and only key frames are retained to form a compact
video summary while preserving essential content.

subsequent multi-scale dilated convolution blocks for
temporal context modeling.

3.3 Dilated Blocks for Contextual Feature
Refinement

VS requires understanding temporal context across
different time scales. To address this challenge, we
followed the study [47] and designed a multi-scale

feature extraction module comprising three parallel
dilated convolution blocks (D1, D2, D3) with dilation
rates of 3, 6, and 9, respectively. Unlike standard
convolutions, which capture local patterns, dilated
convolutions expand the receptive field without
increasing computational cost or sacrificing resolution.
Each dilated block applies convolutions with spacing
determined by the dilation rate r. For a kernel of size
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k, the effective receptive field becomes k + (k − 1)(r −
1). The three parallel branches capture short-term,
medium-term, and long-term temporal dependencies
simultaneously. Mathematically, for input features
Fbackbone, each dilated block performs:

Fdi = Convdi(Fbackbone), i ∈ {1, 2, 3} (1)
where Convdi denotes dilated convolution with rate
di ∈ {3, 6, 9}. Themulti-scale features from these three
branches are concatenated to form a comprehensive
temporal representation:

Fmulti−scale = Concat(Fd1 ,Fd2 ,Fd3) (2)

This hierarchical sensing approach enables the network
to capture both fine-grained frame transitions and
long-range video dynamics, which are essential for
identifying salient segments in videos.

3.4 Dual-Pathway Efficient Channel Attention
Channel attention mechanisms adaptively emphasize
informative channels while suppressing less relevant
ones [48, 49]. We followed the study [50] to propose
the DECA module that leverages complementary
statistical information from both average and
maximum pooling operations. The architecture of
the DECA module is illustrated in Figure 3. Unlike
conventional channel attention that relies solely on
average pooling, DECA exploits dual pathways to
capture richer channel-wise statistics.
The DECA module processes input features F ∈
RB×C×H×W through two parallel branches. The first
branch applies Global Average Pooling (GAP) to
aggregate spatial information:

Fgap = GAP(F) = 1

H ×W

H∑
i=1

W∑
j=1

F:,:,i,j (3)

The second branch employs Global Max Pooling
(GMP) to capture the most prominent activation:

Fgmp = GMP(F) = max
i,j

F:,:,i,j (4)

Both pooled representations Fgap,Fgmp ∈ RB×C×1×1

are independently processed through shared 1D
convolutions with kernel size k = 3 to capture channel
interdependencies. The shared weight mechanism
reduces parameters while learning consistent channel
relationships:

F′gap = Conv1Dk=3(Fgap) (5)

F′gmp = Conv1Dk=3(Fgmp) (6)
The processed features from both pathways are
fused through element-wise addition and transformed
using sigmoid activation to generate channel attention
weights:

Mchannel = σ(F′gap + F′gmp) (7)
where σ denotes the sigmoid function. Finally, the
channel attention is applied to the input features
through element-wise multiplication with a residual
connection:

FDECA = F�Mchannel + F (8)

where � represents element-wise multiplication, this
residual design ensures stable gradient flow during
training.

3.5 Optimized Spatial Attention
While channel attention recalibrates feature
maps across channels, spatial attention identifies
important spatial locations within feature maps.
Traditional spatial attention mechanisms employ
large convolution kernels (e.g., 7 × 7) to capture
spatial context, resulting in substantial parameter
overhead. To address this limitation, we propose
the OSA module that decomposes the standard
7 × 7 convolution into efficient 3 × 3 operations [51].
Given the channel-attended features FDECA, we first
generate spatial statistics by applying average and
max pooling along the channel dimension:

Favg = AvgPoolchannel(FDECA) ∈ RB×1×H×W (9)

Fmax = MaxPoolchannel(FDECA) ∈ RB×1×H×W

(10)
These two spatial descriptors are concatenated along
the channel dimension:

Fspatial = Concat(Favg,Fmax) ∈ RB×2×H×W (11)

Instead of applying a single 7 × 7 convolution
(49 parameters per position), we employ a 3 × 3
convolution that reduces parameters by approximately
81% while maintaining spatial context modeling:

Mspatial = σ(Conv3×3(Fspatial)) (12)

The spatial attention map Mspatial ∈ RB×1×H×W is
applied to the input features:

FOSA = FDECA �Mspatial (13)
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Figure 3. Dual-Pathway Efficient Channel Attention (DECA)
module.

The kernel decomposition strategy significantly
reduces computational complexity without sacrificing
the ability to model spatial dependencies. The output
features FOSA contain both channel-wise and spatial
attention refinement, producing highly discriminative
representations for video frame importance prediction.
These refined features are subsequently processed
through global average pooling, dense layers with 1024
neurons, dropout regularization (rate = 0.5), and a
final output layer to generate frame-level importance
scores for VS.

3.6 Frame Importance Prediction Module
After obtaining spatially and channel-wise refined
features from the DECA and OSA modules, the
network requires a prediction module to transform
these multidimensional representations into
frame-level importance scores. The prediction
module consists of sequential layers designed to
aggregate spatial information, learn high-level
abstractions, prevent overfitting, and generate final
predictions.
The refined features FOSA ∈ RB×C×H×W first pass
through a global average pooling layer that aggregates
spatial information across all locations:

Fpooled = GAP(FOSA) =
1

H ×W

H∑
i=1

W∑
j=1

FOSA[:, :, i, j]

(14)
This operation reduces the spatial dimensions to
a compact feature vector Fpooled ∈ RB×C while
preserving channel-wise information. Global average
pooling serves multiple purposes: it eliminates the
need for flattening operations, reduces the total
number of parameters, and provides spatial invariance
to the final predictions. The pooled features are
subsequently fed into a fully connected dense layer
with 1024 neurons, which learns complex non-linear
mappings between the extracted features and frame
importance:

Fdense = ReLU(W1Fpooled + b1) (15)

where W1 ∈ R1024×C and b1 ∈ R1024 are the
weight matrix and bias vector, respectively. The
Rectified Linear Unit (ReLU) activation function
introduces non-linearity, enabling the network to
model complex relationships between visual features
and frame saliency. To mitigate overfitting and
improve generalization capability, a dropout layer with
a rate of 0.5 is applied after the dense layer:

Fdropout = Dropout(Fdense, p = 0.5) (16)

During training, dropout randomly sets 50% of the
neuron activations to zero, forcing the network to
learn robust features that do not rely on specific
neuron combinations. This regularization technique
prevents co-adaptation of neurons and enhances
model performance on unseen data. Finally, the
dropout-regularized features pass through an output
layer that generates frame importance scores:

y = σ(W2Fdropout + b2) (17)
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Figure 4. visual illustrations of the frames in the TVSum dataset (first two rows) and SumMe dataset (Bottom Rows).

whereW2 ∈ R1×1024 and b2 ∈ R are the output layer
parameters, and σ represents the sigmoid activation
function. The sigmoid function constrains the output
to the range [0, 1], which can be interpreted as
the probability or importance score of each frame.
Frames with higher scores indicate greater relevance
to the video summary, while lower scores suggest less
significant content. The predicted importance scores
y ∈ [0, 1]N for all N frames in a video are used to
select key frames or segments that maximize coverage
of important content while minimizing redundancy.
The predictionmodule design balancesmodel capacity
via the 1024-neuron dense layer and generalization
via dropout regularization, ensuring robust frame
importance estimation across diverse video content.

4 Experimental Results

Table 1. Statistical overview of benchmark datasets used in
this study.

Dataset Content Type Videos Annotators
SumMe Event recordings 25 15-18
TVSum Professionally edited 50 20

4.1 Datasets
The proposed method is evaluated on two standard
benchmarks: TVSum [52] and SumMe [37] (see
Table 1 for a statistical overview). Example frames
from these datasets are shown in Figure 4. These
datasets provide comprehensive video collections
with significant content diversity for supervised
summarization tasks.
TVSum: Contains 50 videos (1-5 minutes)
spanning multiple categories: educational tutorials,

transportation footage, documentaries, and event
recordings such as vehicle maintenance and sports.
Frames are annotated with importance scores
reflecting their representativeness of visual concepts,
with redundant content assigned lower values to
enable concise summary generation.
SumMe: Comprises 25 videos (1-6 minutes) depicting
real-world events, including airplane landings, jumps,
and dynamic activities. Unlike professionally edited
content, most videos are raw or minimally processed,
allowing for higher compression. Multiple annotators
with varied backgrounds contributed GT summaries
for each video.

4.2 Implementation Details and Setup
4.2.1 Ground Truth Preparation
We adopt the keyframe extraction methodology from
[13] for training annotations and keyshot summaries
for testing evaluation. While SumMe provides
direct keyshot annotations, TVSum frame-level scores
require conversion via [11]: (1) Kernel Temporal
Segmentation (KTS) [36] for video segmentation, (2)
interval-wisemean score computation, (3) score-based
ranking, and (4) knapsack-based keyshot selection
[52] under duration constraints. Training uses binary
labels (0/1) to identify the most critical frames. Table 2
details annotation formats across datasets.

4.2.2 Training and Evaluation Protocol
Following established protocols [11, 13, 20], videos
are uniformly sampled to 320 frames with 1 × 1280
channel dimensions. Training utilizes SGD (learning
rate: 10−3, momentum: 0.9, batch size: 8) for
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Table 2. GT annotation formats and video duration statistics for benchmark datasets. Frame-level importance scores from
multiple annotators are aggregated into unified representations following the methodology of [11, 20]. For each video, a

single set of representative frames is generated as described in [11, 13].
Dataset Training Annotations Testing Annotations Duration (min, avg, max)
TVSum Frame-level scores Key shot segments 32s, 146s, 324s
SumMe Frame-level scores Frame-level scores 83s, 235s, 647s

Table 3. Comparative performance (%) of different backbone architectures integrated with the proposed framework
(Dilated Blocks + DECA + OSA) on TVSum and SumMe datasets. EfficientNetB7 achieves the highest performance,

followed by ResNet-152.
Dataset VGG-16 GoogleNet MobileNetV2 InceptionV3 ResNet-101 ResNet-152 EfficientNetB7
TVSum 58.7 59.4 60.1 60.9 61.8 62.6 63.5
SumMe 49.8 50.4 50.9 51.5 52.1 52.7 53.3

Table 4. Ablation study showing F1-score performance (%) with progressive integration of network components on
TVSum and SumMe datasets. The complete architecture achieves the best results, highlighted in bold.

Dataset Backbone Dilated Blocks DECA OSA F1-Score (%)
TVSum X × × × 60.6

X X × × 61.2
X X X × 61.7
X X × X 62.4
X X X X 63.5

SumMe X × × × 50.8
X X × × 51.8
X X X × 52.1
X X × X 52.7
X X X X 53.3

100 epochs with frozen pre-trained EfficientNetB7
backbone and end-to-end optimization of subsequent
layers. Inference predictions are resized to the original
video length via nearest-neighbor interpolation, then
converted to keyshots using KTS segmentation [36]
and knapsack algorithm [52] with 15% length
constraint. Experiments run on NVIDIA RTX 4090
(24GB).

4.2.3 Evaluation Metrics
We employ keyshot-based evaluation metrics
following [19, 20]. Given generated summary GS and
GT HL for video Ṽ , precision and recall are:

pi =
|GS ∩HL|
|GS |

, ri =
|GS ∩HL|
|HL|

(18)

The F1-score is computed as:

F1 =
2 · pi · ri
pi + ri

× 100% (19)

where higher values reflect superior summarization
performance, consistent with protocols in [11, 20].

4.3 Ablation Studies
Comprehensive ablation experiments were conducted
to validate the effectiveness of each component in the
proposed network. Tables 3 and 4 present the results
of backbone architecture comparison and progressive
module integration analysis.
4.3.1 Backbone Architecture Evaluation
Table 3 compares seven backbone architectures
integrated with the complete framework (Dilated
Blocks + DECA + OSA). EfficientNetB7 achieves
superior performance with F1-scores of 63.5% and
53.3% on TVSum and SumMe datasets, respectively.
Its compound-scaling methodology optimally
balances network depth, width, and resolution,
while squeeze-and-excitation blocks enable efficient
channel-wise recalibration that synergizes with
the proposed attention mechanisms. ResNet-152
achieves the second-best performance with scores
of 62.6% and 52.7%, attributed to its deep residual
learning. ResNet-101 achieves 61.8% and 52.1%,
confirming the benefits of residual connections for
gradient flow. InceptionV3 obtains 60.9% and 51.5%
through multi-scale feature extraction via inception
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Table 5. Comparative analysis of VS methods on SumMe and TVSum datasets ranked by F1-scores (%). Superior
performance is indicated in bold.

Technique Features TVSum SumMe

F-1 Rank F-1 Rank

ESSV [53] AlexNet – – 40.9 14
GSF [28] VGGNet-16 52.7 14 43.1 13
SWVT TVSum [52] HOG+GIST+SIFT 50.0 15 – –
VsAR [57] GoogleNet 56.3 13 40.1 15
SeqDPP [54] GoogleNet 58.4 10 44.3 11
TTH-RNN [39] GoogleNet 60.2 9 44.3 11
KS-CVS [55] CapsNet 58.0 12 46.0 10
FCSN [13] GoogleNet 58.4 10 48.8 9
SBNT [58] GoogleNet 61.0 7 50.7 8
LMHA (M1) [19] GoogleNet 61.0 7 51.1 7
LMHAD (M2) [19] GoogleNet 61.5 4 51.4 6
DPFN [59] DPT-ViT 62.4 3 51.9 4
SHTVS (M2) [20] GoogleNet 61.4 5 52.3 3
CAVS-Net [60] EfficientNetB1 61.4 5 51.7 5
HAVSNet [60] EfficientNetB1 63.1 2 52.9 2
Proposed Network EfficientNetB7 63.5 1 53.3 1

modules. Lightweight architectures show moderate
performance: MobileNetV2 (60.1%, 50.9%) prioritizes
efficiency over accuracy, while GoogleNet (59.4%,
50.4%) and VGG-16 (58.7%, 49.8%) exhibit lower
scores due to their simpler architectural designs.
These results empirically validate EfficientNetB7 as
the optimal backbone for VS tasks.

4.3.2 Progressive Module Integration Analysis
Table 4 presents progressive ablation results evaluating
individual component contributions. The baseline
EfficientNetB7 backbone achieves 60.6% on TVSum
and 50.8% on SumMe. Incorporating multi-scale
dilated convolution blocks yields improvements
of 0.6% and 1.0%, respectively, demonstrating
effective temporal context modeling across different
scales. Adding DECA to the dilated blocks provides
additional gains of 0.5% on TVSum and 0.3% on
SumMe, validating dual-pathway channel attention for
feature recalibration. The OSAmodule shows stronger
individual contribution, improving performance by
1.2% on TVSum and 0.9% on SumMe over dilated
blocks alone. This superior performance stems
from the optimized 3 × 3 kernel decomposition,
which efficiently captures spatial dependencies while
reducing the number of parameters by 81%. The
complete architecture combining all components
achieves the highest F1-scores of 63.5% and 53.3%,
representing overall improvements of 2.9% and
2.5% over the baseline backbone. Notably, OSA

demonstrates greater impact than DECA (1.2% vs
0.5% on TVSum, 0.9% vs 0.3% on SumMe), suggesting
that spatial attention is more critical for predicting
video frame importance. However, the synergistic
combination yields an additional 1.1% improvement
on TVSum and 0.6% on SumMe beyond individual
attention modules, confirming that dual attention
mechanisms complement each other effectively. These
comprehensive ablation results validate that each
proposed component contributes meaningfully to
achieving state-of-the-art VS performance.

4.4 Comparison and Analysis
Table 5 presents a comprehensive performance
comparison of the proposed method against 15
state-of-the-art VS techniques on TVSum and SumMe
datasets. The proposed method achieves superior
performance with F1-scores of 63.5% on TVSum
and 53.3% on SumMe, securing rank 1 on both
datasets. This represents improvements of 1.1% and
1.4% over DPFN, and 2.0% and 1.9% over LMHAD,
which rank among the top-performing methods.
The performance superiority stems from three key
innovations: (1) EfficientNetB7 backbone provides
more discriminative spatial features compared to
GoogleNet or EfficientNetB1 used in competing
methods, (2) multi-scale dilated convolution blocks
with rates of 3, 6, and 9 effectively capture temporal
dependencies across different time scales, and (3) the
synergistic combination of DECA and OSA modules
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enables comprehensive channel-wise and spatial
feature refinement.
Analyzing performance trends reveals essential
insights. Traditional handcrafted feature-based
methods (SWVT TVSum, GSF) achieve F1-scores
below 53% on TVSum, while early deep learning
approaches (VsAR, SeqDPP, TTH-RNN) range
from 56-60%. Recent attention-based methods
(SBNT, LMHA, LMHAD) achieve 61-61.5%, and the
transformer-basedDPFN reaches 62.4%. The proposed
method surpasses all competitors, demonstrating that
carefully designed convolutional architectures with
multi-scale temporal modeling and dual attention
can outperform more complex transformer-based
approaches. The consistent rank 1 performance across
both datasets validates the robustness of the proposed
approach. TVSum contains 50 professionally edited
videos, while SumMe comprises 25 unedited event
recordings with higher content diversity. Competing
methods show inconsistent rankings as DPFN ranks
3 and 4, while SHTVS ranks 5 and 3 on TVSum
and SumMe, respectively. In contrast, the proposed
method maintains top performance on both datasets,
confirming effective generalization across different
video types and editing styles.

5 Conclusion
This paper presented a multi-scale sensing network
for video summarization that integrates three
key innovations to address limitations in existing
approaches. The proposed framework combines
multi-scale dilated convolution blocks, context
modeling, a Dual-Pathway Efficient Channel Attention
(DECA) module that exploits complementary pooling
statistics for channel recalibration, and an Optimized
Spatial Attention (OSA) module that achieves 81%
parameter reduction through 7 × 7 to 3 × 3 kernel
decomposition. Experimental results on the TVSum
and SumMe datasets validate the effectiveness of
the proposed approach, achieving state-of-the-art
F1 Scores of 63.5% and 53.3%, respectively. The
framework demonstrates improvements of 2.9% and
2.5% over the EfficientNetB7 baseline and surpasses
15 competing methods, including transformer-based
approaches. Ablation studies confirm that each
component contributes meaningfully, with the
synergistic combination of multi-scale temporal
modeling and dual attention mechanisms yielding
optimal performance. Backbone architecture
evaluation validates EfficientNetB7 as the superior
feature extractor compared to six alternative

architectures. Future research directions include
extending the framework for real-time processing of
longer videos, incorporating multi-modal information
(audio and text) for enhanced summarization,
and exploring domain adaptation techniques for
improved cross-domain generalization. Moreover,
we aim to investigate transformer-convolutional
hybrid architectures to advance video summarization
performance further while maintaining computational
efficiency.
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