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Abstract

RGB-thermal (RGB-T) salient object detection
exploits complementary cues from visible and
thermal sensors to maintain reliable performance
in adverse environments. However, many
existing methods (i) fuse modalities before
sufficiently enhancing intra-modal semantics
and (ii) are sensitive to modality discrepancies

caused by heterogeneous sensor characteristics.

To address these issues, we propose PACNet
(Pyramid Attention Collaboration Network), a
hierarchical RGB-T framework that jointly models
multi-scale and global context and performs
refinement-before-fusion with cross-modal
collaboration. Specifically, Dense Atrous Spatial
Pyramid Pooling (DASPP) captures multi-scale
contextual cues across semantic stages, while
Multi-Head Self-Attention (MHSA) establishes
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long-range dependencies for global context
modeling. We further design a hierarchical
feature integration scheme that constructs two
complementary feature streams, preserving
fine-grained spatial details and strengthening
high-level semantics. These streams are refined
using a cross-interactive dual-attention module that
enables bidirectional interaction between spatial
and channel attention, improving localization
and semantic discrimination while mitigating
modality imbalance. Experiments on three
public benchmarks (VT821, VT1000, and VT5000)
demonstrate that PACNet achieves state-of-the-art
performance and delivers consistent gains in
challenging conditions such as low illumination,
thermal clutter, and multi-scale targets.

Keywords: salient object detection, RGB-thermal fusion,
cross-interactive dual attention, multi-modal learning.

1 Introduction

Salient object detection (SOD) aims to identify and
segment pixel-level objects or regions that capture
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human visual attention within an image, serving as a
fundamental task in computer vision with applications
spanning semantic segmentation [1], object tracking
[2], and visual localization [3]. While deep learning
has driven remarkable advances in RGB-based SOD
[4], single-modality approaches lack robustness
under challenging real-world conditions. RGB-based
methods struggle significantly in adverse lighting
scenarios such as low illumination, overexposure, and
complex backgrounds [5], where degraded image
quality severely compromises detection accuracy.

To address these limitations, researchers have explored
supplementary modalities to compensate for RGB
deficiencies. Initial efforts focused on RGB-Depth
(RGB-D) modalities, where depth maps provide
spatial and structural information [6]. However,
depth sensors suffer from poor imaging quality
under insufficient illumination and adverse weather
conditions [28], limiting their practical deployment.
As a promising alternative, thermal infrared sensors
have emerged for RGB-Thermal (RGB-T) SOD tasks
[8]. Thermal imaging captures radiation emitted by
objects above absolute zero, remaining insensitive to
lighting and weather conditions [9]. Unlike depth
information, thermal modality effectively highlights
object contours even in challenging environments [10],
making the RGB-T combination ideal for robust SOD
in complex scenes.

Despite recent progress, existing RGB-T SOD
methods face several critical challenges. First,
inherent modality differences arise from distinct
sensor imaging properties, manifesting as varying
sensitivities to scene interference and domain gaps
in feature representations [12]. Current approaches
typically adopt either single-flow paradigms that
fuse multi-scale features during encoding [13], or
dual-flow paradigms employing parallel decoders
for independent modality processing [31]. However,
these architectures often provide insufficient
modality-specific supervision and struggle to handle
defective inputs when one modality is severely
degraded. Second, most existing methods follow a
Cross-Modal then Cross-Scale paradigm: extracting
multi-scale features, performing cross-modal fusion
at corresponding scales, and integrating across
scales using Feature Pyramid Network (FPN)-like
decoders [15]. This approach neglects intra-modal
semantic enhancement before fusion, failing to
effectively express saliency instance information and
compromising both fusion quality and generalization.
Third, the timing and strategy for thermal information

utilization remain under-explored. Unlike depth
maps that directly relate to spatial perception, thermal
images reflect temperature distributions and lack
direct correlation with saliency [16]. There is no
inherent assumption that hotter objects are more
salient, and in some cases, salient objects may differ
between RGB and thermal modalities, necessitating
adaptive cross-modal integration strategies.

To address these challenges, we propose a novel
RGB-T SOD framework that integrates hierarchical
multi-scale features through strategic attention
mechanisms and cross-modal collaboration. Rather
than directly fusing raw multi-modal features, our
approach first enhances intra-modal representations
through Dense Atrous Spatial Pyramid Pooling
(DASPP) modules that capture multi-scale contextual
information at different semantic levels, while a
Multi-Head Self-Attention (MHSA) mechanism
establishes global contextual relationships. We then
introduce a cross-interactive dual attention mechanism
that processes two hierarchically integrated feature
streams through spatial and channel attention
pathways with bidirectional information exchange,
enabling comprehensive feature refinement from
complementary perspectives. This design ensures
effective cross-modal collaboration while maintaining
robustness to modality deficiencies and domain
discrepancies.

The main contributions of this work are
summarized as follows:
e Hierarchical context integration

(local-to-global): We propose a hierarchical
feature integration network that jointly models
multi-scale local context via DASPP and
global dependencies via MHSA, producing
two Complementary representations: Fio3
(detail-preserving) and F345 (semantic-enriched).

e Cross-interactive dual attention refinement:
We introduce a cross-interactive dual attention
module that performs spatial attention and
channel attention with bidirectional interaction,
enabling coordinated refinement of localization
cues and semantic discriminability.

e Robust RGB-thermal fusion strategy: We
design a cross-modal fusion scheme that combines
early additive fusion with attention-guided
recalibration to reduce modality imbalance and
improve robustness under challenging conditions
(e.g., low illumination in RGB or noisy thermal
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patterns).

e Comprehensive validation on standard
benchmarks: Extensive experiments on VT821,
VT1000, and VT5000 demonstrate state-of-the-art
performance across multiple evaluation metrics,
with consistent gains in challenging scenarios
such as thermal clutter, low illumination, and
multi-scale objects.

2 Related Work

2.1 RGB and RGB-D SOD

Traditional SOD methods primarily relied on
hand-crafted features such as color contrast and
edge density [17, 18], suffering from limited
generalization capability. The emergence of deep
learning revolutionized SOD through convolutional
neural networks [19], enabling pixel-wise predictions
with significantly improved accuracy. Notable RGB
SOD approaches include deeply supervised networks
with short connections [20], pyramid attention
mechanisms for multi-scale feature enhancement
[21], and edge-guided detection strategies [22].
Recent methods [23, 24] have achieved substantial
progress by fusing multi-scale contextual features
through various refinement strategies. However,
RGB-based methods struggle under challenging
conditions, including low illumination, intense noise,
and complex backgrounds, necessitating exploration
of auxiliary modalities.

To address RGB limitations, depth information was
introduced as a complementary modality to provide
3D structural and spatial layout information [6].
Mainstream RGB-D methods adopt cross-modal fusion
strategies to integrate RGB and depth features at
multiple scales. Representative approaches include
depth-aware multi-scale weighting [25], adaptive
feature fusion strategies [26], joint learning with
dense collaboration [27], and cross-modal attention
mechanisms [28]. Despite these advances, depth
sensors suffer from poor imaging quality under
adverse conditions such as insufficient illumination
and bad weather, limiting their practical deployment
in real-world scenarios.

2.2 RGB-T SOD

RGB-Thermal SOD leverages thermal infrared
sensors that capture radiation emitted by objects,
offering robustness to lighting variations and
effectively highlighting object contours in challenging
environments.  Early RGB-T methods relied on

graph-based techniques with hand-crafted features.
Wang et al. [10] established the first RGB-T benchmark
(VT821) using multi-task manifold ranking, while
Tu et al. [31] introduced collaborative graph
learning and created the VT1000 dataset. With
the advent of deep learning, CNN-based methods
achieved significant advances through specialized
cross-modal fusion mechanisms. Representative
works include context-guided fusion modules [29],
cross-guided fusion networks with self-attention [30],
multi-interactive dual-stream decoders [31], and
transformer architectures [32]. Recent approaches
have explored modality difference mitigation [33],
weighted fusion schemes [15], and prototype-based
cross-modal integration [12].

Despite these advances, existing methods face critical
limitations. Most approaches follow a Cross-Modal
then Cross-Scale paradigm, directly fusing
multi-modal features without adequate intra-modal
semantic enhancement, resulting in suboptimal
saliency instance representation. Additionally,
the semantic gap between thermal modality and
saliency attributes remains underexplored. Unlike
depth maps, thermal images reflect temperature
distributions without an inherent correlation to
saliency, yet current methods fail to clearly define
this relationship or fundamentally improve the
original feature quality. Unlike existing approaches,
this work enhances intra-modal representations by
hierarchical multi-scale context aggregation and global
dependency modeling before fusion. We introduce
a cross-interactive dual attention mechanism that
processes complementary feature streams through
spatial and channel pathways with bidirectional
information exchange, enabling comprehensive
feature refinement while maintaining robustness to
modality deficiencies and domain discrepancies.

3 Proposed Methodology

3.1 Overview

The proposed RGB-T SOD framework can be
understood as a two-sensor cooperation pipeline.
It first learns strong representations from RGB and
thermal images separately, then combines them
at multiple scales, and finally applies attention to
emphasize the most informative regions and feature
channels, which improves robustness when one
modality is less reliable.

The proposed RGB-T SOD framework employs
a dual-stream encoder-decoder architecture that
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Figure 1. Overall architecture of PACNet. The framework employs dual backbones to extract hierarchical features from
RGB and thermal modalities, followed by DASPP, MHSA, and a cross-interactive dual attention mechanism for feature
refinement. Feature dimensions are shown at the bottom.

leverages complementary information from RGB
and thermal modalities through hierarchical feature
integration and a dual-attention mechanism. As
illustrated in Figure 1, the network processes RGB and
thermal images through parallel Res2Net backbone
encoders to extract multi-scale hierarchical features.
These features are then processed through DASPP
and MHSA modules to capture multi-scale and
global context, followed by strategic feature fusion
at multiple scales. The architecture culminates in
a cross-interactive dual-attention mechanism that
processes two distinct feature streams via spatial
and channel attention pathways, enabling effective
cross-modal collaboration for robust salient object
detection.

3.2 Multi-Modal Feature Extraction and Fusion

The feature extraction stage employs two parallel
Res2Net-50 backbones to process the RGB and
thermal input streams independently. Given
an input RGB image Iggp € RF*W>3 and its
corresponding thermal image I € REXWX1 " each
Res2Net encoder extracts five hierarchical feature
representations {R;}?_; and {T;}?_; respectively,
where each level captures progressively higher-level
semantic information with reduced spatial resolution.
The Res2Net architecture enhances multi-scale
representational capability through hierarchical
residual-like connections within individual blocks,
making it particularly effective for capturing diverse
scale variations inherent in RGB-T saliency detection
scenarios. The feature dimensions at each hierarchical
level are: Fl c RBX64><88><88, F2 c RBX256><88><88’
F3 c RBX512X44><44’ F4 c RBX1024><22><22, and
Fy € RBx2048x11x11 yhere B denotes the batch size.

The hierarchical features from both modalities are
fused through element-wise addition at each level,
producing integrated multi-modal representations:

(1)

This early fusion strategy enables the network to
combine complementary information from both
modalities while maintaining computational efficiency
and preserving the distinct characteristics of each
semantic level. The additive fusion allows thermal
features to supplement RGB features by providing
additional cues in challenging scenarios such as
low-light conditions or camouflaged objects.

F,=R,+T;, forie{l,2,34,5}

3.3 DASPP Module

To capture multi-scale contextual information and
expand the receptive field without sacrificing spatial
resolution. DASPP modules are applied to four
hierarchical levels: Fy, F5, Fy, and F5. The DASPP
module applies parallel atrous convolutions with
multiple dilation rates to capture objects and contexts
at different scales simultaneously. For a given
fused feature map F;, the DASPP module generates
scale-enriched representations through:

Fpaspp =
Concat [Convy, (F;),Convy, (F;),...,Convy, (F;)]

(2)
where Conv,, denotes atrous convolution with dilation
rate dj, and the outputs are concatenated along the
channel dimension. The varying dilation rates enable
the network to capture both fine-grained local details
and broader contextual information, which are crucial
for detecting salient objects at different scales in
RGB and thermal imagery. The DASPP-processed
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1 2 4
featurt;s are denoted as F}, sspp, Fpasppr Faspps
and F}) 44pp for subsequent processing.

3.4 MHSA for Global Context Modeling

At the middle hierarchical level (F3), we employ a
MHSA mechanism to model long-range dependencies
and capture global contextual relationships within the
fused features. Unlike the DASPP modules that focus
on multi-scale local-to-regional contexts. The MHSA
mechanism also enable the network to establish
relationships between spatially distant regions,
which is essential for detecting salient objects with
complex structures, irregular shapes, and multiple
disconnected components. = The MHSA module
processes the fused feature F3 by projecting it into
query (@), key (K), and value (V') representations
through learned linear transformations:

Q=IBWgy K=IBEWg, V=FEW, (3)

where Wy, Wk, and Wy are learnable projection
matrices. The self-attention mechanism computes the
weighted feature representation as:

T

Attention(Q, K, V) = softmax (QK
e
where dj, represents the dimension of the key vectors,
and the scaling factor \/dj, prevents the dot products
from becoming excessively large. By employing
multiple attention heads, the MHSA module captures
diverse relational patterns and semantic dependencies
across different representation subspaces. In result,
a robust cross-modal feature representations with
enhanced global context awareness is obtained. The
output is denoted F3,,¢4 and serves as a global
context anchor for subsequent multi-scale feature
integration.

)o@

3.5 Hierarchical Feature Integration

Following the DASPP and MHSA processing
stages, the framework performs hierarchical feature
integration through two parallel pathways that
combine features from different semantic levels. This
strategic integration enables the network to leverage
both fine-grained spatial details and high-level
semantic information.

Low to Middle Level Integration: The DASPP
processed features from the first two levels are fused
through upsampling and element-wise addition to
create a unified low-level representation:

(5)

Fi2 = Fpagpp + Upsample(Fp 45pp)

where the upsampling operation employs bilinear
interpolation to match spatial resolutions. This fused
feature F7 is then passed through a 1 x 1 convolution
for channel reduction and feature transformation:

F{Q = COI’IV1><1(F12) (6)
The transformed low-level features are subsequently

integrated with the global context from the MHSA
module:

(7)

where F} ¢4 is upsampled to match the spatial
dimensions of F],. This integration produces a
feature representation that combines fine-grained
spatial details with global contextual information.

Fia3 = Fiy + Upsample(Fi54)

High Level Integration: Similarly, the DASPP
processed features from the deeper levels are
integrated to capture high-level semantic information:

(8)

Fy5 = Upsample(FP aspp) + Fhaspp

The fused high-level features undergo channel
reduction through 1 x 1 convolution:

ing) = COHVle(F45) (9)
These transformed features are then enriched with
global context:

Fai5 = Fis + Fiysa (10)
where F3; ;¢4 is spatially aligned with Fj; through
appropriate upsampling or downsampling operations.
The resulting feature F345 encapsulates high-level
semantic information augmented with global
contextual understanding.

3.6 Cross-Interactive Dual Attention Mechanism

The hierarchically integrated features Fi23 and Fy5 are
processed through a cross-interactive dual attention
mechanism that simultaneously performs spatial
and channel-wise feature refinement. This design
enables complementary feature enhancement through
two parallel attention pathways with bidirectional
information exchange.

Spatial Attention Pathway: The feature Fi93, which
encodes fine-grained spatial details with global
context, is processed through the spatial attention
module (Figure 2). The spatial attention mechanism
computes attention weights across spatial locations
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by aggregating channel information through parallel
pooling operations:

Agpatial(F123)
=0 (COHV7><7 ([AVgPOOl(Flzg); MaxPool(Fi23)] ))
(11)
Fypatiat = F123 ® Aspatiat(F123) (12)

where ® denotes element-wise multiplication,
o represents the sigmoid activation functions.
The average-pooled and max-pooled features are
concatenated along the channel dimension before
processing through a 7 x 7 convolution. This
mechanism emphasizes spatially informative regions
while suppressing background clutter.

Channel Attention Pathway: Concurrently, the
feature F345, which captures high-level semantic
information, is processed through the channel
attention module. The channel attention mechanism
recalibrate channel-wise feature responses through
global context aggregation:

Achannel(F345) =0 (MLP (GAP(F345))) (13>

Fchannel = F345 & Achannel(F345) (14>

where GAP denotes global average pooling, and MLP
represents a two-layer perceptron with reduction
ratio 7 and ReLU activation that learns non-linear
channel-wise dependencies. The channel attention
adaptively emphasizes discriminative channels
contributing to saliency detection.

Cross-Interaction: To enable mutual reinforcement
between spatial and channel attention pathways, the
architecture incorporates cross-interactive connections

that allow each attention mechanism to influence the
other:

Fs%c = Achannel(Fspatml) ® Fspatial (15)

Feys= Aspatial(Fchannel) ® Fchannel (16)

where F;_,. represents spatially-attended features
refined by channel attention, and F._,; represents
channel-attended features refined by spatial attention.
This bidirectional exchange ensures that both spatial
localization and semantic channel information are
optimally integrated.

3.7 Feature Concatenation and Saliency Prediction

The cross-interactive dual attention outputs are
concatenated along the channel dimension to form
a comprehensive feature representation:

Frefined = Concat {Fs—>07 Fc—>s] <17)

The concatenated features are processed through a
prediction head consisting of batch normalization
(BN), convolution, and ReLU activation to generate
the final saliency representation:

Fyrea = ReLU (Conv (BN(Fpc fined))) (18)

A sigmoid activation function is applied to produce
the final saliency map P(z,y) € [0, 1], representing the
pixel-wise probability of belonging to a salient object:

P(ﬂj‘, y) = U(Fpred) (19)

3.8 Loss Function

The network is trained using binary cross entropy
(BCE) loss as the optimization objective, which is
well-suited for pixel-wise binary classification tasks
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in saliency detection. The BCE loss measures
the cross-entropy between the predicted saliency
probabilities and the ground truth binary masks:

Lpce =
|
— g 2 2 (Gl log(P(x,9)) + (1= Gla,)) log(1 = P(z,y))]

z=1y=1
(20)

where P(z,y) € [0,1] denotes the predicted saliency
probability at position (z,y), G(z,y) € {0,1}
represents the ground truth binary mask, and W
and H are the width and height of the saliency map
respectively. The BCE loss encourages the network
to produce confident predictions by penalizing
deviations from the ground truth labels at each pixel
location. This formulation is particularly effective for
RGB-T saliency detection as it provides strong gradient
signals for both salient object pixels (G(z,y) = 1) and
background pixels (G(x,y) = 0), enabling the network
to learn clear decision boundaries between foreground
and background regions across both modalities while
maintaining robustness to the inherent class imbalance
present in RGB-T saliency datasets.

4 Results and Discussion

4.1 Experimental Setup

Datasets We conduct extensive experiments
across three widely used RGB-T benchmarks to
comprehensively evaluate the proposed framework’s
performance under various challenging scenarios.
The datasets include: (1) VT821 [10], comprising 821
manually registered RGB-thermal image pairs with
diverse challenging scenarios including occlusion, low
illumination, and thermal crossover; (2) VT1000 [11],
consisting of 1,000 pairs captured by well-aligned RGB
and thermal cameras with varied lighting conditions
and scene complexities; and (3) VT5000 [34], offering
5,000 pairs of high-resolution images with rich scene
diversity, multiple object scales, and minimal spatial
misalignment.  Following the standard training
protocol established in prior works [31], we utilize
2,500 image pairs from VT5000 for training, while
the remaining 2,500 pairs from VT5000, along with
all images from VT821 and VT1000, are reserved
for testing. This data split ensures comprehensive
evaluation across different dataset characteristics and
acquisition conditions.

Evaluation Metrics We adopt five widely-used
evaluation metrics for comprehensive performance
assessment: (1) S-measure (5,,) evaluates structural
similarity between predictions and ground truth,

capturing region-aware and object-aware structural
information; (2) F-measure (Fj3) computes the
weighted harmonic mean of precision and recall with
B%> = 0.3 to emphasize precision; (3) weighted
F-measure (Ff,) addresses the interpolation flaw in
F3 by weighting errors based on their positions; (4)
E-measure (E,,) jointly captures local pixel values and
image-level mean to evaluate both pixel-level matching
and global statistics; and (5) Mean Absolute Error
(M) measures average pixel-wise absolute difference
between predictions and ground truth. For Fg and E,,,,
we report maximum values across all thresholds, while
for F§ we report adaptive threshold values. Higher
values of S,,, Fj3, Fg, E,,, and lower values of M
indicate superior performance.

Implementation Details The proposed framework
is implemented in PyTorch 2.0 and trained on a single
NVIDIA RTX 3090 GPU (24GB). The dual-stream
Res2Net-50 backbone encoders for RGB and thermal
modalities are initialized with ImageNet-pretrained
weights, while newly introduced modules (DASPP,
MHSA, dual-attention blocks, and prediction heads)
are initialized using PyTorch’s default Kaiming
initialization. Input RGB and thermal images are
resized to 352 x 352, with aspect ratio preserved via
padding when necessary. The network is optimized
end-to-end using AdamW p; = 0.9 and 3> = 0.999
with weight decay of 10~* and learning rate of 10~%.
The batch size is 8, and the model is trained for 150
epochs using binary cross-entropy (BCE) loss.

Key Hyperparameters for Reproducibility In the
DASPP module, the main atrous dilation rates are set
to1, 3,5,7. For MHSA, we use 8 attention heads with a
head dimension consistent with the backbone feature
width. In the channel-attention branch, the reduction
ratiois settor = 16, and the same ratio is used wherever
squeeze-and-excitation style channel compression is
applied.

Backbone Choice and Sensitivity we adopt
Res2Net-50 for both modalities due to its strong
multi-scale feature extraction ability, which benefits
RGB-T saliency detection. The proposed PACNet
modules are backbone-agnostic and can be applied
to other encoders (e.g., ResNet-50 or lightweight
backbones) by replacing the feature extractor while
keeping the remaining architecture unchanged.

4.2 Comparison with State-of-the-Art Methods

We conduct comprehensive comparisons with SOTA
RGB-T methods spanning from 2018 to 2023, including
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Table 1. Quantitative comparison with state-of-the-art RGB-T SOD methods on VT821, VT1000, and VT5000 datasets. Best
results are highlighted in bold. 1 indicates higher is better, | indicates lower is better.

VT821 VT1000 VT5000

Method  Year

SmT FLi’T F’liT EmT MJ/ SmT FET FIET EmT M»J/ SmT FET FiiT EmT M\L
MTMR 2018 0.725 0.662 0462 0.815 0.108 0.706 0.715 0.485 0.836 0.119 0.680 0.595 0.387 0.795 0.114
SGDL 2020 0.765 0.730 0.583 0.847 0.085 0.787 0.764 0.652 0.856 0.090 0.750 0.672 0.558 0.824 0.089
ADF 2020 0.810 0.716 0.626 0.842 0.077 0910 0.847 0.804 0921 0.034 0.863 0.778 0.722 0.891 0.046
MIDD 2021 0.871 0.804 0.760 0.895 0.045 0.907 0.871 0.848 0928 0.029 0.856 0.789 0.753 0.891 0.046
CSRNet 2021 0.885 0.830 0.821 0.908 0.038 0918 0.877 0.878 0.925 0.024 0.868 0.810 0.796 0.905 0.042
MIA 2022 0.844 0.740 0.720 0.850 0.070 0.924 0.868 0.864 0.926 0.025 0.878 0.793 0.780 0.893 0.040
ECFFNet 2022 0.877 0.810 0.801 0902 0.034 0923 0.876 0.885 0.930 0.021 0.874 0.806 0.801 0.906 0.038
OSRNet 2022 0.875 0.813 0.801 0.896 0.043 0.926 0.892 0.891 0935 0.022 0.875 0.823 0.807 0.908 0.040
LSNet 2023 0.878 0.825 0.809 0911 0.033 0925 0.885 0.887 0935 0.023 0.877 0.825 0.806 0.915 0.037
Ours 2025 0.886 0.832 0.821 0.912 0.032 0.926 0.893 0.894 0.937 0.021 0.880 0.828 0.807 0.917 0.034

MTMR [10], SGDL [11], ADF [34], MIDD [31], ECFENet). The exceptional performance on E,, (0.937)

CSRNet [29], MIA [35], ECFFNet [13], MMNet
[36], OSRNet [37], and LSNet [38]. These methods
represent diverse architectural paradigms, including
early fusion approaches, attention-based mechanisms,
and transformer-based architectures, providing
a comprehensive benchmark for evaluating the
proposed framework.

4.2.1 Quantitative Analysis

Table 1 presents quantitative comparisons across three
benchmark datasets: VI821, VT1000, and VT5000. The
proposed method achieves superior or competitive
performance across all evaluation metrics and datasets,
demonstrating its robustness and effectiveness in
handling diverse challenging scenarios.

Performance on VT821: On the VT821 dataset,
which contains diverse challenging scenarios including
occlusion, low illumination, and thermal crossover,
our method achieves the best performance across
all metrics with S, = 0.886, Fg = 0.832, quj
0.821, E,,, = 0.912, and M 0.032. Compared
to the second-best performing method CSRNet, our
approach demonstrates improvements in S,, and

F3, while achieving comparable performance on F§.
Notably, our method outperforms LSNet on S,
demonstrating the effectiveness of our hierarchical
feature integration strategy combined with DASPP
modules for multi-scale context aggregation.

Performance on VT1000: On the VT1000 dataset,
which features well-aligned RGB-thermal pairs with
varied lighting conditions, our method achieves
superior results with S,,, = 0.926 (tied with OSRNet),
Fs = 0.893, Fs, = 0.894, and E,, = 0.937, while
matching the best MAE score of 0.021 (tied with

demonstrates our method’s ability to capture both local
pixel-level details and global image statistics effectively,
which is crucial for handling the diverse object scales
and scene complexities present in VI1000.

Performance on VT5000: On the most significant
benchmark VT5000, which contains high-resolution
image pairs with rich scene diversity, our method
achieves the best performance across all metrics: S, =
0.880, Fjg = 0.828, F§ = 0.807, E,, = 0.917, and M =
0.034. These consistent improvements demonstrate
the robustness and scalability of our approach when
handling large-scale datasets with diverse imaging
conditions. The superior performance on VT5000
validates the effectiveness of our hierarchical feature
integration strategy, where features Fis3 and Fiys
are constructed through strategic fusion with global
context from MHSA, enabling the network to handle
multiple object scales and complex backgrounds
effectively.

4.2.2 Qualitative Analysis

Figure 3 presents visual comparisons between our
method and representative SOTA approaches. The
qualitative results demonstrate our method’s superior
ability to handle a range of challenging scenarios
commonly encountered in RGB-T SOD. In low-contrast
scenarios with subtle boundaries (Row 1), our method
produces complete and accurate predictions, whereas
competing methods generate incomplete detections
with missing regions or inaccurate boundaries.
When dealing with multiple objects at varying
scales (Row 2), our hierarchical feature integration
strategy effectively detects all objects with clear
separation. For complex backgrounds with thermal
clutter (Row 3), our cross-interactive dual attention
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Figure 3. Qualitative comparison of state-of-the-art RGB-T SOD methods under representative challenging scenarios.
From left to right: RGB image, thermal image, ground truth (GT), and predictions. Each row illustrates a specific
challenge: Row 1—small object with weak thermal contrast; Row 2—fast-moving object with motion blur; Row
3—camouflaged object in a complex background; Row 4—low-contrast object in cluttered scenes; Row 5—thin-structured
object with shape deformation; Row 6—multiple objects with varying scales and thermal ambiguity.

Table 2. Component-wise ablation study on VI821 and VT1000 datasets. Each row progressively adds components to
validate their individual contributions.

. . VT821 VT1000

Configuration

Smt Fst Fit Ent ML Sut Fst Fit Ent M|
Baseline 0.848 0.782 0.771 0.881 0.051 0.899 0.843 0.848 0912 0.037
+ DASPP 0.862 0.801 0.788 0.893 0.044 0.909 0.861 0.864 0.921 0.031
+ MHSA 0.871 0.813 0.797 0.900 0.039 0916 0.872 0.875 0.927 0.027
+ Spatial Attn 0.879 0.823 0.809 0906 0.035 0.921 0.884 0.886 0.932 0.024
+ Channel Attn 0.883 0.828 0.816 0909 0.033 0.924 0.889 0.890 0.935 0.022
+ Cross-interaction 0.886 0.832 0.821 0.912 0.032 0.926 0.893 0.894 0.937 0.021

mechanism achieves cleaner predictions with minimal significantly.

false positives by effectively distinguishing genuine
salient objects from thermal noise. At the same
time, other methods struggle with scattered false
positives and over-segmentation. = Our method
successfully preserves fine structural details, such as
thin appendages and intricate boundaries (Row 4),
by applying spatial attention to low-level features
Fi23, outperforming methods that produce coarse
predictions with lost details. =~ Under extremely
low illumination conditions (Row 5), our method
demonstrates robust performance by effectively
leveraging thermal information through channel
attention while compensating for unreliable RGB
features, generating accurate predictions comparable
to ground truth, where competing methods fail

4.3 Ablation Study

To validate the effectiveness of each proposed
component, we conduct comprehensive ablation
studies on the VT821 and VT1000 datasets. We
systematically analyze the contributions of DASPP
modules, MHSA mechanism, dual-attention
components, and cross-interaction strategy.

4.3.1 Component-wise Ablation Analysis

Table 2 presents a systematic component-wise
ablation study that progressively adds each proposed
module to evaluate its individual contribution.
The baseline model employs simple element-wise
addition for multi-modal fusion with standard
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Table 3. Ablation study on DASPP module placement across hierarchical levels on VT821 dataset.

DASPP Placement Smt Fst Fst Ent M
Low-level only (F}, F») 0.867 0.809 0.795 0.897 0.041
High-level only (Fj, F5) 0.873 0.817 0.803 0.902 0.037
All levels (Fy, Fy, Fs, Fy, Fy) 0.880 0.825 0.813 0.907 0.034
Selective + MHSA at F; (Ours) 0.886 0.832 0.821 0.912 0.032

Table 4. Ablation study comparing different dual attention configurations on VT821 dataset.

Attention Configuration Smt Fst F&t Ent M
No attention 0.871 0.813 0.797 0.900 0.039
Spatial attention only 0.879 0.823 0.809 0.906 0.035
Channel attention only 0.877 0.820 0.805 0.904 0.036
Both without cross-interaction 0.883 0.828 0.816 0.909 0.033
Both with cross-interaction (Ours) 0.886 0.832 0.821 0.912 0.032

convolutions, achieving S,, = 0.848 and Fj3 = 0.782
on VT821. Adding DASPP modules to levels
Fi, Fy, Fy, F5 substantially improves performance
to S, = 0.862 and Fg = 0.801, demonstrating
the importance of multi-scale context aggregation
through atrous convolutions with varying dilation
rates. Incorporating the MHSA module at F3 for global
context modeling further enhances performance to
Sm = 0.871 and Fg = 0.813, validating the benefit
of capturing long-range dependencies and global
contextual relationships.

Adding spatial attention to process Fi23 features yields
significant improvements (S,, = 0.879, F3 = 0.823),
indicating the effectiveness of emphasizing spatially
informative regions for fine-grained localization.
Incorporating channel attention for F3y5 features
provides an additional performance boost to
Sm = 0.883 and Fg = 0.828, demonstrating the
value of channel-wise semantic recalibration for
high-level feature refinement. Finally, introducing
cross-interaction between spatial and channel
attention pathways achieves the best performance
with S, = 0.886 and Fg = 0.832, validating our
hypothesis that bidirectional information exchange
between attention mechanisms enables more
comprehensive feature refinement.

4.3.2 DASPP Module Placement Analysis

Table 3 examines optimal DASPP placement across
hierarchy levels. We test four configurations: DASPP
on low-level (Fi, Fy), high-level (Fy, F5), all levels
(F1-F5), and our selective approach (Fi, Fy, Fy, F5
with MHSA at F3). DASPP on low-level features
achieves S, = 0.867, capturing details but lacking
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high-level context. High-level DASPP improves to
Sm = 0.873, benefiting from semantic multi-scale
aggregation but missing spatial details. All-level
DASPP yields S,, = 0.880, showing consistent
multi-scale processing. Our selective method,
combining DASPP at Fi, F», Fy, F5 with MHSA at
F3, outperforms others with S, = 0.886 and Fj3 =
0.832. It balances local-to-regional multi-scale contexts
and models global dependencies, demonstrating that
combining DASPP and MHSA is more effective than
applying a single mechanism uniformly across all
levels.

4.3.3 Dual Attention Mechanism Analysis

Table 4 analyzes different configurations of the dual
attention mechanism. The baseline without attention
mechanisms achieves S,, = 0.871 and Fg =
0.813. Applying spatial attention alone to Fia3
improves performance to S,, = 0.879 and Fg =
0.823, demonstrating the effectiveness of emphasizing
spatially informative regions for accurate localization.
Using only channel attention on F3y5 yields S, = 0.877
and Fj = 0.820, showing the benefit of channel-wise
semantic recalibration, though slightly lower than
spatial attention alone. Employing both attention
mechanisms in parallel without cross-interaction
achieves S, = 0.883 and Fjz = 0.828, indicating that
spatial and channel attention provide complementary
information when applied to different feature streams.
Finally, our proposed cross-interactive dual attention
achieves the best performance with S,,, = 0.886 and
Fjs = 0.832. The cross-interaction mechanism enables
bidirectional information exchange: spatial attention
features are refined by channel attention and vice versa,
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Table 5. Ablation study on different hierarchical feature integration strategies on VT821 dataset.

Integration Strategy Sm 1T Fgt FS T EnT MU
Direct concatenation 0.859 0.796 0.783 0.889 0.046
Progressive fusion (FPN-style) 0.873 0.815 0.801 0.901 0.038
Two-stream without F3 0.878 0.821 0.808 0.905 0.035
Two-stream with F3 (Ours) 0.886 0.832 0.821 0.912 0.032

resulting in more comprehensive feature refinement
than independent parallel processing. understanding.

4.3.4 Feature Integration Strategy Analysis

Table 5 evaluates different strategies for integrating
hierarchical features. Direct concatenation of all
DASPP processed features achieves S,, = 0.859

and Fg = 0.796, demonstrating that simple
concatenation without strategic integration is
suboptimal. Progressive fusion, following a FPN

style, improves performance to S,, = 0.873 and
F3 = 0.815, demonstrating the benefit of hierarchical
feature aggregation. Our two-stream integration
without incorporating F3 global context (i.e., Fi2
and Fjy5 only) achieves S,,, = 0.878 and Fj = 0.821,
validating the effectiveness of creating separate
pathways for low-level and high-level features. Finally,
our complete two-stream integration strategy that
fuses both streams with F3 global context (producing
Fio3 and F3y5) achieves the best performance with
Sy = 0.886 and Fjg = 0.832. This demonstrates that
integrating global context from MHSA-processed
F3 into both feature streams is crucial. The strategic
integration of global context enriches both pathways,
enabling more effective cross-interactive dual attention
processing.

5 Conclusion

This paper presented PACNet, an RGB-thermal salient
object detection framework designed to address key
limitations of existing RGB-T methods in multi-scale
context modeling, feature refinement, and modality
fusion.  PACNet integrates hierarchical feature
representations and introduces a cross-interactive
dual-attention = mechanism that strengthens
intra-modal features prior to fusion and enables
bidirectional information exchange between spatial
localization cues and channel-wise semantic responses.
As a result, PACNet achieves state-of-the-art
performance on three public benchmarks—VT821,
VT1000, and VT5000—with S-measure scores of
0.886, 0.926, and 0.880, respectively. Ablation and
comparative experiments further confirm that each

module contributes meaningfully to performance
gains, particularly in challenging conditions such as
low illumination, thermal clutter, and multi-scale
targets.

Beyond benchmark improvements, the proposed
design offers a general and practical fusion
paradigm for robust multi-modal perception,
where complementary sensing (RGB and thermal)
is required to handle degraded visual conditions.
Moreover, PACNet’s refinement-before-fusion design
and attention-guided recalibration are intended
to mitigate performance degradation when one
modality is missing or corrupted, which motivates
our planned robustness evaluation under controlled
modality degradation settings. Future work will
focus on developing lightweight and efficient variants
of PACNet for real-time deployment, evaluating
robustness under missing or corrupted modalities,
and extending the framework to additional modalities
(e.g., depth or event data) to further improve
generalization in extreme environments. Future work
will also evaluate cross-dataset generalization (train
on one VT dataset and test on another) to quantify
robustness under domain shift.
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