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Abstract

Metaheuristic Algorithms (MAs) are commonly
used in the scope of digital image processing,
in particular, image segmentation processes.
This is evident in Multilevel Thresholding (MTH)
methods, where the optimal threshold configuration
must be found to produce high-quality segmented
images. Minimum Cross-Entropy (MCE) is one
of the most prominent techniques for MTH due to
its simplicity and efficiency. This article proposes
a comparison of recent MAs that have not yet
been implemented for image segmentation. Six
recently published MAs were implemented and
tested on nine complicated images selected from the
BSDS300 dataset. Analyzing the results reveals the
best algorithm when MCE is used as the objective
function. Central tendency indicators, such as
Standard Deviation and mean, are also used to
analyze the five threshold values. Additionally,
three quality indicators used in processing
images are analyzed: Peak Signal-to-Noise Ratio
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(PSNR), Structural Similarity (SSIM), and Feature
Similarity (FSIM). The result of this analysis
allows for the quality of the segmentation of each
algorithm used in the comparison. The metrics
with the highest values are indicative of the most
effective algorithm in terms of segmentation
performance.

Keywords: image segmentation, thresholding, minimum
Cross-Entropy, metaheuristics.

1 Introduction

Image segmentation has been a significant challenge
in the scope of computer vision and digital image
processing.  This process is crucial because it
simplifies and facilitates the representation of an
image. More specifically, image segmentation refers
to the mechanism used to divide an image into
multiple segments [1]. Since one of the main
challenges of image processing is to extract the desired
information from a given image without affecting the
other properties of the image, several methods have
been developed in recent years to achieve this goal
[2, 16]. This segmentation process will represent
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some type of information for the user in the form of
color, intensity, or texture. Therefore, the selection
of any image segmentation technique is made after
observing the domain of the problem [3]. The image
segmentation process can be performed using different
techniques [4], including threshold-based techniques,
which use a set of thresholds to separate objects
from the background; region-based techniques, which
consist of splitting the original image into separate
regions according to predefined criteria such as color,
intensity, or object; clustering-based techniques, in
which image pixels with the same properties are
divided into groups; and edge-based strategies, which
separate objects from the image by searching for
discontinuous edges. Among these methodologies,
threshold-based segmentation has stood out for its ease
of implementation [5, 17]. Threshold techniques work
with the image histogram and use a threshold to divide
the pixels into two groups. In this case, when a single
threshold is used, it is known as a two-level threshold.
On the other hand, when more than two thresholds
are used to separate into several groups, it is known as
Multilevel Thresholding (MTH) [6]. One of the main
problems with these approaches is precisely finding
the thresholds that divide the image into homogeneous
regions. To do this, different strategies can be found,
such as Otsu [7], Kapur [9], Tsallis [8, 10, 12], Renji
[11, 18], and Minimum Cross-Entropy (MCE) [13, 19].

In recent decades, various studies based on MTH have
been developed. For example, the one developed
by [21] proposes an improved method of image
segmentation with multiple thresholds based on the
Whale Optimization Algorithm (WOA). Interestingly,
two other proposals based on this algorithm (WOA)
use a different approach [20, 22]. On the other
hand, applying a different technique, there is the
approach proposed by [23], in which the Firefly
Algorithm (FA) is used to optimize fuzzy parameters
and obtain optimal thresholds. A recent work
by [24] shows another different approach that
increases the search capacity of the artificial electric
tield algorithm and is then used with a multilevel
threshold approach. Algorithm hybridization has
been a very popular topic recently. A proposal
developed by [25] shows an interesting hybridization
between the Sine-Cosine Algorithm (SCA) and an
Equilibrium Optimizer (EO). In [25], a proposal
is presented that uses the Human Mental Search
(HMS) algorithm in an improved version that uses
the multilevel threshold approach with minimum
cross-entropy. In [26], implementations of this

type can also be found that use an improved
version of the algorithm applied to a multilevel
thresholding approach that uses cross-entropy as the
objective function. A notable study presenting a frog
leap algorithm mixed with multiple strategies and
horizontal and vertical crossover search, designed
for multilevel image segmentation, demonstrates a
concrete implementation of the methodology [14, 15,
27]. These investigations promote satisfactory results
in the implementation of different versions of known
algorithms with different objective functions, such as
Otsu’s interclass variance, Kapur’s entropy, Tsalli’s
entropy, and MCE cross-entropy. However, it remains
important to further explore the capabilities of MAs in
this area of image segmentation, focusing on MTH.

This study aims to demonstrate various evolutionary
strategies employed to address the issue of image
segmentation, with MCE serving as the objective
function. The following algorithms were used: the
Differentiated Creative Search (DCS) [39], the Escape
Algorithm (ESC) [28], the Moss Growth Optimization
(MGO) [29], the Mirage Search Optimization (MSO)
[30], the Nutcracker Optimization Algorithm (NOA)
[31], and the Polar Lights Optimizer (PLO) [32].
These algorithms were selected because they were
recently published, and their implementation for
image segmentation had not been done previously
until this manuscript. With the goal of creating a
stable reference framework that allows for an objective
comparison of six selected algorithms, it was decided
to include a widely recognized reference in the
literature: Particle Swarm Optimization (PSO). This
algorithm, inspired by the collective behavior of fish,
has proven effective in a wide range of optimization
problems, given its extensive research and balanced
application in the solution area. In order to ensure
an optimal comparative analysis, PSO was applied to
the same data as the main experiments, considering
exactly the same conditions and reference images. This
ensures that the differences in observed performance
between the algorithms are not due to changes in
data or experimental parameters, but also to the
inherent characteristics of each technique. Using
PSO as a point of comparison not only provides the
possibility of contextualizing the results obtained with
the six evaluated algorithms but also creates a standard
benchmark against a well-documented optimization
method, providing greater stability and objectivity to
the objective study. This is part of the novelty of the
manuscript.

The subsequent sections of this paper are structured as
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follows: Section 2 covers background information on
the MAs implemented in the study. Section 3 describes
the methodology used to adapt the algorithms to the
image segmentation problem. Section 4 discusses the
experimental development of the algorithms. Finally,
Section 5 concludes the manuscript.

2 Preliminaries

2.1 Particle Swarm Optimization

Particle swarm Optimization is an algorithm
inspired by an animal’s social behavior in their
natural environment, this behavior is constant in
multiple species in different environments, animals
communicate with each other when hunting or when
being preyed on in order to confuse the predator or
in order to obtain prey (as the case may be) and feed
the group; this constant communication between
members of the group has an enormous influence on
its movement, this social behavior was abstracted from
nature and was first captured in 1995 by Kennedy
et al. [47]. Over time the proposed algorithm was
modified, maintaining its social inspiration but
improving how particles move through space to
improve its performance and avoid stagnation, one
of the most recognized improvements of the PSO
is the implementation of an inertial weight in 1998
by Shi et al. [48], this inertial weight scales the
velocity vector over the iterations, with this scaling
the algorithm refines the search, in 1999 by Shi et
al. [49], a dynamic inertia was implemented that
decreases its value with the passing of the iterations
with this strategy the search for a more appropriate
solution is increasingly refined, the inertia balances
the search of the algorithm when the inertia is high
the algorithm explores more and when the inertia
decreases the algorithm tends to exploit in a better
way hence the importance of dynamic inertia in this
particular algorithm. The strategy for updating the
velocity vectors is described in Eq. 1.

®)

1
o = w® O e (phest, — 2

)+ o ro(gpest — 331@)
(1)
where the inertial adaptive weight is defined in Eq. 2,
vz-(t) is the actual particle position in the first iteration is
randomly selected, the coefficients social and cognitive
are ¢ and c; each of these coefficients scales the
velocity of each of the particles based on its own
experience or based on the experience obtained by the
most optimal particle in the entire swarm. This social
influence determines how the particles will be explore,

r9 and r; are random numbers betwin [0, 1], xl(t) is the
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actual particle position, pyest, and gpest represents the
best position find by own particle and the best position
find by all swarm respectively.

t Wmaxz — Wmin

W =Wmar — ——— -

2
- 2)
where w4, and wy,i, represent the maximum and
minimum w values, T" and ¢ are all the iterations and
the actual iteration respectively.

(t+1)

Z;

t+1)

= 2, + | (3)

where ngt) is the current position and v

velocity update of each particle.

(t+1)

7

is the

2.2 The differentiated creative search

Differentiated Creative Search (DCS), created by
Duankhan et al. [39], is an innovative proposal in the
tield of algorithms with a population optimization
approach. = The DCS algorithm introduces an
innovative technique based on differentiated
knowledge acquisition and creative realism, with the
aim of more effectively addressing decision-making in
highly complex environments. Unlike conventional
Differential Evolution (DE) methods, DCS structures
the search process from the perspective of divergent
and convergent thinking, applied in a differentiated
manner according to the performance of each of the
population’s individuals. The algorithm’s strategy has
the following approach: starting from a population
with a constant size, the individuals in the population
are ordered according to their performance and
classified with the following characteristics.

e High performance: members belonging to this
category employ divergent thinking through the
DCS/Xrand/Linnik(a, o) strategy, using Linnik
flights to generate creative solutions that allow
exploring rarely visited regions of the space search
by extending the algorithm’s search with its best
solution prospects. This strategy is defined in
Eq.(4).

v d = ; g + Linnik(c, o) (4)
where the Linnik distribution introduces
significant perturbations that favor broad and
innovative exploration.

e The solution refinement strategy: utilizes the
remaining population members outside the main
group, applying convergent thinking to each
member using the DCS/Xbest/Current-to-2rand
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strategy. This approach aims to refine existing
knowledge by integrating details from the leading
individual in the population and two randomly
selected members. This strategy is expressed in

Eq (5).

Vid = W Thest,d + M(Tro,d — Tid) + wit(Tr1,d — Tid)
%)

where w = 1 represents the cognitive weight, \; is
the social sensitivity that decreases its value over
time, and w;; ~ U(0, 1) represents the intensity
of individual learning influenced by stochastic
factors.

One of the innovations of the DCS algorithm is
the application of the Differentiated Knowledge
Acquisition (DKA) mechanism. This mechanism is
a variation of the DE that replaces the classic crossover
operator. The main objective of this new mechanism
is to adapt the degree of knowledge modification for
every individual belonging to the population particle,
ordered by their performance ranking. The quantified
knowledge acquisition rate is shown in Eq. (6).

1 N 1if U(0,1) < i
Mt =5 <[U(O’ 1) il + { 0 otherwise )
(6)

where ¢;; in the Eq.(7) represents knowledge
imperfection. This can be seen below:

R;
i =0.25 + 0.55 - N;, (7)

where R;; is the position of the individual in the
population and NP is the total population size.
This approach allows low-performing individuals
to experience more significant changes in their
dimensions, fostering deeper and more personalized
learning.

2.3 The escape or escape algorithm

The Escape or Escape Algorithm (ESC) created by
Ouyang et al. [28], based on human behavioral
segmentation during emergency evacuations (Calm,
Herding, Panic), the metaheuristic algorithm design
balances exploration and exploitation as it classifies
solutions using human behavioral segmentation as
follows:

e Calm: rational individuals who guide the group,
and the behavior model is expressed as follows in

Eq.(8):

25 = x5+ ma - (w1 (Cf — 245) + ve,j) - P(t)
(8)

where C; denotes the group’s collective decision
and serves as the center of the calm group along
the j — th dimension. The v, ; vector is given by
Eq. (9).

Vej = Rej—ij+ ¢ (9)

where R, ;, denoting a random position in the
quiet group, see in Eq. 10. Values ry,;, ; and
T'maz,j indicate the minimum and maximum J —th
dimension. The term ¢; introduces a small motion
correction and m; regulates the amount of such

movement.
Rej = Thing T Tij (Mmazj = Tmin,j) (10)
e Herding: They follow other individuals without

a clear direction, and the behavior model is
expressed in Eq. (11):

new
Tij = Tij tmai <w1 (G —wig)

+m2'w2-($p,j—$i,j)+vh,j'P(t)>
(11)
where z,; represents a solution randomly

selected from the panic group, w, is an adaptive
Levy weight. vy, ; as calculated with Eq.(12),

= ph L (ph _ 2h
Rpj = Tmin,j T Tij (Tmam Tmin,j) denotes
iti h h
generated random position, 7, - and rp, ., ; are

the minimum and maximum parameters of the j—
th dimensions, m; and my are a binary variables.

O = Rhj —Tij+¢€ (12)

e Panics: They move erratically, exploring
unconventional exits, and the behavior model is
expressed as follows in Eq.(13):

new P .. P ..
Ti; = Tij+my- <w1 (Ej — i)

+mg - w2 - (-rrand,j - xi,j) + Up,j * P(t)>
(13)

where E; represents an individual random from
the Pool Elite, 4,4, 7 denotes any individual in
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the population. The value of v, ; is defined by Eq.

(14):

Upj = Bpj —@ij + € (14)
where the R, ; = rﬁu.w + 7 (rfnam — Tfnin,j) is
a randomly generated position within the panic
group’s bounds.

Each z; in the population is randomly initialized in
domain of solutions as follows in Eq.(15):
Tij = lb] +7rij- (ub] — lbj),

Tig~ U(O, 1) (15)

where [b; and ub; represent the lower and upper limits
of the j — th dimension, 7; ; denotes a value in the
interval 0 and 1, showing the randomness in the initial
decision-making process during an evacuation. After
initializing the population, the objective function value
of f; = f(x;) is calculated. The top individuals are
stored in the Elite Pool E as follows in Eq.(16):
E=X,Xo,...

3 Xe:m'st (16>

Individuals elite represent the potential best solutions
(output) identified by the current population and
become a reference for future iterations.

The panic parameter models the transition in crowd
behavior at the beginning of each iteration ¢. The panic
parameter follows Eq.(17):

P(t) = cos <$>

When the panic parameter is higher, the individuals
exhibit more disorder behavior. This parameter loses
its value over time as t goes from 0 to iterations 7.
In the exploration phase, individuals are considered
"calm" and move toward Elite Pool solutions as follows,

Eq.(18):

(17)

new

ri5" = wig+my - wr - (Ej — i)

+ mo - wsy - (xrand,j - 'ri,j) (18>

where z; ; denotes the position in i — th individual
in j — th dimension, £} is a position from Elite Pool,
Trand,; 1S @ random position in the population. The
size step of individuals are controlled by Levy weights
adaptive strategy, as shown in Eq.(19) and Eq.(20).

gl
T e

pi ~ N(0,0%), v; ~ N(0,1) (19)
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(4?5257
(1 + B) - sin (52)

@[

o= ) (20)

where 3 denotes a dynamic parameter that models its
behavior through Eq. (21).

B(t) = Ppase + 0.5 - sin <;Tj7i> (21)

where (45 is the initial value of 3, this parameter is
found empirically and allows for a larger exploration
phase at the beginning of the algorithm.

2.4 The moss growth optimization

The Moss Growth Optimization (MGO), created by
Zheng et al. [29], a novel metaheuristic algorithm
based on the biological behavior of moss. MGO
combines exploration and exploitation by applying
strategies observed in biological environments; the
main strategies are extender spore, dual propagation,
and cryptobiosis. These three properties seen in the
moss growth model the behavior of the algorithm as
follows:

e Spore dispersion: under steady and turbulent
wind conditions, simulates global exploration.
This behavior simulates random dispersion using
long and short steps following Eq.(22)

num
1

Duind = — > dM; € dirX
i=1

(22)

where D, inq denotes the angle wind and has
the identical dimension as the members in the
population. The variable num represents all the
individuals in Eq. (23).

dirX = {Myest — M; | M; € divX} (23)
where dirX are the separation between
individuals within divX concerning Mpes;.
This strategy simulates the natural dispersion
of the wind. To achieve this, a strategy of long

and short steps is applied through the academic
modeling Eq.(24)

r1 > dy

Minew _ M; + stepy - Dwinds (24)
r1 < dp

M; + stepa - Dyind,

where M“" represents the new moss acquired
by the dispersal of the member, M;, 71 denotes
any number in (0,1), d; is a constant obtained
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experimentally, stepl represents the distance
traveled by the spore under constant wind
conditions are in Eq.(25) and step2 represents the
space traveled by the spore under rough wind
conditions following the Eq.(26),

stepl =w - (rg —.5) - E (25)

where w is a constant obtained experimentally, r»
is a random vector in the interval (0,1), and E is
the force of the wind.

step2 =0.1-w- (r3 —0.5) - E-

(1 + tanh(B/1 — 2))

E
1+ -

5 (26)

where r3 is a random vector in the interval (0,1)
and f3 represents the proportion of the population

e Dual propagation search introduces new
solutions based on local reproduction as shown
in Eq.(27)

amew (1 —act) - M; + act - Mpes, Sirg > da
' Mpest,j + steps - Dyind,j siry < do
(27)

where M;“" represents the new individual in ith,
M;'¢" represents the jth particle in M;**" and j
is a random number that does not exceed the
maximum dimension of the individual, Mp.,; the
best individual solution found, M. ; represents
the jth particle in Mpest, Dywind,j is the jth
particle in Dy,;n4, 74 is @ random number in the
interval (0,1), d2 is a constant parameter obtained
experimentally, act is expressed in Eq.(28) and
step3d in Eq.(29).

1, s—=5—>05
act = { ’ 1'5_11(”5 = (28)
0, 757075 <05
where r5 is a random vector in (0,1).
step3 = 0.1 (r¢ — 0.5)- (29)

where 76 is any number between the range (0,1)
and F is the power of the wind.

e Cryptobiosis mechanism is the ability of moss
to recover and thrive after a period of drought
in nature; the moss at this stage starts a period
of metabolic latency; when the circumstances

are favorable with more water, the moss can
revive; this biological survival strategy of moss is
transferred to the MGO algorithm by storing up
to ten previous versions of each individual, this
strategy is represented in Eq. (30)

M; + r M7t (30)
where the current individual M; is replaced by its
best historical version r MPest,

2.5 The mirage search optimization

The Mirage Search Optimization (MSO), created by
Jiahao He et al. [30], is a novel metaheuristic technique
that is inspired by atmospheric optical phenomena and
mirages. Mirages are common natural phenomena
that occur because of the refraction of light as a
result of temperature gradients in the atmosphere.
These temperature changes cause movement and
change the density of the air, modifying the refractive
index. Refraction occurs when light bends as it passes
through different air temperatures. This causes optical
aberrations because the human brain interprets light
as coming in a straight line, creating a distorted image
of the environment. Mirages are classified into two

types:

e Superior mirages are generated when hot air is
placed above layers of cold air in the natural
environment. These physical phenomena allow
the observation of distant objects and are common
in cold environments on the planet.

e Inferior mirages are generated when warm air is
near the surface and cold air is in the upper layers.
A common example of this phenomenon is on the
roads on hot days, where these types of mirages
generate inverted and magnified images.

These phenomena have been extensively studied by
extracting refractive indices. These experiments have
led to the development of mathematical formulas that
model these phenomena. These mathematical models
are used in the MSO algorithm to guide the algorithm’s
behavior during the iterative process.

2.5.1 MSO mathematical foundations

The mathematical modeling of the algorithm is divided
into two sections: the upper mirages are the global
optimization strategy, and the lower mirages are the
local optimization strategy.

2.5.2 Initialization

The first set of solutions is used to observe, and based
on these observations of the initial positions, the new
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positions are updated based on the upper or lower
mirage, as the case may be. Each observation position
is a vector of n as shown in Eq.(31)

x11 Zq

X = (31)

J,’pl .CUpd
where p is the upper limit and d is the upper limit of
the dimension.

The generation of vectors for each individual is defined
in Eq.(32)

where z; is the i dimension of the current individual,
Ib; is the lower bound, ub; is the upper bound and r is
a random number between 0 and 1.

2.5.3 Superior mirage strategy (global exploration)

The superior mirage strategy is divided into 3
cases, depending on how the light and temperature
interact to generate the superior mirage in natural
environments. The equations that model the physical
phenomenon were modeled and combined, resulting
in Eq.(33), which updates the initial positions.

Hl -

t
Tij = Tij + AZioper

(33)

where xf}rl is the new updated position of each
¢

individual, z;; is the current position of each

individual andﬁxlower is selected as appropriate.

e Case 1, expressed in Eq.(34), when the condition
is satisfied that the incident light is to the left of
the horizontal datum normal.

sin (x — 90— 26) - hsin (3 + )
" sin(a—fB) -sin (o — 25)

Axlower =Q
(34)

e Case 2, expressed in Eq.(35), when the incident
light conditions are to the right of the horizontal
datum normal and § < « < 7/2 are satisfied.

sin (7 — 2a + 283) - hsin (5 — B)

sin (m — a4+ () - sin (o — 23)
(35)

Axlower =a-

e Case 3, expressed in Eq.(36), when determining
that the incident light is to the right of the
horizontal datum normal and satisfying 8 < a <
7/2 is satisfied.

sin (=7 + 2a — 23) - hsin (§ — )

Csin (7 — a+ B) - sin (7 — a + 28)
(36)

Axlowe’r =«
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2.5.4 Inferior mirage strategy (local exploration)

The lower mirage strategy, due to its ability to enlarge
images distorted by the effect of temperature and air,
has excellent scanning performance, modeling Eq.(37)

t+1

w = 2l + DAZypper (37)

where there are 2 possible cases for selecting parameter
D as follows:

e Case 1, when the individual present is not the
most optimal individual in the population, and
the following parameters are in Eq.(38)

hij = |gbest; — xi;| - rand
(gbest; — x45) - rand (38)

D =
hij

e Case 2, when the present individual is an optimal
individual in the population and the following
parameters are in Eq.(39)

hij = | £0.05 - rand|

p = 2005 rand (39)
hij
and Az ppe, is modeled on Eq.(40)
h h-sin (¢)
Az _ h . (sin 0) " cos (p+0) - COS (w)) (40)
YPPET T tan (£) cos (w —¥¢)

2.5.5 Applications and resources

The MSO has proven to be a competitive algorithm for
optimization in complex search spaces. Its robustness
has been tested with CEC2017, CEC2014, and 21
classic benchmarking functions. It demonstrated its
robustness by being in first place in the Friedman
ranking, with 86 optimal results out of 116 in CEC2017
(100D). It showed good performance in unimodal
and hybrid functions and gave worse results using
multimodal functions.

2.6 The nutcracker optimization algorithm

The Nutcracker Optimizer Algorithm (NOA) [31] is
an optimization algorithm inspired by the behavior of
the nutcracker bird, which follows an annual strategy
for collecting, storing, and recovering seeds. This
biological pattern is modeled in two fundamental
stages: the search and storage strategy (during
summer and fall) and the cache search and recovery
strategy (in winter and spring). The first of these
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strategies, which constitutes the beginning of the
optimization process, is detailed below.

During the initial phase, agents act individually in
the collection zone, which represents the region of
the search space where new solutions are explored.
Each individual starts from a randomly generated
position and seeks to move toward promising regions
of the space. This process simulates the behavior of a
nutcracker when exploring a forest in search of seeds.
If it finds a suitable source, it records it; otherwise,
it moves to another location. The following equation
models this active exploration behavior as follows in
Eq(41):

th if 7 < 79,
Xfﬁ,j v (X,t4,j - XtB,j)
Y§+1 = 4§ tu- (7"2 . Uj — LJ) ift < T"é‘“”,
Xt 4 (qu,j - XEJ)
+p-1(ry <8) - (r?*-Uj — Lj), otherwise,
(41)

where X**1 i is the new position of the ith nutcracker
in the current generation t; X/ ; is the jth position
of the ith nutcracker in the current generation; U;
and L; are vectors, including the upper and lower
bound of the jth dimension in the optimization
problem; v is a random number generated according
to the levy flight; Xﬁest, ; is the jth dimension of the
best solution obtained even now; A,C, and B are
three different indices randomly selected from the
population to facilitate exploration of a high-quality
food source; 71, 72, r, and r; are random real numbers
in the range of [0,1]; X}, ; is the mean of the jth
dimensions of all solutions of the current population
in the iteration ¢; and x is a number generated based
on the normal distribution (74), levy-flight (75), and
randomly between zero and one (73) as shown in the
following Eq.(42).

3, ifr; <mrg
p=1< 14, ifrg<rs (42)
T5, ifry <rs

where r3 and 73 are random real numbers in the range
of [0, 1].

This structure allows the algorithm to dynamically
switch between local and global exploration
dynamically, thereby increasing the coverage of
the search space and reducing the risk of getting stuck

in local optima. The variability introduced by p also
modulates the magnitude of the exploratory steps.

Once individuals identify potentially useful regions,
the next step is the storage phase, which involves
burying seeds in strategic locations. At this stage,
the aim is to intensify exploitation around the best
solutions found, guiding agents towards high-yield
areas. The following Eq.(43) models this behavior:

Xf e (Xéest th) : |)“

giHlnew) _ jﬂ’l (XY N ng); it <7
’ Xf,est +p- (X4 —XY), ifn <7
Xt .1, otherwise

best

(43)

where X X+ represents t the new position of the part1c1es
in the iteration ¢ + 1, X! is the current position, Xt .,
is the best solution found so far, X! Y and Xt 5 are
randomly selected positions from the population, y is
a Levy-generated step size, A is a Levy coefficient, [ is
a lineary decreasing factor (from 1 to 0), 71, 72, 73 and
r1 are random numbers in [0,1].

This model promotes more accurate convergence
by progressively reducing the search range while
maintaining the capacity for variation through the use
of random population differences. The decision to
accept or reject this new stored position is defined in
Eq .(44):

if p < Pay

(44)
otherwise

Zt+1(new)
et = N )
7 1

X’L 5

where ¢ is a random number between zero and
one, and Pa; represents a probability value that is
linearly decreased from one to zero based on current
generation. Finally, this first strategy culminates in
the use of spatial memory. Once the seeds have
been stored, the agents simulate the behavior of
the nutcracker, which memorizes the location of its
reserves using spatial references in the environment.

2.7 The polar lights optimizer

2.7.1 Owverview

The Polar Lights Optimizer (PLO) is a novel
physics-inspired metaheuristic algorithm introduced
by Yuan et al. [32]. Inspired by the aurora
phenomenon, PLO models the movement of
high-energy particles under geomagnetic forces,

combining strategies of "gyration motion", "aurora
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oval walk", and "particle collision" to achieve a balance
between exploration and exploitation.

PLO has demonstrated superior performance against
classic and state-of-the-art optimizers on IEEE
CEC2014 and CEC2022 benchmarks, and has found
practical use in tasks such as multi-threshold image
segmentation and feature selection, particularly in
medical datasets [32, 33].

2.7.2 Mathematical modeling of PLO operators
e Initialization
A population of N particles X = {z1, zo, ...
is initialized randomly:

7ZEN}

"Ei = xfnin+r' <xf;nax - xfnin) y T U(O, 1) (45>
e Gyration motion (local exploitation)
Simulating spiraling under Lorentz force and
atmospheric damping;:
B
vt = of 4 T2 AL - av!
m

i (46)
withg=B=m =1, a ~U(1,1.5),and m = 100;
velocity is used to update positions locally [32].

e Aurora oval walk (global exploration)

Is inspired by the phenomenon caused by
energetic particles gradually converging on the
poles and forming a luminous elliptical ring,
the natural behavior of the energetically charged
particles within the ring are free to move freely
around the oval ring, this behavior of all particles
causes constant collisions between the same
particles, in addition the particles chaotically
follow the changes in the Earth’s magnetic field,
this strategy of movement in the particles is
mathematically introduced in the PLO with the
following Eq.(47)

At xfj + wy - Levy(d) + wa - (i;j — a:t’j)

+ws - (ubd —IV) - (47)

t t
wy = —

T T (48)

w1 = 1-—
where 7 is the population mean, t is current
iteration, 7" is max iterations [32, 33].

e Combined position update
Positions are updated by blending local and global
strategies:

= u - Gyration(z!) + (1 — u) - OvalWalk(z!)
(49)

t+1

i
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with random u € [0, 1] [32].

e Particle collision (stagnation avoidance)
Random pairwise collision to prevent local

trapping:

t+17] — t7.7 tmj t?] 1 t?] tmj
T; =z, +ri(z;) —x)) +rosin(zy)’ —x)7)
(50)
where £k # i is a random particle and

1,72 € [0, 1]. Collision probability increases over
iterations [32].

2.7.3 Algorithmic framework
At each iteration, PLO performs:

1. Gyration motion update.
2. Aurora oval walk update.
3. Stochastic collision with another particle.

4. Objective function evaluation and archive of the
best solution.

This continues until ¢ = 7 is satisfied.

2.7.4 Applications and resources

PLO has been validated on benchmark functions (IEEE
CEC2014, CEC2022) and applied to "multi-threshold
image segmentation" and "feature selection" in medical
imaging. MATLAB code is openly available in the next
repository:

o MATLAB toolbox: https:/github.com/aliasgharheidaric
om/Polar-Lights-Optimizer- Algorithm-and-Applications-i
n-Image-Segmentation-and-Feature-Selection

2.8 Minimum cross-entropy for thresholding

Minimum cross entropy for thresholding was created
by Li et al. [19]. Minimum cross-entropy threshold
selection created by Brink et al. [34] mentions
the importance of selecting the correct thresholds
for image segmentation; having errors in the initial
thresholding stage would propagate to later stages
of any process in which this technique is being
used. Traditionally, methods such as Otsu have
been used for their robustness in contexts where
specific statistical assumptions are met. However,
when images have distributions that present significant
overlaps in the gray levels of objects and the
background, unequal variations, or the underlying
probabilistic model of the image is unknown, it can
introduce biases in the estimation of the thresholds.
Minimum Cross-Entropy (MCE) is another alternative
to optimize segmentation.


https://github.com/aliasgharheidaricom/Polar-Lights-Optimizer-Algorithm-and-Applications-in-Image-Segmentation-and-Feature-Selection
https://github.com/aliasgharheidaricom/Polar-Lights-Optimizer-Algorithm-and-Applications-in-Image-Segmentation-and-Feature-Selection
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2.8.1 Principle of cross entropy
Cross entropy, introduced by Kullback [35], measures
the discrepancy between two probability distributions

P = pi,p2,...,py and @ = q1,¢2,...,qn. Cross
entropy is modeled by the following Eq.(51)

N
D@Q.P) =" qrlog (51)
el Pk

where D(Q, P) quantifies the loss of information
when using @ to approximate P, in terms of image
segmentation where P is the original image and Q) is
its thresholded version, the minimum cross entropy
method can be seen as an extension of cross entropy by
establishing initial estimates for all py when no prior
information about the distributions is available.

3 Proposed approach

This section describes the methodology used for
the approach proposed in this manuscript. Six
novel evolutionary strategies were employed for the
comparative analysis due to their recent publication.
These strategies are: the Differentiated Creative Search
(DCS) [39], the Escape Algorithm (ESC) [28], the
Moss Growth Optimization (MGO) [29], the Mirage
Search Optimization (MSO) [30], the Nutcracker
Optimization Algorithm (NOA) [31], and the Polar
Lights Optimizer (PLO) [32]. The development of the
methodology involves adapting these algorithms to
minimize the objective function values (in this case,
the minimum cross-entropy for thresholding).

The methodology used to find each optimal Th is
shown in Figure 1.

3.1 Problem definition

The Multilevel threshold image segmentation problem
can be expressed mathematically as follows: the
processed image is represented by the letter I, which
has K + 1 classes. The main objective of multilevel
threshold image segmentation problems is to find
the optimal value £ to divide I into k classes (i.e.,
Cr,k = 1,2,...,k), therefore, the definition of the
optimization problem can be expressed as shown in
Eq.(52):

COZIZ'j|0§Iij§t1—1,
Cr=1j |t < Lij <ty — 1,

Ck =1tk <L;;j <L -1

(52)

where L represents the maximum grayscale value of 1

and 1, to, ..., t represent the optimal thresholds found
by the implemented metaheuristic algorithm.

3.1.1 Objective function

Data are often correlated in image segmentation,
so treating image information as a coherent and
dependent set is more appropriate. However,
methods based on maximum entropy or cross entropy
traditionally use only the gray-level histogram, treating
each pixel as an independent experiment and ignoring
the spatial correlation between them. In the minimum
cross entropy segmentation, the image f(z,y) is
modeled as a positive distribution of gray levels, and
the segmented image g(z,y) is defined by a threshold
t as expressed in Eq.(53)

g(l’,y) = {,u17

o,

flz,y) <t (53)
flz,y) >t

where 111 represents the group averages below the
threshold ¢ and po represents in the Eq.(54), the
intensity averages for the groups that exceed or are
equal to the threshold ¢.

—1 .

22:1 Jh;
—1 )

Z§'=1 h;

Z]L:t Jh;

pa(t) = Z]l-;t h;

p(t) = (54)

The cross entropy between f(z,y) and g(z,y) is
expressed in the following Eq.(55).

t—1 . L .
= h.:lo i 'h.: lo i

The optimal threshold is selected based on the
following Eq.(56)

to = min(n(t)) (56)

where ty is the required threshold, 7(t) is the
cross-entropy.

4 Experimental study and analysis of results

This section presents the analysis of results obtained
from experiments conducted to compare the different
evolutionary strategies used in this manuscript. The
section also presents the conditions of the experiments,
the metrics used, and the qualitative and quantitative
results obtained. Conclusively, the section undertakes
a discussion of these results.
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Figure 1. Generic flowchart of the proposed methodology for multilevel thresholding.

4.1 Experimental setup and dataset

The experiments were intentionally designed to
provide a comprehensive evaluation of each algorithm;
some complex images were selected from the Berkeley
Segmentation Dataset 300 (BSD300) [38]. The
BSD300 dataset has been frequently employed in
state-of-the-art research to evaluate the performance
of MAs implemented for image segmentation, edge
detection, and other related applications. This dataset
was proposed in 2001 by the University of Berkeley to
provide a set of reference images that could be used to
evaluate various MAs in terms of their performance in
the segmentation process.

For experimental purposes, a set of nine representative

images was meticulously selected for analysis, as
shown in Figure 2: Starfish, Firefighters, Pyramid,

60

Airplane, Owls, Bird, Ocean, Snow, and Kangaroo.
The images in the dataset were selected to reflect the
diversity, complexity, and key characteristics of the
dataset. The dataset contains a variety of scenes and
visual conditions, including lighting, textures, and
colors. All algorithms were executed under identical
conditions, with 30 runs and 1,000 iterations for each
image in the dataset. The thresholds employed ranged
from 2 to 5.

The experimental tests were conducted utilizing
MATLAB 2024a programming software on a Windows
11 operating system. The computer is equipped
with an AMD Ryzen 7 3700x processor, 8 cores, 32
GB of RAM, and an RTX 5070 graphics card. The
configuration parameters for each algorithm were
obtained from the original publications based on the
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descriptions provided by each author. These details
can be seen in Table 1. The general parameter settings
are provided in the final column of the table. Np is the
total population size, and MazIter is the maximum
number of internal iterations for each algorithm.

Table 1. Parameter settings for experimental results.

Algorithm Parameters

PSO w=.9.c¢=13,c=19

DCS GoldenR = =, Pc=5

ESC Prob. = .5, Elite = 5, Beta = 1.5
MGO w =2, DivNum = %m

MSO SupMirage = [31, 34]

NOA Alpha = .05, Pa2 = .2, Prob. = .2
PLO wl = [1.6E~ 1E74], w2 = [1,0.992]

General parameters: Np = 50, MaxIter = 500

4.2 Evaluation metrics

Since the image segmentation process involves
reducing and simplifying the presentation of images
for better analysis and processing, there is a possibility
that significant information may be lost. Therefore,
it is necessary to evaluate whether this process
is conducted most effectively. To this end, some
metrics [43] evaluate the quality of the image after
it has been processed [41]. The metrics provided
valuable information about the performance of image
segmentation techniques. The metrics employed in this
study included the Peak Signal-to-Noise Ratio (PSNR)
[36,40], the Structural Similatiry Index method (SSIM)
[42], and the Feature Similarity Index method (FSIM)
[37].

The PSNR uses the Root Mean Square Error (RMSE)
to compare the pixel information in the original image
and the segmented image, as shown below:

255

PSNR =20log (57)
where:
1 Ro Co
RMSE = M;;(IGT(Zaj)_IS(Za]))
(58)

The size of the image is defined by Ro and Co. The
original image in grayscale is denoted by Ig,. The
segmented image is denoted by Is.

The Structural Similarity (SSIM) Index.  SSIM
compares information from the structures of two

images.
SSTM — Qulgrpls + Ch1)(201grIs + C2)
(/ﬁ[gr + MQIs) + Cl)(JQIGT + 0(15)2 + CQ)
(59)
In which
1 Co
Oltants) = gy 1 2 Tar: + ig,)Is + pis) - (60)

=1

Finally, the feature similarity (FSIM) index measures
the similarity between the segmented and original
images in terms of their internal features, such as
corners and borders. The FSIM is computed as follows:

>wen SL@) PCnw)

FSIM =
> wea PCmw)

(61)

where () represents the entire domain of the image,
and their values are calculated on Eq. 62 defined as:

Sr(w) = SPc(w)Sa(w) (62)
_ 2PCl(w)2PCQ(w) + Ty (63)

PCOw) PCZ PC3, + T
i 2G1(W)G2(w) + TQ (64)

Sew) = 3 2
Gl Gy T 12

T, and T5 are constants, and the values chosen are T, =
0.85 and Ty = 160. G is the magnitude of the gradient
of a digital image, and PC' is the phase congruence;
both are defined in the following expressions:

G=\/c+a;

where G is the magnitude of the gradient in the «
direction and G, is the magnitude of the gradient in
the y direction.

(65)

E(w)
(e + 22, An(w))

PC(w) = (66)

where A, is the local amplitude on scale n, and
E.) is the magnitude of the response vector in w over
n, € is a small positive number, and PCm(w) is the
maximum value of PC(w) and PC5(w) defined in the
next expression:

PCy(w) = (mazx(PCy(w), PCa(w))) (67)

On the other hand, statistical analysis has recently
been used to evaluate the performance of MAs.
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Figure 2. Set of images used for the experiments extracted from the BSD300 dataset.
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Specifically, statistical analysis is necessary for fairly
comparing stochastic metaheuristic techniques. One
non-parametric statistical analysis method is the
Friedman test, also known as Friedman’s two-way
ANOVA [46]. Itis used to detect significant differences
in the behavior of two or more algorithms. This
statistical test was implemented in this manuscript to
validate the experimental results of the comparison.
The specific details of this approach can be found in
[44, 45].

4.3 Results analysis and discussion

The  experimental tests were  conducted
comprehensively, following the configuration
and metrics previously described. The objective was
to assess the performance of each algorithm on the
selected dataset. The outcomes are organized in the
following results sections. The objective function
values are reported in Tables 2 and 3, while Table 4
provides the optimal thresholds identified for each
algorithm, including all corresponding threshold
values. The PSNR results are shown in Tables 5 and
6, followed by SSIM metrics in Tables 7 and 8, and
FSIM outcomes in Tables 9 and 10. Each results
section also includes the image names from the
BSDS300 dataset used in the experiments, as well as
the corresponding threshold values. The subsequent
section presents a detailed analysis of the obtained
results, emphasizing measures of central tendency
(mean and standard deviation), with the best values
highlighted in bold. Finally, Figures 3, 4, 5, 6 and 7
offer a visual comparison, illustrating both the optimal
thresholds and the segmented images generated using
those values.

As illustrated in Table 2, the results demonstrate
that the PSO algorithm consistently achieves optimal
values for the majority of threshold levels. Another
similar case is that of the ESC algorithm, which shows
significant values. This is particularly noteworthy
given that the ESC algorithm is designed to address
minimization problems, where the objective is to
identify the lowest possible value. In certain cases,
such as the image of the Bird, it is evident that
the DCS is the optimal solution, with a margin of
superiority measured in decimal points. This prompts
the consideration of a second-best algorithm, which
would be the DCS. A similar behavior can be observed
in the snow image, in which the values differ by
decimals in terms of the mean. Conversely, the NOA
algorithm demonstrates an alternative behavioural
pattern; it attains the maximum objective function

values in comparison to all other algorithms for
all images (see Table 3). It is interesting to note
that the values obtained for each algorithm vary
concerning each image, and the threshold value
increases. This phenomenon is exemplified by the
Ocean and Kangaroo images, where the variability
of the results obtained by all algorithms is evident in
both tables.

The optimal threshold values previously identified
can be analyzed with the values presented in Table
4. This table demonstrates that, for threshold level
2, in the Starfish and Firefighters images, 69 and 138
would be considered, which are obtained by the ESC
algorithm. Conversely, the NOA algorithm attains
values of 121 and 59. A similar behavior can be
observed in these images, with a tendency toward
values that demonstrate maximum objective function
values. As the threshold levels are increased, a similar
behaviour of variations in the values obtained can be
observed. To illustrate this, consider the Pyramid and
Airplane images at threshold level 5. In this case, the
DCS and ESC algorithms would maintain more stable
values, while algorithms such as NOA and PLO would
handle different values obtained.

The Starfish, Firefighters, Pyramid, and Airplane
images show the optimal threshold values obtained
for each thresholding level. Given that displaying all
images with all thresholds for all algorithms would
represent an overly exhaustive analysis and a large
number of pages, it was decided to consider an
analysis only for these images visually and only for
one threshold value per image with its respective
histogram, where the optimal threshold value obtained
is shown with a red line. The results of this study are
presented in Figures 3, 4, 5, 6 and 7. As demonstrated
by the Airplane image for threshold level 5, the
distinction between the DCS and NOA algorithms is
readily apparent. Another intriguing case is that of the
pyramid image for threshold level 4, where the MGO,
NOA, and PLO algorithms exhibit marked variations
in segmentation quality. For thresholds 2 and 3, the
NOA algorithm is the most visually impacted in terms
of segmentation quality. In contrast, the DCS and ESC
algorithms demonstrate visually significant results in
comparison to the other algorithms.

Table 5 shows metrics obtained by the PSO, DCS, ESC,
and MGO algorithms when applied to different images
from the BSD300 dataset, evaluated under different
thresholds (Th =2 to 5). PSNR is a widely used metric
for quantifying the visual quality of a segmented
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Table 2. Objective function value results using the BSDS300 dataset for PSO, DCS, ESC, and MGO algorithms.

Algorithm PSO DCS ESC MGO
Image Th Mean Std Mean Std Mean Std Mean Std
2 2.27TE+00 0.00E+00 2.27E+00 6.38E-04 2.27E+00 1.44E-05 2.28E+00 1.83E-02
3 1.25E4+00 0.00E+00 1.25E4+00 2.05E-03 1.25E4+00 1.44E-05 1.29E+00 2.85E-02
Starfish 4  T7.84E-01 8.69E-06 7.93E-01 5.35E-03 7.84E-01 1.44E-05 8.81E-01  5.36E-02
5 5.38B-01 0.00E+00 5.50E-01 9.54E-03 5.38E-01 2.81E-04 6.53E-01  5.70E-02
2 2.87TE+00 0.00E100 2.87E+00 5.92E-04 2.87E+00 2.815-04 2.87E+00 8.38E-03
3  1.51E4+00 0.00E+00 1.51E+00 1.40E-03 1.51E+00 2.45E-04 1.58E+00 5.85E-02
Firefighters 4  1.03E400 0.00E4+00 1.04E4+00 4.45E-03 1.03E400  3.99E-05 1.14E4+00 5.71E-02
5 7.29E-01 2.31E-05 7.40E-01 6.56E-03 7.29E-01 2.456-04 8.54E-01  4.49E-02
2 9.90BE-01 0.00E+00 9.90E-01 3.39E-04 9.90E-01 2.43E-05 9.97E0l 9.74E-03
. 3  5.41E-01 0.00E+00 5.43E-01 1.77E-03 5.41E-01 2.07E-03 5.80E-01  3.52E-02
Pyramid 4 3.49E-01 0.00E+00 3.54E-01 2.42E-03 3.49E-01 6.06E-06 4.10E-01  3.75E-02
5  2.53B-01 1.67E-02  2.64E-01  6.36E-03 2.50E-01  1.59E-04 3.26E-01  3.22E-02
2 5.08E-01 0.00E100 5.08E-01 1.48E-04 5.08E-01 9.54E-04 5.10E-01  3.48E-03
3 3.24E-01 9.09E-07 3.25E01 1.17E-03 3.24E-01  7.54E-07 3.48E-01  2.37E-02
Airplane 4 2.25E-01 1L.72E-02  2.27E-01  2.69E-03 2.22E-01 8.63E-04 2.68E-01  1.69E-02
5  177E-01 2.12E-02  1.78E-01  1.35E-02 1.66E-01  3.25E-05 2.26E-01  2.41E-02
2 1.03E4+00 0.00E100 1.03E+00 1.90E-04 1.03E+00 293504 1.03E+00 5.39E-03
3  5.91E-01 0.00E+00 5.93E-01 1.44E-03 5.91E-01 5.17E-04 6.19E-01  2.90E-02
Owls 4 3.92E-01 0.00E+00 3.97E-01 3.18E-03 3.92E-01 1.96E-05 4.42E-01  2.92E-02
5  2.86E-01 3.49F-05 2.92E-01 3.19E-03 2.86E-01 8.39E-05 3.47E-01  2.47E-02
2 7.92E-01 0.00E+00 7.93E-01 2.97E-04 7.92E-01 5.25E-03 7.94E-01  1.99E-03
3 4.79E-01 0.00E+00 4.80E-01 7.15E-04 4.79E-01 5.45E-06 4.94FE-01  1.11E-02
Bird 4 3.16E-01 0.00E+00 3.18E-01 1.24E-03 3.16E-01 4.41F-05 3.55E-01  2.10E-02
5 2.32E-01 0.00E+00 2.38E-01  3.60E-03 2.32E-01 1.15E-04 2.83E-01  2.37E-02
2 1.33E400 0.00E100 1.33E100 4.86E-04 1.33E4+00 2.86E-04 1.33E4+00 1.40E-02
3  7.37E-01 0.00E+00 7.41E-01 3.30E-03 7.37E-01  5.94E-03 8.04E-01  6.33E-02
Ocean 4 4.98E-01 0.00E+00 5.05E-01 5.29E-03 4.98E-01 4.93E-07 5.78E-01  5.02E-02
5 3.43E-01 0.00E+00 3.52E-01 4.90E-03 3.43E-01 L17E-04 4.62E-01  4.54E-02
2 1.37TE+00 0.00E+00 1.37E+00 1.38E-04 1.37E+00 245E-01 1.37E+00 2.38E-03
3  5.55E-01 0.00E+00 5.56B-01 T7.96E-04 5.55E-01 3.41E-05 5.70E-01 1.16E-02
Snow 4  3.88E-01 0.00E+00 3.93E-01 2.91E-03 3.88E-01 2.99E-05 4.29E-01  2.32E-02
5 3.01E-01 6.33E-05 3.06E-01 4.23E-03 3.01E-01 1.57E-04 3.36E-01  1.84E-02
2 1.61E+00 0.00E100 1.61E+00 3.25E-04 1.61E+00 4.935-05 1.61E+00 8.46E-03
3 9.02E-01 0.00E+00 9.04E-01 2.37E-03 9.02E-01 2.17E-04 9.41E-01  3.47E-02
Kangaroo 4 584E-01 8.34F-06  5.92E-01 6.24E-03 5.84E-01  3.97E-06 6.62E-01  5.14E-02
5  4.18E-01 3.22E-06 4.26E-01 4.07E-03 4.18E-01 2.176-04 5.14E-01  4.02E-02

image concerning its original. Higher PSNR values
indicate better preservation of visual information
and less distortion introduced by the segmentation
process. It can be observed that ESC presents the best
overall performance among the evaluated algorithms,
obtaining the highest PSNR values in the nine
images. This behavior reflects its ability to generate
accurate and high-quality segmentations in different
visual contexts consistently. = Meanwhile, MGO
also demonstrates solid performance, particularly
standing out in images such as Airplane, where it
achieves competitive results across several thresholds.
In contrast, DCS shows more irregular behavior,
achieving good results in some specific images, but
without maintaining the same consistency observed
in ESC. Overall, the results suggest that ESC is
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the most effective algorithm in terms of preserving
visual quality and maintaining stable and superior
performance across a wide variety of conditions. This
superiority positions it as a robust option for image
segmentation applications that require high fidelity to
the original content.

Table 6 shows the average PSNR values obtained by
the MSO, NOA, and PLO algorithms when applied
to the same set of images and thresholds. The
results indicate that the NOA algorithm performs best
overall, achieving the highest number of maximum
PSNR values compared to MSO and PLO. This
algorithm performed exceptionally well on images
such as Starfish, Firefighters, Pyramid, and Ocean,
where it consistently obtained higher values across
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Table 3. Objective function value results using the BSDS300 dataset for MSO, NOA, and PLO algorithms.

Algorithm MSO NOA PLO

Image Th Mean Std Mean Std Mean Std
2 1.04E+02 1.04E+02 8.90E+01 9.10E+01 2.28E+00 9.65E-03
3 1.12E4+02 1.12E+02 1.24E4+02 1.21E+02 1.30E+00 4.12E-02
Starfish 4 1.0884+02 1.07E+02 1.18E+02 1.35E+02 8.64E-01  6.27E-02
5  1.09E+02 1.09E+02 1.42E+02 1.01E+02 6.60E-01  5.18E-02
2 8.80E+01 8.80E+01 9.10E+01 1.01E+02 2.88E+00 1.24E-02
3  893E+01 8.93E+01 8.53E+01 7.93E+01 1.60E+00 7.13E-02
Firefighters 4 830E+01 8.30E+01 9.90E+01 7.65E+01 1.14E+00 6.15E-02
5 8.80E+01 9.48E+01 9.40E+01 7.26E+01 8.52E-01  5.30E-02
2 1.37TE+02 1.37TE+02 1.56E+02 1.38E+02 9.94E-01 5.17E-03
' 3 1.29E4+02 1.29E+02 1.32E4+02 1.31E+02 5.74E-01  3.08E-02
Pyramid 4 1.30E+02 1.30E+02 1.37TE+02 1.22E+02 4.05E-01  3.47E-02
5  1.28E+02 1.28E+02 1.16E4+02 1.18E+02 3.19E-01  3.68E-02
2  855E+01 8.55E+01 7.85E+01 8.55E+01 5.13E-01  6.88E-03
' 3 9.60E+01 9.33E+01 1.26E4+02 9.13E+01 3.59E-01  2.73E-02
Airplane 4 870E4+01 9.68E+01 9.30E+01 6.15E+01 2.75E-01  2.75E-02
5 836E+01 8.28E+01 7.92E+01 8.66E+01 2.33E-01  2.41E-02
2 7.25E+01 7.25E+01 6.70E+01 8.10E+01 1.04E+00 1.96E-02
3  T7.7TE401 7.77E+01 9.10E4+01 7.30E+01 6.24E-01  2.91E-02
Owls 4  818E+01 8.25E+01 8.38E+01 1.18E+02 4.50E-01  3.36E-02
5 814E+01 8.14E+01 9.00E4+01 1.24E+02 3.71E-01  3.68E-02
2  1.13E+02 1.13E+02 1.1hbE+02 1.10E+02 7.96E-01  4.27E-03
‘ 3 1.13E+02 1.12E+02 1.18E+02 9.30E+01 4.97E-01  1.39E-02
Bird 4 1.15E+02 1.15E+02 1.41E+02 1.08E+02 3.55E-01  2.85E-02
5  1.04E+02 1.06E+02 1.07E4+02 1.01E+02 2.75E-01  2.23E-02
2 9.40E+01 9.40E+01 9.1hE+01 8.00E+01 1.34E+00 2.36E-02
3  9.10E+01 9.10E+01 9.87E+01 9.43E+01 7.91E-01  4.50E-02
Ocean 4 9.15E+01 9.13E4+01 1.06E+02 9.63E+01 5.95E-01  6.59E-02
5  9.70E4+01 9.66E+01 1.21E+02 9.84E+01 4.71E-01  4.89E-02
2 1.26E+02 1.26E+02 1.32E+02 1.16E+02 1.37E+00 5.12E-03
3 152E+02 1.52E+02 1.53E+02 1.46E+02 5.80E-01  1.59E-02
Snow 4 1.55E+02 1.56E+02 1.33E+02 1.44E+02 4.26E-01  2.30E-02
5  1.55E4+02 1.38E+02 1.54E+02 1.59E+02 3.40E-01  1.86E-02
2 9.10E+01 9.10E+01 1.01E+02 9.30E+01 1.61E+00 8.04E-03
3  853E+01 853E+01 7.93E4+01 8.70E+01 9.48E-01  3.24E-02
Kangaroo 4  858E+01 858E+01 7.73E+01 9.13E+01 6.76E-01  4.83E-02
5 8.78E+01 8.82E+01 9.40E+01 8.10E+01 5.34E-01  5.36E-02

the different thresholds. This behavior suggests that
the algorithm has a strong ability to preserve visual
details in different segmentation scenarios. On the
other hand, MSO shows competitive performance in
images such as Bird and Snow, where it achieves some
of the highest values at high thresholds. However,
its performance is more inconsistent in other images.
In contrast, PLO, although not dominating in terms

of maximum values, maintains stable results close
to the best performance in several images, such as
Airplane, Owls, and Kangaroo, showing good overall
consistency, although without reaching the same level
of accuracy as NOA.

Table 7 shows the average values and standard
deviations obtained using the SSIM metric for the PSO,
DCS, ESC, and MGO algorithms, evaluated on nine
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Table 5. Results obtained for PSNR using the BSDS300 dataset for PSO, DCS, ESC, and MGO algorithms.

Algorithm PSO DCS ESC MGO
Image Th Mean Std Mean Std Mean Std Mean Std
2 1.52E101 9.01E-15  1.52E+01 1.54E-02 1.52E+01 9.01B-15  1.52E401 5.25E-02
3 1L.74E4+01 0.00E400 1.74E+01 9.49E-03 1.74E+01 0.00E+00 1.73E+01 8.62E-02
Starfish 4 1.93E4+01 2.65E-03 1.93E+01 6.60E-02 1.93E+01 3.52E-03 1.90E+01 2.77E-01
5 2.08E+01 1.80E-14 2.08E4+01 9.77E-02 2.08E+01 1.32E-02 2.02E+01 3.85E-01
2 1.44E101 b5.41E-15  1.44E101 3.20E-02 1.44E+01 5.41BE-15 1.44BE101 1.04E-01
3 1L70E4+01 7.21E-15 1.70E+01 1.04E-01 1.70E+01 7.21E-15 1.70E+01 4.90E-01
Firefighters 4 185E4+01 3.60E-15 1.85E4+01 1.73E-01 1.84E+01 2.92E-02 1.84E+01 7.82E-01
5  2.09E+01 1.65E-02 2.07E+01 2.01E-01 2.08E+01 6.08E-02 1.99E+01 6.77E-01
2 1.25E+01 b5.41E-15  1.25E+01 220E-02 1.25E401 5.41E-15  1.25BE+01 3.35E-01
. 3 1.66E4+01 7.21E-15 1.65E+01 2.29E-01 1.66E+01 7.21E-15 1.64E+01 9.06E-01
Pyramid 4 1.80E+01 7.21E-15 1.79E+01 2.53E-01 1.80E+01 1.03E-03 1.78E+01 1.19E+00
5 1.88E+01 1.44E-01 1.91E+01 7.85E-01 1.80E+01 8.80E-02 1.86E+01 1.46E-+00
2 1.92E101 3.60E-15  1.93E+01 1.09E-01 1.92E+01 3.60B-15  1.92E+01 3.95E-01
' 3 219E4+01 1.24E-01 221E+01 3.30E-01 2.19E+01 1.03E-01  2.23E+01 1.01E400
Airplane 4 253E401 5.22E-01 252E+01 1.82E-01 2.54E+01 1.44F-14 2.42E+01 1.00E400
5  2.62E4+01 3.84E-01 2.62E401 5.86E-01 2.63E4+01 2.20E-02 2.50E+01 1.04E-+00
2 1.92E+01 7.21E-15 1.92E+01 7.28E-03 1.92E+01 7.21E-15  1.92BE+01 4.12E-02
3 207E+01 1.08B-14 2.07E+01 2.99E-02 2.07E+01 1.08E-14 2.07E+01 1.70E-01
Owls 4 217E4+01 3.60E-15 2.17E+01 5.64E-02 2.17E+01 3.24E-04 2.15E+01 1.74E-01
5  2.24E+01 6.26E-03 2.24E4+01 8.51E-02 2.24E+01 8.02E-03 2.21E+01 2.53E-01
2 1.52E+01 1.08E-14 1.52E+01 1.00E-01 1.52E+01 1.08E-14 1.5b3E+01 1.98E-01
_ 3  1.86E+01 3.60E-15 1.85E+01 1.62E-01 1.86E+01 2.47E-02 1.84E+01 8.37E-01
Bird 4 214E+01 1.80E-14 2.12E+01 2.45E-01 2.13E+01 3.99E-02 2.06E+01 8.66E-01
5  2.26E+01 7.21E-15 2.26E+01 3.55E-01 2.27E+01 3.08E-02 2.21E+01 9.13E-01
2 1.66E+01 7.21E-15 1.66BE401 2.16B-02 1.66E+01 7.21E-15 1.66BE401 1.76B-01
3 1.95E401 7.21E-15 1.95E+01 5.42E-02 1.95E401 7.21E-15 1.93E4+01 5.15E-01
Ocean 4 212E401 7.21E-15 2.11E+01 1.24E-01 2.12E+01 1.84E-03 2.07E+01 4.65E-01
5 223E4+01 1.08E-14 2.22E+01 1.83E-01 2.23E+01 4.04E-03 2.15E401 7.19E-01
2 1.48E+01 3.60E-15  1.48E+01 5.58B-02 1.48E+01 3.60E-15  1.48E+01 1.46B-01
3  1.65E4+01 1.08B-14 1.66E+01 1.36E-01 1.65E+01 1.08E-14 1.65E+01 4.47E-01
Snow 4 1.86E4+01 3.60E-15 1.85E+01 2.20E-01 1.86E+01 1.00E-02 1.84E+01 7.82E-01
5  2.04E4+01 6.87E-02 2.04E+01 3.06E-01 2.04E+01 1.21E-01 2.03E+01 7.72E-01
2 1.75E+01 3.60E-15  1.75E+01 4.84E-02 1.75E+01 3.60E-15  1.75E+01 1.58BE-01
3 1.97E4+01 7.21E-15 1.97E+01 1.48E-01 1.97E+01 7.21E-15 1.96E+01 5.02E-01
Kangaroo 4 219E+01 246E-02 2.19E+01 2.00E-01 2.20E+01 1.17E-02 2.12E+01 8.58E-01
5  2.36E+01 8.36E-03 2.35E4+01 1.53E-01 2.36E+01 247E-02 2.26E+01 6.40E-01

images from the BSD300 dataset and with thresholds
between 2 and 5. The results show that ESC ranks
as the algorithm with the best overall performance,
obtaining the highest average SSIM values, especially
in images such as Starfish, Pyramid, Bird, and
Kangaroo. This suggests that ESC is more effective at
preserving the perceptual structure of the segmented
images, maintaining greater structural similarity to
the original image. On the other hand, MGO shows
robust performance in images such as Airplane, Snow,
and Ocean, where it obtains the highest SSIM values
at multiple thresholds, highlighting its effectiveness
in preserving details in images with high contrast or
visual variability. Although MGO does not lead in the
total number of combinations, it presents values close
to the maximum with good stability, as evidenced by

moderate standard deviations.

Table 8 shows the average values and standard
deviations of the SSIM metric obtained by the MSO,
NOA, and PLO algorithms, evaluated on the same set
of images and thresholds as in the previous analysis.
As can be seen, NOA is the algorithm with the best
overall performance, obtaining the highest number of
maximum SSIM values across the different images and
thresholds. Its performance is particularly noteworthy
in images such as Pyramid, Airplane, Bird, Ocean,
and Snow, demonstrating its ability to effectively
preserve the visual structure of the original image
after segmentation. The MSO shows competitive
performance in images such as Starfish and Kangaroo,
achieving some of the best SSIM values. However, its
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Table 6. Results obtained for PSNR using the BSDS300 dataset for MSO, NOA, and PLO algorithms.

Algorithm MSO NOA PLO
Image Th Mean Std Mean Std Mean Std
2 1.04E+02  1.04E102 1.056E+02 1.10E+02 1.52E+01 3.94E-02
3 1.11E402 1.11E+02 1.07E+02  1.04E+02 1.73E+01 9.25E-02
Starfish 4 1.08E+02  1.08E+02 1.31E+02 1.45E+02 1.90E+01 2.28E-01
5 1.09E+02  1.08E+02 1.41E4+02 1.35E+02 2.02E+01 3.76E-01
2  8.80E+01 8.80E+01 8.45E+01  8.70E+01 1.44E+01 1.76E-01
3  893E+01  8.93E+01 9.97E4+01 8.07E+01 1.69E+01 4.09E-01
Firefighters 4 8.35E+01  8.30E+01 9.55E4+01 1.26E+02 1.85E+01 7.42E-01
5  9.48E+01  9.60E+01 1.10E4+02 9.56E+01 2.02E+01 8.21E-01
2 1.37TE+02 1.37E+02 1.11E+02  1.21E+02 1.25E+01 2.40E-01
3 1.29E402  1.29E+02 1.50E4+02 1.07E+02 1.65E4+01 6.54E-01
Pyramid 4 1.30E402 1.29E+02 1.20E+02 1.11E402 1.75E+01 1.06E400
5 1.31E402 1.32E+02 1.25E402  1.38E+02 1.84E+01 1.06E4-00
2  855E+01  855E+01 1.00E4+02 8.85E+01 1.91E+01 6.65E-01
3  9.47E+01  947E+01 1.26E4+02 1.01E+02 2.20E+01 1.05E+00
Airplane 4 968E+01  9.65E+01 1.38E4+02 1.06E+02 2.38E+01 1.10E400
5  824E+01  8.26E+01 8.68E4+01 1.04E+02 249E+01 1.22E+00
2 7.25E4+01  7.25E+01 9.35E+01 8.90E+01 1.92E4+01 9.75E-02
3  T7.77TE401 7.77E4+01 7.50E4+01  8.30E+01 2.06E4+01 1.38E-01
Owls 4  825E4+01  8.15E+01 1.10E4+02 6.38E+01 2.15E401 2.33E-01
5  814E+01  7.48E+01 9.10E4+01 7.04E+01 2.20E+01 3.04E-01
2 1.13E4+02 1.13E+02 1.02E+02  1.13E+02 1.52E+01 3.44E-01
3 1.12E402 1.12E+02 853E+01  1.20E+02 1.85E+01 8.82E-01
Bird 4 1.16E4+02  1.16E+02 1.18E+02 8.15E+01 2.07E+01  9.95E-01
5 1.06E402 1.06E+02 9.64E+01  1.47E+02 2.22E+01 7.19E-01
2  9.40E+01 9.40E+01 7.95E+01  1.01E+02 1.66E+01 2.01E-01
3 9.17TE401 9.17E+01 857E+01  1.04E+402 1.93E4+01 3.27E-01
Ocean 4 9.13E+01  9.15E+01 1.13E402 1.04E+02 2.05E+01 6.12E-01
5 9.58E4+01  950E+01 1.11E402 1.01E+02 2.15E401 6.23E-01
2 1.26E402 1.26E402 1.35E+02 1.12E+02 1.48E+01 2.93E-01
3 1.52E+02  1.52E+02 1.60E4+02 1.69E+02 1.64E+01 7.26E-01
Snow 4 1.56E+02  1.55E+02 1.60E402 1.26E+02 1.86E+01 8.19E-01
5 1.54E4+02 1.36E+02 1.29E+02  1.43E+02 1.97E+01 9.90E-01
2  9.10E+01  9.10E+01 9.20E+01 8.20E+01 1.74E+01 1.88E-01
3  853E+01  853E+01 9.20E4+01 8.67E+01 1.96E+01 5.91E-01
Kangaroo 4  858E+01 8.58E+01 9.90E4+01 9.18E+01 2.13E+01  6.90E-01
5 866E+01  8.78E+01 8.80E4+01 9.02E+01 2.24E+01 7.26E-01

performance is more variable in other images, and in
some instances, it falls below the value obtained by
NOA. Nevertheless, it maintains very low standard
deviations, which indicates high consistency between
runs. The PLO is the algorithm with the fewest
maximums achieved in the table, and in general, its

SSIM values are lower than those of NOA and MSO.

However, its behavior is stable and without drastic
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fluctuations, which could make it suitable for tasks
that are less demanding in terms of visual fidelity but
require operational stability.

Table 9 shows the average values and standard
deviations obtained with the FSIM metric for the
PSO, DCS, ESC, and MGO algorithms, evaluated
on nine images from the BSD300 dataset and with
thresholds between 2 and 5. The results show that PSO
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consistently achieves the best values in several images,
such as Starfish, Firefighters, and Airplane, reflecting a
high capacity to preserve perceptual similarity with the
original image after segmentation. The ESC algorithm
also exhibits competitive behavior, especially in images
such as Pyramid and Bird, where it obtains results
close to the best with good stability, as observed in
its low standard deviations. For its part, MGO shows
isolated cases of favorable results, such as in Snow
and Kangaroo, although in general, its performance
is less consistent than that of PSO or ESC. Overall,
PSO emerges as the algorithm with the best balance
between performance and stability in this set of
experiments.

Table 10 shows the FSIM results for the MSO, NOA,
and PLO algorithms, evaluated on the same set of
images and thresholds. In this case, NOA stands out
as the algorithm with the best overall performance,
achieving the most favorable values in most images
and thresholds. Its superiority is evident in images
such as Pyramid, Airplane, Bird, and Ocean, where
it consistently achieves better results than the other
algorithms. MSO also presents competitive behavior,
especially in Starfish, Snow, and Kangaroo, where
it obtains several of the best values, although with
slightly greater variability than NOA. In contrast,
the PLO algorithm tends to produce higher values,
reflecting lower perceptual fidelity in the segmented
images; however, its results are stable, with minor
deviations, suggesting consistent but less effective
performance. In summary, NOA is confirmed as the
most effective algorithm in terms of FSIM, while MSO
shows competitive performance, and PLO maintains
stability at the expense of perceptual accuracy.

The comparison performed on the same set of
representative images is shown in Table 3. All images
were segmented using the PSO algorithm. This set
consists of four different images, each using a different
threshold (Th) to study the algorithm’s behavior
in various segmentation scenarios. The primary
objective of this visual comparison is to establish a
reference framework for PSO performance, facilitating
later comparison with results obtained from other
algorithms applied in segmentation, including DCS,
ESC, MGO, MSO, NOA, and PLO. In this way, the
table provides a first visual approach to evaluating
the similarities, differences, and potential benefits of
each method based on the quality of the segmentation
obtained, analyzing it through a subjective visual
interpretation.

Table 4 shows a comparison of the performance of
several segmentation algorithms used on the same
test image called "Starfish". Two thresholds were
considered in this analysis, allowing each algorithm to
be evaluated under different segmentation conditions.
The algorithms arranged in the table were determined
according to the fitness value obtained during the
selection process for each threshold. According to
this criterion, the order obtained was: ESC, DCS, PLO,
MGO, NOA, and MSO. From a visual point of view, it
is observed that the NOA algorithm has a significantly
worse segmentation compared to the other images.
However, it is not the one that achieved the worst
performance in terms of fitness. On the other hand, the
ESC algorithm showed the best overall performance,
which emphasized both the visual quality of the
segmentation and the fitness value. In contrast,
the MSO algorithm demonstrated the worst overall
performance, resulting in the least favorable among
the analyzed methods.

Table 5 shows a performance comparison of several
segmentation algorithms used on the same test
image called "Firefighters". Three thresholds are
considered in this analysis, allowing each algorithm to
be evaluated under different segmentation conditions.
The algorithms arranged in the table were determined
according to the fitness value obtained during the
selection process for each threshold. According to
this criterion, the following order was obtained: ESC,
DCS, MGO, PLO NOA, and MSO. From a visual
and subjective perspective, it is observed that the
NOA algorithm has a significantly worse segmentation
compared to the other images. The thresholded image
is observed to be darker than the rest, despite all images
having the same number of threshold levels. The
background of the object can be observed with less
clarity. However, this algorithm is not the one that
achieved the worst performance in terms of fitness.
On the other hand, the algorithm that showed the best
overall performance was ESC, in which the objects
in the image are more clearly appreciated, in this
case, the firefighters, and the background of the image
is more distinguishable. In contrast, the algorithm
that showed the worst overall performance was MSO,
which resulted in the least favorable outcome among
the analyzed methods in terms of fitness. However,
visually, it is not a particularly unappealing image, as
the content can still be appreciated.

Table 6 shows a comparison of the performance of
several segmentation algorithms used on the same
test image called "Pyramid." Four thresholds were

69



ICCK Transactions on Swarm and Evolutionary Learning

ICJK

Table 7. Results obtained for SSIM using the BSDS300 dataset for PSO, DCS, ESC, and MGO algorithms

Algorithm PSO DCS ESC MGO
Image Th Mean Std Mean Std Mean Std Mean Std
2 6.28B-01 451E-16 6.28E-01 4.576-04 6.28E-01 4.51E-16 6.27E-01 1.66E-03
3 7.12E-01 225E-16 T7.11E-01 1.01E-03 7.12E-01 2.25E-16 7.07E-01 5.52E-03
Starfish 4 T769E-01 7.92E-05 T7.67E-01 3.12E-03 7.69E-01 1.61E-04 7.57E-01 7.88E-03
5 812E-01 7.89E-16 8.10E-01 3.47E-03 8.13E-01 248E-04 7.94E-01 1.03E-02
2 7.64E-01 3.38E-16 7.64E-01 7.59E-04 7.64E01 3.38E-16 7.64E-01 1.45E-03
3  814E-01 1.13E-16 8.14E-01 9.39E-04 8.14E-01 1.13E-16 8.10E-01 4.91E-03
Firefighters 4 848F-01 3.38E-16 8.45E-01 1.92E-03 8.48E-01 3.00E-05 8.35E-01 7.13E-03
5 8.60E-01 3.87E-05 8.58E-01 3.33E-03 8.60E-01 4.99E-04 8.52E-01 7.67E-03
2 7.13E0l 1.13E-16 7.13E01 1.28E04 7.13E01 L.I3E-16 7.12E01 2.32E-03
. 3  748E-01 451E-16 7.49E-01 2.54E-03 T7.48E-01 451E-16 7.44E-01 7.99E-03
Pyramid 4 7.75E-01 2.25E-16 7.75E-01 2.59E-03 7.75E-01 1.44E-04 7.68E-01 8.56E-03
5  7.95E-01 3.42E-03 7.94E-01 2.72E-03 7.96E-01 3.19E-04 7.85E-01 8.55E-03
2 8.43E01 5.63E-16 8.45E01 1.776-03 8.43E01 5.63E-16 845501 3.03E-03
. 3  846E-01 5.94E-04 8.45E-01 2.23E-03 8.46E-01 4.93E-04 8.55E-01 1.01E-02
Airplane 4 858E-01 255E-03 8.60E-01 3.24E-03 8.59E-01 4.51E-16 8.57E-01 8.55E-03
5  8.60E-01 2.36E-03 8.62E-01 4.29E-03 8.59E-01 2.16E-04 8.61E-01 7.75E-03
2 8.05E-01 0.00E+00 8.05E-01 1.36E-04 8.05E-01 0.00E+00 8.04E-01 1.08E-03
3  846E-01 2.25E-16 8.46E-01 1.14E-03 8.46E-01 2.25E-16 8.45E-01 4.07E-03
Owls 4 8.69E-01 7.89E-16 8.69E-01 2.10E-03 8.69E-01 1.74E-05 8.63E-01 6.04E-03
5  8.89E-01 4.70E-03 8.88E-01 9.30E-03 8.93E-01 5.35E-03 8.75E-01 9.86E-03
2 8.30B-01 2.25E-16 8.30E-01 1.97E-04 8.30E-01 2.25E-16 8.30BE-01 6.80E-04
. 3  853E-01 5.63E-16 8.53E-01 2.64E-04 8.53E-01 3.91E-05 8.52E-01 1.94E-03
Bird 4  8.67E-01 5.63E-16 8.67E-01 1.17E-03 8.67E-01 1.62E-04 8.64E-01 3.16E-03
5 878E-01 6.76E-16 8.79E-01 1.89E-03 8.78E-01 3.21E-04 8.69E-01 1.16E-02
2 7.30B-01 5.63E-16 7.30E-01 4.54B-04 7.30E-01 5.63E-16 7.31E-01 3.72E-03
3  814E-01 5.63E-16 8.13E-01 1.93E-03 8.14E-01 5.63E-16 8.06E-01 1.05E-02
Ocean 4 848E-01 4.51E-16 8.46E-01 3.33E-03 8.48E-01 1.11E-05 8.39E-01 9.25E-03
5 8.76E-01 5.63E-16 8.72E-01 4.21E-03 8.75E-01 4.69E-04 8.55E-01 1.59E-02
2 7.02E01 225E-16 7.02E01 5.23504 7.02E01 225E-16 7.01E-01 1.24E03
3 8.09E-01 0.00E+00 8.08E-01 2.09E-03 8.09E-01 0.00E+00 8.07E-01 9.92E-03
Snow 4 818E-01 0.00E+00 8.13E-01 5.34E-03 8.18E-01 7.47E-05 8.10E-01 1.73E-02
5 832E-01 4.57E-03 8.33E-01 6.89E-03 8.29E-01 5.40E-03 8.26E-01 1.68E-02
2 6.75E01 451E-16 6.75E-01 1.255E-03 6.76E-01 4.51E-16  6.73E-01 4.19E03
3 7.62E-01 5.63E-16 7.61E-01 3.59E-03 7.62E-01 5.63E-16 7.58E-01 1.26E-02
Kangaroo 4 826E-01 6.33E-05 8.26E-01 5.08E-03 8.26E-01 3.01E-05 8.07E-01 1.89E-02
5  8.68E-01 8.00E-05 8.67E-01 5.21E-03 8.68E-01 8.93E-04 843E-01 1.68E-02

considered in this analysis, allowing each algorithm to
be evaluated under different segmentation conditions.
The algorithms arranged in the table were determined
according to the fitness value obtained during the
selection process for each threshold. According to
this criterion, the following order was obtained: ESC,
DCS, PLO, MGO, MSO, and NOA.. From a visual and
subjective perspective, no superior performance was
observed among the algorithms. On the other hand,
the algorithm that showed the best overall performance
was ESC. In contrast, the algorithm that demonstrated
the worst overall performance was NOA, resulting in
the least favorable among the methods analyzed based
on fitness.
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Table 7 shows a comparison of the performance of
several segmentation algorithms used on the same
test image called "Airplane." Five thresholds were
considered in this analysis, allowing each algorithm to
be evaluated under different segmentation conditions.
The algorithms organized in the table are determined
by the fitness score obtained during the selection
process for each threshold. According to this criterion,
the following order was obtained: ESC, DCS, MGO,
PLO, NOA, MSO.

From a visual and subjective perspective, the image
that lost the most detail despite having the highest
number of thresholds in these experiments was the
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Table 8. Results obtained for SSIM using the BSDS300 dataset for MSO, NOA, and PLO algorithms.

Algorithm MSO NOA PLO

Image Th Mean Std Mean Std Mean Std
2 1.04E402 1.04E+02 1.03E402 1.33E+02 5.88E-01 5.11E-03
3 1.11E+02  1.12E+02 1.18E4+02 1.29E+02 6.80E-01 1.02E-02
Starfish 4 1.08B402 1.08E4+02 1.19E402 1.25E+02 7.46E-01 1.99E-02
5 1.08E+02 1.09E+02 1.00E+02 1.03E+02 7.81E-01 2.05E-02
2 S880E+01 8.80E+01 9.80E+01 S8.95E101 7.085-01 4.12E-03
3  8.93E4+01 8.93E+01 8.87E+01  1.20E+02 7.84E-01 1.05E-02
Firefighters 4 830E+01  8.28E+01 9.10E401 1.05E+02 8.30E-01 1.29E-02
5  926E+01  9.60E+01 1.01E4+02 9.78E+01 8.50E-01 1.10E-02
2 1.37TE+02 1.37E+02 1.19E+02 1.22E+02 5.12E01 1.71E-02
. 3 1.29E402 1.29E+02 1.28E+02 1.02E+02 7.25E-01 3.22E-02
Pyramid 4 1.30E4+02  1.29E4+02 1.40E402 1.50E+02 7.59E-01 4.04E-02
5 1.31E4+02 1.30E+02 1.08E4+02  1.10E+02 7.92E-01 3.35E-02
2 8.55E401 855E+101 7.85E4+01  7.80E+01 8.74E-01 1.58E-02
. 3 9.47E401 947E4+01 7.60E4+01  1.04E+02 9.02E-01 1.60E-02
Airplane 4 945E+01  9.68E+01 1.30E402 6.53E+01 9.22E-01 1.16E-02
5  830E+01 8.24E4+01 1.16E402 9.02E+01 9.32E-01 1.08E-02
2 7.25E+01  7.256E401 7.35E+01 6.30E+01 5.26E-01 1.92E-03
3  7.7TE401 T7.77E4+01 6.07E+01  9.23E+01 5.70E-01 4.86E-03
Owls 4 813E4+01 825E+01 8.58E401 8.48E+01 5.92E-01 1.01E-02
5  8.14E+01  8.14E4+01 1.00E402 1.05E+02 6.07E-01 1.61E-02
2 1.13E+02 1.13E+02 9.90E+01  1.26E+02 8.58E-01 2.24E-03
. 3 1.12E402 1.13E+02 1.03E4+02 1.21E+02 8.91E-01 5.63E-03
Bird 4 1.15E402  1.15E4+02 1.20E+02 1.06E+02 9.08E-01 1.52E-02
5  1.06E4+02 1.07E4+02 1.07TE402 8.36E+01 9.24E-01 1.46E-02
2 9.40B+01  9.40E+01 1.01E4+02 9.85E+01 6.55E-01 1.75E-02
3 9.10E+01  9.10E4+01 1.08E402 9.13E+01 7.82E-01 2.22E-02
Ocean 4 9.15E4+01  8.93E+01 1.04E402 9.93E401 8.17E-01 2.52E-02
5  948E+01  9.48E4+01 9.94E4+01 7.76E+01 8.46E-01 2.48E-02
2 1.26E+02 1.265+02 1.19E102 1.26E+02 8.00E-01 5.80E-03
3  1.52E+02 1.52E+02 1.46E+02 1.55E+02 8.62E-01 1.54E-02
Snow 4 155E402  1.56E402 1.61E402 1.19E+02 8.73E-01 1.62E-02
5  1.38E4+02  1.38E4+02 1.69E+02 157E+02 8.82E-01 1.85E-02
2 9.10E+01 9.10E+01 7.95E+01  7.25E+01 6.85E-01 7.02E-03
3 853E4+01  853E+01 8.90E4+01 1.02E+02 7.71E-01 2.50E-02
Kangaroo 4 853E4+01 8.58E+01 9.45E4+01 9.00E4+01 8.25E-01 2.51E-02
5  848E+01  852E+01 9.10E401 7.18E+01 8.56E-01 2.44E-02

NOA, showing an image with an extremely black
background, losing a large amount of visual detail
that is perceived in the other images with the same
threshold level. Despite this, the NOA was not the
worst performing algorithm; the algorithm with the
worst overall performance was MSO, which resulted
in the least favorable among the analyzed methods in
terms of fitness. And the one that performed the best

in terms of fitness was ESC.

4.4 Statistical analysis

A recent trend in the field involves the application
of statistical analysis as a comparative method for
MAs performance. The present study employs the
nonparametric statistical analysis of the Friedman test.
The purpose of this evaluation is to determine the
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Figure 3. Applying PSO to segmentation as a baseline for comparison.

72



ICJK ICCK Transactions on Swarm and Evolutionary Learning

Th2 Th2 Th2

Starfish ESC Starfish DCS Starfish PLO

8000 8000 8000
7000 7000 7000
6000 6000 6000
> 5000 > 5000 > 5000
g 3 3
2 2 2
E E ]
2.4000 24000 2 4000
s 8 8
* 3000 * 3000 * 3000
2000 M| 2000 AN 2000 TN
1000 \\J 1000 \‘J 1000 \\\j
] 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Gray level Gray level Gray level

Histogram ESC Histogram DCS Histogram PLO

Th2 Th2 Th2

Starfish MGO Starfish NOA Starfish MSO

8000 8000 8000
7000 7000 7000
6000 6000 6000
5000 > 5000 > 5000
3 3 3
2 2 2
3 4000 3 4000 3 4000
o o o
13 o o
3000 3000 * 3000
2000 Y AN 2000 aghia e 2000 AN
1000 ‘\J 1000 \‘\""\_\j 1000 L\\/
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Gray level Gray level Gray level

Histogram MGO Histogram NOA Histogram MSO

Figure 4. A comparison of the segmentation performed with the best thresholds obtained by each algorithm for Th=2.
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Figure 5. A comparison of the segmentation performed with the best thresholds obtained by each algorithm for Th=3
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Figure 6. A comparison of the segmentation performed with the best thresholds obtained by each algorithm for Th=4.
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Figure 7. A comparison of the segmentation performed with the best thresholds obtained by each algorithm for Th=5.
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Table 9. Results obtained for FSIM using the BSDS300 dataset for PSO, DCS, ESC, and MGO algorithms.

Algorithm PSO DCS ESC MGO
Image Th Mean Std Mean Std Mean Std Mean Std
2 6.28E-01 451E-16 6.28E-01 4.576-04 6.28E-01 4.51E-16 6.27E-01 1.66E-03
3 7.12E-01 225E-16 T7.11E-01 1.01E-03 7.12E-01 2.25E-16 7.07E-01 5.52E-03
Starfish 4 T7.69E-01 7.92E-05 T7.67E-01 3.12E-03 7.69E-01 1.61E-04 7.57E-01 7.88E-03
5 812E-01 7.89E-16 8.10E-01 3.47E-03 8.13E-01 248E-04 7.94E-01 1.03E-02
2 7.64E-01 3.38E-16 7.64E-01 7.59E-04 7.64E01 3.38E-16 7.64E-01 1.45E-03
3  814E-01 1.13E-16 8.14E-01 9.39E-04 8.14E-01 1.13E-16 8.10E-01 4.91E-03
Firefighters 4 848E-01 3.38E-16 8.45E-01 1.92E-03 848E-01 3.00E-05 8.35E-01 7.13E-03
5  8.60E-01 3.87E-05 8.58E-01 3.33E-03 8.60E-01 4.99E-04 8.52E-01 7.67E-03
2 7.13E0l 1.13E-16 7.13E01 1.28E04 7.13E01 L.I3E-16 7.12E01 2.32E-03
. 3  748E-01 451E-16 T7.49E-01 2.54E-03 T7.48E-01 451E-16 7.44E-01 7.99E-03
Pyramid 4 7.75E-01 2.25E-16 7.75E-01 2.59E-03 7.75E-01 1.44E-04 7.68E-01 8.56E-03
5  7.95E-01 3.42E-03 7.94E-01 2.72E-03 7.96E-01 3.19E-04 7.85E-01 8.55E-03
2 8.43E01 5.63E-16 8.45E01 1.77E-03 8.43E01 5.63E-16 845501 3.03E-03
. 3  846E-01 5.94E-04 8.45E-01 2.23E-03 8.46E-01 4.93E-04 8.55E-01 1.01E-02
Airplane 4 858E-01 255E-03 8.60E-01 3.24E-03 8.59E-01 4.51E-16 8.57E-01 8.55E-03
5  8.60E-01 2.36E-03 8.62E-01 4.29E-03 8.59E-01 2.16E-04 8.61E-01 7.75E-03
2 8.05BE-01 0.00E+00 8.05E-01 1.36E-04 8.05E-01 0.00E+00 8.04E-01 1.08E-03
3  846E-01 2.25E-16 8.46E-01 1.14E-03 8.46E-01 2.25E-16 8.45E-01 4.07E-03
Owls 4 8.69E-01 7.89E-16 8.69E-01 2.10E-03 8.69E-01 1.74E-05 8.63E-01 6.04E-03
5  8.89E-01 4.70E-03 8.88E-01 9.30E-03 8.93E-01 5.35E-03 8.75E-01 9.86E-03
2 8.30B-01 2.25E-16 8.30E-01 1.97E-04 8.30E-01 2.25E-16 8.30BE-01 6.80E-04
. 3  853E-01 5.63E-16 8.53E-01 2.64E-04 8.53E-01 3.91E-05 8.52E-01 1.94E-03
Bird 4  8.67E-01 5.63E-16 8.67E-01 1.17E-03 8.67E-01 1.62E-04 8.64E-01 3.16E-03
5 878E-01 6.76E-16 S8.79E-01 1.89E-03 8.78E-01 3.21E-04 8.69E-01 1.16E-02
2 7.30BE-01 5.63E-16 7.30E-01 4.54B-04 7.30E-01 5.63E-16 7.31E-01 3.72E-03
3  814E-01 5.63E-16 8.13E-01 1.93E-03 8.14E-01 5.63E-16 8.06E-01 1.05E-02
Ocean 4 848E-01 4.51E-16 8.46E-01 3.33E-03 8.48E-01 1.11E-05 8.39E-01 9.25E-03
5 8.76E-01 5.63E-16 8.72E-01 4.21E-03 8.75E-01 4.69E-04 8.55E-01 1.59E-02
2 7.02E01 225E-16 7.02E01 5.23E04 7.02E01 225E-16 7.01E-01 1.24E03
3 8.09E-01 0.00E+00 8.08E-01 2.09E-03 8.09E-01 0.00E+00 8.07E-01 9.92E-03
Snow 4 818E-01 0.00E+00 8.13E-01 5.34E-03 8.18E-01 7.47E-05 8.10E-01 1.73E-02
5 832E-01 4.57E-03 8.33E-01 6.89E-03 8.29E-01 5.40E-03 8.26E-01 1.68E-02
2 6.75501 451E-16 6.75E.01 1.25503 6.76E01 4.51E-16  6.73E-01 4.19E03
3  7.62E-01 5.63E-16 7.61E-01 3.59E-03 7.62E-01 5.63E-16 7.58E-01 1.26E-02
Kangaroo 4 826E-01 6.33E-05 8.26E-01 5.08E-03 8.26E-01 3.01E-05 8.07E-01 1.89E-02
5  8.68E-01 8.00E-05 8.67E-01 5.21E-03 8.68E-01 8.93E-04 843E-01 1.68E-02

existence of a substantial discrepancy between the
algorithms in question.

Table 11 shows the results of the Friedman test carried
out on the fitness of the PSO, DCS, ESC, MGO, MSO,
NOA, and PLO algorithms, considering thresholds
from 2 to 5. The values presented correspond to the
average ranges obtained and the final position assigned
to each algorithm based on its relative performance.
In all cases, the p — value obtained is less than 0.05,
confirming the existence of statistically significant
differences between the evaluated algorithms.

In the four scenarios examined, PSO consistently
achieves the lowest average ranges, with values of

(1.50, 1.44, 1.28, and 1.22), respectively, for thresholds
ranging from 2 to 5. The ESC also performs well,
ranking second for thresholds of 3 to 5 with values
close to those of PSO, reflecting its competitiveness.
DCS maintains a stable third-place position across
all thresholds, establishing itself as an intermediate
algorithm in terms of performance.

On the other hand, MGO and PLO exhibit similar
behavior, ranking in the middle (fourth and fifth
place, respectively), with values ranging from 4.2 to
4.7, indicating less efficient performance compared
to the leading algorithms. Finally, MSO and NOA
consistently rank last, with ranges above 6.0, indicating
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Table 10. Results obtained for FSIM using the BSDS300 dataset for MSO, NOA and PLO algorithms.

Algorithm

MSO

NOA

PLO

Image

—
=

Mean

Std

Mean

Std

Mean

Std

Starfish

1.04E+02
1.11E4-02
1.06E4-02
1.07E402

1.04E+02
1.11E+02
1.08E4-02
1.07E4-02

1.05E4-02
1.36E4-02
1.14E4-02
1.05E4-02

1.02E+02
1.24E+02
1.10E4-02
1.25E4-02

6.28E-01
7.07E-01
7.61E-01
7.94E-01

1.23E-03
6.15E-03
8.76E-03
1.01E-02

Firefighters

8.80E+01
8.93E+01
8.35E+01
9.14E4-01

8.80E+01
8.90E+01
8.30E+01
9.44E+01

9.25E401
7.13E+01

8.95E401
9.24E+01

8.80E+-01
1.15E+02
7.83E+01
9.00E+01

7.63E-01
8.09E-01
8.37E-01
8.51E-01

2.13E-03
5.58E-03
7.13E-03
7.90E-03

Pyramid

1.37E+-02
1.29E4-02
1.30E+4-02
1.29E+-02

1.37E+4-02
1.29E4-02
1.30E+02
1.33E+02

1.46E4-02
1.27E+4-02
1.16E+02
1.41E4-02

1.20E+-02
1.46E+-02
1.46E+02
1.01E+02

7.13E-01
7.46E-01
7.66E-01
7.85E-01

1.31E-03
6.65E-03
7.51E-03
9.88E-03

Airplane

8.55E4-01
9.33E4-01
9.65E4-01
8.18E+4-01

8.55E+01
9.33E+01
9.58E+01
8.20E+01

7.55E4-01
5.83E4-01
9.03E+01
1.02E4-02

8.55E+01
6.07TE+01
8.58E+01
1.10E+-02

8.45E-01
8.52E-01
8.57E-01
8.60E-01

2.92E-03
1.03E-02
1.10E-02
9.09E-03

Owls

7.25E401
7.77TE4-01
8.23E4-01
8.14E4-01

7.25E4-01
7.77E401
8.15E+01
8.14E+01

7.55E4-01
8.00E+01
7.88E4-01

1.30E4-02

8.70E+01
7.60E+01
7.60E+01
1.32E4-02

8.04E-01
8.43E-01
8.64E-01
8.76E-01

1.54E-03
5.42E-03
7.03E-03
1.22E-02

Bird

1.13E4-02
1.13E4-02

1.15E4-02
1.05E4-02

1.13E4-02
1.12E4-02
1.16E4-02
1.07E4-02

1.11E4-02
1.36E4-02
1.04E4-02
9.66E+01

1.10E4-02
1.16E4-02
8.85E+01
1.23E4-02

8.30E-01
8.52E-01
8.61E-01
8.72E-01

8.24E-04
2.93E-03
1.05E-02
9.28E-03

Ocean

9.40E4-01
9.10E4-01
9.03E4-01
9.62E4-01

9.40E+01
9.17E+01
9.15E+01
8.86E+01

9.20E+01
8.17E+01
9.15E+01
1.13E4-02

8.85E+01
9.60E+01
1.10E4-02
8.10E+01

7.30E-01
8.05E-01
8.34E-01
8.53E-01

4.78E-03
1.07E-02
1.50E-02
1.31E-02

Snow

1.26E4-02
1.52E4-02
1.56E+02
1.38E4-02

1.26E+02
1.52E4-02
1.56E4-02
1.564E4-02

1.36E4-02
1.46E4-02
1.23E4-02
1.73E4-02

1.38E+02
1.54E4-02
1.14E4-02
1.45E4-02

7.01E-01
8.02E-01
8.16E-01
8.23E-01

2.37E-03
1.11E-02
1.46E-02
1.66E-02

Kangaroo

U QW N O i QDN O b W RN O i WK O WO WNOU R WNOUER WO W

9.10E4-01
8.53E+01
8.58E+01
8.68E401

9.10E+01
8.53E+01
8.58E+01
8.70E+01

8.05E+01
7.53E+01
6.58E+01
8.84E+01

8.70E+01
6.90E+4-01
9.63E+401
1.13E4-02

6.72E-01
7.57E-01
8.08E-01
8.40E-01

5.21E-03
1.22E-02
1.57E-02
1.85E-02

significantly lower performance compared to the other
methods.

5 Conclusion

This study introduces six novel evolutionary strategies
employing multilevel thresholding with minimum
cross-entropy as objective function. These strategies
were developed to identify optimal thresholds by

78

minimizing the minimum cross-entropy. Experiments
were conducted using the BSDS300 dataset and the
nine most complicated images. Image segmentation
was performed at five threshold levels (e.g., 2-5).
Three different indicators were considered in image
processing to evaluate important characteristics of the
segmented images. These indicators are the PSNR,
SSIM, and FSIM.
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Table 11. Friedman Rank Test with 2-5 Th.

2Th 3Th 4 Th 5Th
Algorithm Rank Final Rank Final Rank Final Rank Final
PSO 1.50 1 1.44 1 1.28 1 1.22 1
DCS 3.00 2 3.00 3 3.00 3 3.00 3
ESC 1.50 1 1.56 2 1.72 2 1.78 2
MGO 422 3 422 4 4.44 4 4.33 4
MSO 6.44 5 6.22 6 6.22 6 6.33 6
NOA 6.56 6 6.78 7 6.78 7 6.67 7
PLO 4.78 4 4.78 5 4.56 5 4.67 5
p-value 1.58E-09 1.45E-09 2.13E-09 2.22E-09
The significance of this study lies in the [2] Wang, Z., Wang, E., & Zhu, Y. (2020). Image

implementation of evolutionary strategies applied
to the problem of MTH using MCE as the objective
function. A comprehensive evaluation of the results
obtained led to the conclusion that the optimal
algorithm for this implementation is the ESC
algorithm, considering the objective function values.

Conversely, it is acknowledged that this study allows
extensive scope for further implementation. In
subsequent studies, it is planned to implement
a variety of multilevel thresholding techniques to
validate the efficacy of the algorithms utilized in this
comparison. Furthermore, it is intended to conduct
experiments with other test sets, not only in image
segmentation but also in single-objective optimization
or even multi-objective optimization.

Data Availability Statement

Data will be made available on request.

Funding

This work was supported without any funding.

Contflicts of Interest

The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References

[1] Oliva, D., Hinojosa, S., Osuna-Enciso, V., Cuevas,
E., Pérez-Cisneros, M., & Sanchez-Ante, G. (2019).
Image segmentation by minimum cross entropy using
evolutionary methods. Soft Computing, 23(2), 431-450.
[CrossRef]

[10]

segmentation evaluation: a survey of methods.
Artificial Intelligence Review, 53(8), 5637-5674.
[CrossRef]

Kumar, M. J.,, Kumar, D. G. R,, & Reddy, R. V. K.
(2014). Review on image segmentation techniques.
International Journal of Scientific Research Engineering &
Technology, 3(6), 993-997.

Kaur, D., & Kaur, Y. (2014). Various image
segmentation techniques: a review. International
journal of computer science and Mobile Computing, 3(5),
809-814.

Sahoo, P. K., Soltani, S. A. K. C., & Wong, A. K. C.
(1988). A survey of thresholding techniques. Computer
vision, graphics, and image processing, 41(2), 233-260.
[CrossRef]

Bhargavi, K., & Jyothi, S. (2014). A survey on
threshold based segmentation technique in image
processing. International Journal of Innovative Research
and Development, 3(12), 234-239.

Otsu, N. (1979). A threshold selection method from
gray-level histograms. IEEE transactions on systems,
man, and cybernetics, 9(1), 62-66. [ CrossRef]

Jena, B., Naik, M. K., Panda, R., & Abraham, A.
(2021). Maximum 3D Tsallis entropy based multilevel
thresholding of brain MR image using attacking Manta
Ray foraging optimization. Engineering Applications of
Artificial Intelligence, 103, 104293. [CrossRef]

Kapur, J. N., Sahoo, P. K., & Wong, A. K. C. (1985). A
new method for gray-level picture thresholding using
the entropy of the histogram. Computer vision, graphics,
and image processing, 29(3), 273-285. [ CrossRef]
Agrawal, S., Panda, R., Bhuyan, S., & Panigrahi, B.
K. (2013). Tsallis entropy based optimal multilevel
thresholding using cuckoo search algorithm. Swarm
and Evolutionary Computation, 11, 16-30. [CrossRef]

Sahoo, P, Wilkins, C., & Yeager, J. (1997). Threshold
selection using Renyi’s entropy. Pattern recognition,
30(1), 71-84. [CrossRef]

Chao, Y., Dai, M., Chen, K., Chen, P, & Zhang,
Z. (2016). Fuzzy entropy based multilevel image
thresholding using modified gravitational search

79


https://doi.org/10.1007/s00500-017-2796-z
https://doi.org/10.1007/s10462-020-09830-9
https://doi.org/10.1016/0734-189X(88)90022-9
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1016/j.engappai.2021.104293
https://doi.org/10.1016/0734-189X(85)90125-2
https://doi.org/10.1016/j.swevo.2013.02.001
https://doi.org/10.1016/S0031-3203(96)00065-9

ICCK Transactions on Swarm and Evolutionary Learning

ICJK

[15]

[16]

[18]

[19]

[20]

[21]

[23]

80

algorithm. In 2016 IEEE international conference on
industrial technology (ICIT) (pp. 752-757). [CrossRef]

Fang, S. C., Peterson, E. L., & Rajasekera, J.
R. (1992). Minimum cross-entropy analysis with
entropy-type constraints. Journal of computational and
applied mathematics, 39(2), 165-178. [ CrossRef]

Horng, M. H.,, & Liou, R. J. (2011). Multilevel
minimum cross entropy threshold selection based on
the firefly algorithm. Expert Systems with Applications,
38(12), 14805-14811. [CrossRef]

Horng, M. H. (2010). Multilevel minimum cross
entropy threshold selection based on the honey bee
mating optimization. Expert Systems with Applications,
37(6), 4580-4592. [ CrossRef]

Pare, S., Kumar, A., Singh, G. K., & Bajaj, V. (2020).
Image segmentation using multilevel thresholding:
a research review. Iranian Journal of Science and
Technology, Transactions of Electrical Engineering, 44(1),
1-29. [CrossRef]

Karakoyun, M., Baykan, N. A., & Hacibeyoglu,
M. (2017). Multi-level thresholding for image
segmentation with swarm optimization algorithms.
International Research Journal of Electronics & Computer
Engineering, 3(3), 1.

Merzban, M. H., & Elbayoumi, M. (2019). Efficient
solution of Otsu multilevel image thresholding: A
comparative study. Expert Systems with Applications,
116, 299-309. [CrossRef]

Li, C. H., & Lee, C. K. (1993). Minimum cross entropy
thresholding. Pattern recognition, 26(4), 617-625.
[CrossRef]

Abdel-Basset, M., Mohamed, R., & Abouhawwash, M.
(2022). A new fusion of whale optimizer algorithm
with Kapur’s entropy for multi-threshold image
segmentation: Analysis and validations. Artificial
intelligence review, 55(8), 6389-6459. [ CrossRef |

Ma, P, & Geng, Y. (2024). An improved whale
optimization algorithm based on multi-populations
and multi-strategies for multilevel threshold image
segmentation. In 2024 4th International Conference
on Neural Networks, Information and Communication
Engineering (NNICE) (pp. 826-831). [CrossRef]

Shi, J., Chen, Y., Cai, Z., Heidari, A. A., Chen, H., & He,
Q. (2024). Multi-threshold image segmentation using
a boosted whale optimization: case study of breast

invasive ductal carcinomas. Cluster Computing, 27(10),
14891-14949. [CrossRef]

Rahkar Farshi, T., & K. Ardabili, A. (2021). A hybrid
firefly and particle swarm optimization algorithm
applied to multilevel image thresholding. Multimedia
Systems, 27(1), 125-142. [CrossRef]

Song, S., Jia, H., & Ma, J. (2019). A chaotic
electromagnetic field optimization algorithm based on
fuzzy entropy for multilevel thresholding color image
segmentation. Entropy, 21(4), 398. [CrossRef]

[25]

[28]

[29]

[30]

[31]

[32]

[33]

Thapliyal, S., & Kumar, N. (2024). ASCAEO:
accelerated sine cosine algorithm hybridized with
equilibrium optimizer with application in image
segmentation using multilevel thresholding. Evolving
Systems, 15(4), 1297-1358. [CrossRef]

Hammouche, K., Diaf, M., & Siarry, P. (2008). A
multilevel automatic thresholding method based on
a genetic algorithm for a fast image segmentation.
Computer Vision and Image Understanding, 109(2),
163-175. [CrossRef]

Ma, M., & Zhu, Q. (2017). Multilevel thresholding
image segmentation based on shuffled frog leaping
algorithm. Journal of Computational and Theoretical
Nanoscience, 14(8), 3794-3801. [ CrossRef]

Ouyang, K., Fu, S., Chen, Y., Cai, Q., Heidari, A. A.,
& Chen, H. (2024). Escape: an optimization method
based on crowd evacuation behaviors. Artificial
Intelligence Review, 58(1), 19. [ CrossRef]

Zheng, B., Chen, Y., Wang, C., Heidari, A. A,
Liu, L., & Chen, H. (2024). The moss growth
optimization (MGO): concepts and performance.
Journal of Computational Design and Engineering, 11(5),
184-221. [CrossRef]

He, J., Zhao, S., Ding, J., & Wang, Y. (2025). Mirage
search optimization: Application to path planning and
engineering design problems. Advances in Engineering
Software, 203, 103883. [ CrossRef]

Abdel-Basset, M., Mohamed, R., Hezam, 1. M.,
Sallam, K. M., & Hameed, 1. A. (2024). An
improved nutcracker optimization algorithm for
discrete and continuous optimization problems:
Design, comprehensive analysis, and engineering
applications. Heliyon, 10(17). [ CrossRef]

Yuan, C., Zhao, D., Heidari, A. A., Liu, L., Chen, Y., &
Chen, H. (2024). Polar Lights Optimizer: Algorithm
and Applications in Image Segmentation and Feature
Selection. Neurocomputing, 607, 128427. [ CrossRef]

Heidari, A. (2024). Polar lights optimizer: Algorithm
and applications in image segmentation and feature
selection [Computer software]. GitHub. https:/github
.com/aliasgharheidaricom/Polar-Lights-Optimizer-Algorithm-
and-Applications-in-Image-Segmentation-and-Feature-Selec
tion

Brink, A. D., & Pendock, N. E. (1996). Minimum
cross-entropy threshold selection. Pattern Recognition,
29(1),179-188. [CrossRef]

Kullback, S. (1997). Information theory and statistics.
Courier Corporation.

Horé, A., & Ziou, D. (2010). Image Quality Metrics:
PSNR vs. SSIM. In 2010 20th International Conference
on Pattern Recognition (pp. 2366-2369). [CrossRef]
Zhang, L., Zhang, L., Mou, X., & Zhang, D. (2011).
FSIM: A Feature Similarity Index for Image Quality
Assessment. IEEE Transactions on Image Processing,
20(8), 2378-2386. [ CrossRef]


https://doi.org/10.1109/ICIT.2016.7474862
https://doi.org/10.1016/0377-0427(92)90267-9
https://doi.org/10.1016/j.eswa.2011.05.069
https://doi.org/10.1016/j.eswa.2009.12.050
https://doi.org/10.1007/s40998-019-00251-1
https://doi.org/10.1016/j.eswa.2018.09.019
https://doi.org/10.1016/0031-3203(93)90115-D
https://doi.org/10.1007/s10462-022-10147-y
https://doi.org/10.1109/NNICE61279.2024.00013
https://doi.org/10.1007/s10586-023-04218-0
https://doi.org/10.1007/s00530-020-00715-z
https://doi.org/10.3390/e21040398
https://doi.org/10.1007/s12530-023-09534-9
https://doi.org/10.1016/j.cviu.2007.09.001
https://doi.org/10.1166/jctn.2017.6841
https://doi.org/10.1007/s10462-024-10841-z
https://doi.org/10.1093/jcde/qwae033
https://doi.org/10.1016/j.advengsoft.2025.103883
https://doi.org/10.1016/j.heliyon.2024.e34313
https://doi.org/10.1016/j.neucom.2024.128427
https://github.com/aliasgharheidaricom/Polar-Lights-Optimizer-Algorithm-and-Applications-in-Image-Segmentation-and-Feature-Selection
https://github.com/aliasgharheidaricom/Polar-Lights-Optimizer-Algorithm-and-Applications-in-Image-Segmentation-and-Feature-Selection
https://github.com/aliasgharheidaricom/Polar-Lights-Optimizer-Algorithm-and-Applications-in-Image-Segmentation-and-Feature-Selection
https://github.com/aliasgharheidaricom/Polar-Lights-Optimizer-Algorithm-and-Applications-in-Image-Segmentation-and-Feature-Selection
https://doi.org/10.1016/0031-3203(95)00066-6
https://doi.org/10.1109/ICPR.2010.579
https://doi.org/10.1109/TIP.2011.2109730

ICJK

ICCK Transactions on Swarm and Evolutionary Learning

[38] Martin, D. R., Fowlkes, C. C., Tal, D., & Malik, J. (2001).
A Database of Human Segmented Natural Images
and its Application to Evaluating Segmentation
Algorithms and Measuring Ecological Statistics. In
Proc. 8th Int'l Conf. Computer Vision (Vol. 2, pp.
416-423). [CrossRef]

Duankhan, P, Sunat, K., Chiewchanwattana,
S., & Nasa-ngium, P. (2024). The Differentiated
Creative Search (DCS): Leveraging differentiated
knowledge-acquisition and creative realism to address
complex optimization problems. Expert Systems with
Applications, 252, 123734. [ CrossRef]

Huynh-Thu, Q., & Ghanbari, M. (2008). Scope of
validity of PSNR in image/video quality assessment.
Electronics letters, 44(13), 800-801. [CrossRef]

Avcibas, 1., Sankur, B., & Sayood, K. (2002). Statistical
evaluation of image quality measures. Journal of
Electronic imaging, 11(2), 206-223. [CrossRef]

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli,
E. P. (2004). Image quality assessment: from error
visibility to structural similarity. IEEE transactions on
image processing, 13(4), 600-612. [ CrossRef]

Sara, U., Akter, M., & Uddin, M. S. (2019). Image
quality assessment through FSIM, SSIM, MSE and
PSNR—A comparative study. Journal of Computer and
Communications, 7(3), 8-18. [CrossRef]

Friedman, M. (1937). The use of ranks to avoid the
assumption of normality implicit in the analysis of
variance. Journal of the american statistical association,
32(200), 675-701. [CrossRef]

Friedman, M. (1940). A comparison of alternative
tests of significance for the problem of m rankings.
The Annals of Mathematical Statistics, 11(1), 86-92.
[CrossRef]

Scheff, S. W. (2016). Chapter 8 - Nonparametric
Statistics. In S. W. Scheff (Ed.), Fundamental Statistical
Principles for the Neurobiologist (pp. 157-182). Academic
Press. [CrossRef]

Kennedy, J., & Eberhart, R. (1995). Particle swarm
optimization. In Proceedings of ICNN’95 - International
Conference on Neural Networks (Vol. 4, pp. 1942-1948
vol.4). [CrossRef]

Shi, Y., & Eberhart, R. (1998). A modified particle
swarm optimizer. In 1998 IEEE International Conference
on Evolutionary Computation Proceedings. IEEE
World Congress on Computational Intelligence (Cat.
No0.98TH8360) (pp. 69-73). [CrossRef]

Shi, Y., & Eberhart, R. C. (1999). Empirical study of
particle swarm optimization. In Proceedings of the 1999

Congress on Evolutionary Computation-CEC99 (Cat. No.
99THS8406) (Vol. 3, pp. 1945-1950 Vol. 3). [CrossRef]

[41]

[42]

[43]

[47]

[49]

Omar Alvarez was born in Guadalajara,
Jalisco, Mexico, in 1998. He received
a B.S. degree in Communications and
Electronics Engineering from the University of
Guadalajara, Mexico, in 2023. He is currently
pursuing an M.Sc. degree in Electronic
Engineering and Computer Sciences at the
University of Guadalajara. His research
interests include machine learning and image
processing.

Luis A. Beltran received his B.S. degree
in Mechatronic Engineering from the
Universidad Politécnica de Sinaloa in 2020.
In 2024, he obtained his M.Sc. degree in
Electronics and Computer Engineering from
the Universidad de Guadalajara, at the Centro
Universitario de Ciencias Exactas e Ingenierfas
(CUCEI), where he is currently pursuing
a Ph.D. in Computational Intelligence.
Throughout his postgraduate studies, he
has focused on Evolutionary Computation and metaheuristic
algorithms. His research interests lie in the intersection of
Artificial Intelligence and optimization techniques, particularly
in the development and application of metaheuristics and
hyper-heuristics. He is an active member of the Automatic Control
and Intelligent Systems Research Group, where he explores
intelligent optimization strategies for complex systems.

Angel Casas-Ordaz received a B.S. degree
in Electronic Engineering from the Instituto
Tecnolégico de Ciudad Juarez in 2018, and
later the M.Sc. degree in Electronics and
Computer Engineering from the Universidad
de Guadalajara at the Centro Universitario
de Ciencias Exactas e Ingenierfas (CUCEI)
in 2022; He is currently a Ph.D. student in
Electronics and Computer Science at the same
campus. During his postgraduate research,
he specialized in the field of Evolutionary Computation and
Image Segmentation. His current research interests include
Evolutionary Computation and Artificial Intelligence, specializing
in Metaheuristic Algorithms in the Automatic Control and
Intelligent Systems Research Group.

Jorge Ramos-Frutos received a B.S. degree
in industrial engineering from the Instituto
Tecnolégico de Jiquilpan, Michoacan, Mexico,
in 2018 and an M.Sc. degree in Science and
Technology from the Centro Innovacién
Aplicada en Tecnologias Competitivas
(CIATEC), Leén, Guanajuato, Mexico, in 2021.
He is studying for his doctorate at CIATEC
. under the supervision of Ph.D. Israel Miguel

and Ph. D. Diego Oliva. His research interests
are related to digital image processing, evolutionary computation,
and machine learning.

81


https://doi.org/10.1109/ICCV.2001.937655
https://doi.org/10.1016/j.eswa.2024.123734
https://doi.org/10.1049/el:20080522
https://doi.org/10.1117/1.1455011
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.4236/jcc.2019.73002
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1214/aoms/1177731944
https://doi.org/10.1016/B978-0-12-804753-8.00008-7
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1109/CEC.1999.785511

ICCK Transactions on Swarm and Evolutionary Learning

ICJK

Mario A. Navarro-Velazquez In 2019, he
completed a Master of Science in Electronic
, - Engineering and Computer Science, focusing
7 his research on the design of metaheuristic
algorithms and applications in image
segmentation. In 2023, he obtained his PhD
in Electronic and Computer Engineering
at the Centro Universitario de Ciencias
Exactas e Ingenierias (CUCEI) in Guadalajara,
Mexico, concentrating on the coevolution of
metaheuristic strategies to solve various optimization problems.
His research interests include artificial intelligence, specifically
the design and hybridization of evolutionary algorithms,
the development of operators and hyperheuristics to solve
high-dimensional problems, and the integration of evolutionary
algorithms and machine learning.

Oscar Ramos-Soto received the B.S. degree in
Communications and Electronics Engineering
from the National Polytechnic Institute,
Mexico, in 2019, and the M.Sc. degree in
! o ! Electronic Engineering and Computer Sciences

- from the University of Guadalajara, Mexico,

7 Y in 2021. Currently, he is pursuing a Ph.D.
"\ ’T degree in Electronics and Computer Science

) | at the University of Guadalajara, Mexico. His
research interests primarily involve areas such

as computer vision, digital image processing, machine learning,
deep learning, biomedical engineering, and vision science.

82

% Prof. Diego Oliva received a B.S. degree in

| Electronics and Computer Engineering from
the Industrial Technical Education Center
(CETI) of Guadalajara, Mexico, in 2007 and
an M.Sc. degree in Electronic Engineering
L and Computer Sciences from the University
of Guadalajara, Mexico, in 2010. He obtained
a Ph. D. in Informatics in 2015 from
the Universidad Complutense de Madrid.
Currently, he is an Associate Professor at
the University of Guadalajara in Mexico. He is a member
of the Mexican National Research System (SNII), a Senior
member of the IEEE, and a member of the Mexican Academy of
Computer Sciences (AMEXCOMP). His research interests include
evolutionary and swarm algorithms, hybridization of evolutionary
and swarm algorithms, and computational intelligence.



	Introduction
	Preliminaries
	Particle Swarm Optimization
	The differentiated creative search
	The escape or escape algorithm
	The moss growth optimization
	The mirage search optimization
	MSO mathematical foundations
	Initialization
	Superior mirage strategy (global exploration)
	Inferior mirage strategy (local exploration)
	Applications and resources

	The nutcracker optimization algorithm
	The polar lights optimizer
	Overview
	Mathematical modeling of PLO operators
	Algorithmic framework
	Applications and resources

	Minimum cross-entropy for thresholding
	Principle of cross entropy


	Proposed approach
	Problem definition
	Objective function


	Experimental study and analysis of results
	Experimental setup and dataset
	Evaluation metrics
	Results analysis and discussion
	Statistical analysis

	Conclusion
	Omar Alvarez
	Luis A. Beltran
	Angel Casas-Ordaz
	Jorge Ramos-Frutos
	Mario A. Navarro-Velázquez
	Oscar Ramos-Soto
	Prof. Diego Oliva


