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Abstract
Recently, battle royale optimizer (BRO), a
game-based metaheuristic search algorithm,
has been proposed for continuous optimization,
inspired by a genre of digital games known as
"battle royale." In BRO, each individual chooses the
nearest opponent as a competitor. For this purpose,
the Euclidean distance between individuals is
calculated. This interaction corresponds to an
increase in computational complexity by a factor
of n. To improve the computational complexity of
BRO, a modified methodology is proposed using
a ring topology, namely, BRO-RT. In the modified
version, a set of individuals is arranged in a ring
such that each has a neighborhood comprising
several individuals to its left and right. Instead
of a pairwise comparison with all individuals in
the population, the best individual among the
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left and right neighborhoods is selected as the
competitor. We compared the proposed scheme
with the original BRO and six popular optimization
algorithms. All algorithms are tested in several
benchmark functions and engineering optimization
problems. Experimental results show that the
BRO-RT demonstrates competitive performance
compared to nine state-of-the-art methods across
most benchmark functions. Additionally, the
compression spring design problem was utilized
to assess the proposed method’s ability to solve
real-world engineering problems. These results
demonstrate that BRO-RT yields promising
results when applied to real-world engineering
problems. Finally, while BRO is ranked first and
BRO-RT second, they achieved competitive results;
BRO-RT has the advantages of lower computational
complexity and faster run times than the original
BRO algorithm.
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1 Introduction
Optimization refers to the action of selecting the best
possible solution among a variety of options. This
selection can be performed using either exhaustive
or stochastic approaches. Exhaustive methods are
guaranteed to find the optimal solution to a problem
because they search the entire state space of the
problem. However, the costs associated with using
these methods are prohibitively high for issues that
are of a non-polynomial (NP) nature. Utilizing
stochastic methods could be an alternative approach
to solving this problem. Despite their widespread
use, stochastic methods do not guarantee that the
best solution will be identified. Metaheuristic
algorithms employ stochastic methods to enhance
their chances of finding the optimal solution to a
problem. Metaheuristic optimization algorithms,
which are used to address various types of problems
despite their constraints, have played a significant
role in solving numerous practical problems in
scientific and industrial applications. In recent years,
metaheuristic algorithms have been used widely
to solve optimization problems [1]. Numerous
optimization algorithms have been employed to
address various real-world challenges. In general,
the problems can be solved using exhaustive or
stochastic schemes. For specific inputs, exhaustive
algorithms always give the same outputs, while
stochastic algorithms may generate different results
because of random operators [2].

Nature-inspired metaheuristic optimization tools can
be categorized into three main groups: evolutionary
algorithms (EAs), swarm intelligence (SI), and
physical phenomena. A fourth category, a new
optimization tool called game-based, has recently
been proposed by Farshi [3]. EAs mimic the processes
in Darwin’s theory of biological evolution. These
algorithms benefit from common mechanisms of
mutation, selection, and recombination operations.
Some popular EA paradigms are the Genetic
Algorithm (GA) [4], Evolution Strategies (ES) [5],
Tabu Search (TS) [6], Simulated Annealing (SA) [7],
Biogeography-Based Optimizer (BBO) [8], and Bird
Mating Optimizer (BMO) [9], among others. SIs
rely on the power of the collective intelligent activity
of different living things, such as humans, animals,
bacteria, etc. While each individual within this
algorithm is not competent, the collective behavior
of a group of individuals generates an intelligent
mechanism. Some examples of SI-based algorithms
include Particle Swarm Optimization (PSO) [10], Ant

Colonies (AC) [11], Bee Colonies (BC) [12], Animal
Migration Optimization (MGO) [13], Hawks Hunting
(HH) [13], Human Mental Search (HMS) [14], and
Selfish Herd Optimizer (SHO) [15]. Physics-based
methods have been inspired by physical laws
such as inertial, electromagnetic, and gravitational
forces. Some famous physics-based algorithms are
Quantum-Inspired Particle Swarm Optimization
(QPSO) [16], Big Bang-Big Crunch (BB-BC) [17], and
Hysteretic Optimization (HO) [18]. The difference
between the SI algorithms and game-based algorithms
is that, unlike the populations in SI algorithms, the
population in a game-based algorithm does not have
to collaborate to achieve its goal; the individuals enter
into conflict with each other instead of cooperating.

Each optimization algorithm has its exploration
and exploitation strategies. The exploration and
exploitation mechanisms are fundamental in
determining the efficiency of an optimization
algorithm. A good balance between exploration
and exploitation provides an efficient optimization
algorithm [19]. Exploration involves probing for
solutions across a wide portion of the problem space
in a global search that escapes from local optima.
In contrast, exploitation involves a local search by
exploring solutions in the neighborhood of the best
solution so far [20]. If the weight parameter of the
inertia is too large, an algorithm can fail to achieve or
converge on the optimal solution.

Various algorithms have been proposed over the
last two decades for several real-world optimization
problems. One of the most frequently asked questions
about optimization algorithms is: Is there a need for
new optimization algorithms, given the vast number
of commonly used and well-established algorithms
already available? The no-free-lunch theorem
(NFL) [21] claims that no specific optimization
algorithm outperforms any other in dealing with all
kinds of optimization problems. However, it is also
clear that the real world will face various optimization
issues that have not yet been identified, let alone
addressed. As a result, the performance of existing
algorithms in addressing such matters is unknown
so any standard algorithm may be superior to any
other method. Consequently, the emergence of new
algorithms is inevitable. However, the significant
shortcoming of many optimization algorithms is
that they do not contain novelties [22, 23]. Also,
many variants extend the existence of optimization
algorithms to improve their search capability [24–27].
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The Battle Royale Optimizer (BRO) is a new
population-based metaheuristic technique for
single-objective optimization across continuous
problem spaces [28]. The BRO is not just a
population-based algorithm; it also encompasses a
new category of algorithms known as game-based
optimization algorithms, in which players actively
explore their environments and compete against one
another to achieve a win. In contrast to SI-based
algorithms, players do not work together toward a
common goal of victory here. Soldiers, or players,
represent the solutions in the BRO algorithm; the
algorithm’s optimal solution is the solution that
defeats all of its neighbors while staying alive.
Recently, the binary version of this approach, known
as BinBRO, was proposed [28, 29]. BRO has been
used to address optimization problems [30, 31]. Our
research employed a modified version of the BRO
algorithm to enhance computational complexity by
incorporating ring neighborhood topology (BRO-RT).
The need for low computational cost when optimizing
nondeterministic polynomial (NP) problems is
essential in the processes to be calculated [32, 33].
The intrinsic time requirements of algorithms play
an important role in computational complexity. One
of the strengths of BRO-RT is that it requires less
time, which has led to its widespread use to address
optimization problems with exponential complexity.
For example, using the BRO algorithm to measure
the distance between individuals in high-dimensional
problems is time-consuming. This shortcoming has
been addressed in BRO-RT using a ring topology. For
experimental purposes, the BRO-RT has been tested.
The remainder of the sections are organized as follows:
Section 2 describes the basic concept of the standard
BRO. Section 3 introduces the BRO using ring topology.
Section 4 describes the experimental results, andfinally,
Section 5 discusses some conclusions.

2 Battle royale optimizer
The original Battle Royale game was based on the
2000 Japanese action movie called Battle Royale. Its
popularity led to the creation of many more games
in the battle royale genre that have also become very
popular, such as Player Unknown’s Battlegrounds
(PUBG), Call of Duty: Warzone, Apex Legends,
Counter-Strike: Global Offensive, and Ring of Elysium.
In these games, thematch beginswith a predetermined
number of players, who are randomly distributed
across a game map. In the simulation, the problem
space is considered a game map, and the search agent

is viewed as a player. These games can be played in
solo, duo, and squad modes. Unlike duo and squad
modes, in solo mode, players have no teammates. The
most crucial goal of this game has two parts: players
must defeat their opponents while also staying within
a safe zone on the game map. Players encountering
other players are most likely to enter into conflict with
them.
Like in Battle Royale games, the BRO algorithm
spreads its initial set of candidate solutions across the
problem space at random. Moreover, the best solution
is kept in a variable called flag. Afterward, the flag
will be updated with each iteration to realize elitism.
Everybody shoots at everyone else to try to make
them hurt. Players who better position themselves
can inflict damage on their opponents. Given this
information, one might wonder who or what can shoot
their opponent while they are playing the game. In
the simulation, since each individual faces the closest
another individual, the Euclidean distance of each
solution is calculatedwith the rest of the solutions. The
solution with a better cost function can overcome the
competitor and be recognized as the winner and the
other one as the loser. When one player injures another
player, the damage level of the injured player (loser)
is increased by one. This interaction is simulated as
xi·damage = xi·damage+1, where xi·damagedenotes
the damage level of the damaged player. However,
if a solution injures the opponent, the damage level
resets to zero. Meanwhile, injured players look for
better positions to avoid being hit. To put it another
way, soldiers want to change their position as soon as
they take damage so that they can attack opponents
from a different side. As a consequence of this, the
damaged soldier moves toward a point that is located
somewhere between its previous position and the
position that has been determined to be the best so
far (best player). In the simulation, a solution with a
worse fitness value than its nearest neighbor would
move towards the best position as follows [34, 35]:

xdam,d = xdam,d + r2(xbest,d − xdam,d) (1)

However, [28] extends this with a new movement
strategy as follows:

Cdam,d = r1xbest,d + r2(Cdam,d − xdam,d) (2)

and
x′dam,d = xdam,d + Cdam,d (3)

where xbest,d is the position of the best solution found
so far. xdam,d is the position of the damaged individual,
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Cdam,d indicates the movement step of the damaged
individual in dimension d, x′dam,d is the updated
position of the damaged individual in dimension d,
and r1 and r2 indicate a randomly generated number
uniformly distributed in [0, 1]. In the original BRO
algorithm, r1 was specified as one. It is clear that
if the player is too injured, it will die. In the event
of a player’s death as a consequence of an opponent,
he will respawn on the battleground at a completely
random location within the zone. Therefore, if the
damage level exceeds a predefined threshold value,
the solution may be stuck in local optima. To escape
from the local optima and provide exploration, the
solution is re-initialized in a feasible problem space as
follows:

x′dam,d = r(ubd − lbd) + lbd (4)

During the game, the safe zone shrinks continually,
so players cannot run away from the battle to survive.
In the simulation, the balance between exploration
and exploitation is provided by this interaction so that
the upper- and lower-bound problem space shrinks
toward the best solution found so far. Hence, in every
∆ iteration, the search boundary of the variables of the
problem shrinks toward the global optimum solution.
Herein, the initial value ∆ is:

MaxCicle

round(log10(MaxCicle))
(5)

where MaxCicle denotes the maximum number of
generations. Consequently, ∆ = ∆ + d∆

2 e if i ≥ ∆,
where i is the current iteration number. The reduction
of the problem space is performed as follows:

lbd = xbest,d − SD(xd)

ubd = xbest,d + SD(xd)
(6)

where lbd and ubd respectively are the lower and upper
bounds of dimension d in the problem space and
SD(xd) represents the population’s standard deviation
in dimension d. Also, another shrink-the-search region
mechanism was proposed in [36].

3 BRO using ring topology
In Particle Swarm Optimization (PSO) algorithms, the
ring neighborhood topology is a common approach.
In this topology, particles are arranged in a circular
pattern, with each particle connected to a certain
number of its neighbors. This allows particles to
exchange information and influence each other’s

behavior by establishing a network of structured
communication [37–39].
The BRO algorithm calculates Euclidean distance by
comparing each individual to its closest neighbor in
each iteration. Computational complexity increases
by n due to this interaction. Figure 1 shows how the
BRO-RT algorithm uses ring neighborhood topology
to avoid extra computation. This figure shows
that all individuals have left and right neighbors.
Ring topology compares the neighborhood instead of
individuals to find the nearest neighbor.
First, the population is arranged in a circular arraywith
a length of N . Next, the length of the neighborhood is
set to five. If j is the index of an individual, then the
neighborhood is composed of j−2,j−1,j,j+1, and j+2
indexes (See Figure 1). As it is clear, a set of neighbors
for the jth individual is always the same. In other
words, every individual has and maintains its ring as a
definition of its local neighborhood. If the neighbor’s
index exceeds N , it will return to zero, and vice versa:
it will return to N if it reaches below zero. Therefore,
each individual has some number of individuals
to the left and right in the neighborhood. The
index connects the ring’s members. Additionally, the
ring topology may facilitate population information
exchange. Finally, instead of a pairwise comparison
with all individuals in the population, the best
individual from the left and right neighborhoods
is chosen as the competitor, whose index will be
variables i and i 6= j. The competitor is selected
solely based on objective function value within the
fixed ring neighborhood; no distance-based criterion
is employed, and the original BRO update equations
remain unchanged. The ring topology generates the
positions of exemplars according to the following
proposition:
• Let pj be a proposition stating that "the

individual at index j is the current individual in
consideration".

• Let Lj be a proposition stating that "the
best individual from the left neighborhood of
individual j is selected".

• Let Rj be a proposition stating that "the best
individual from the right neighborhood of
individual j is selected".

• LetBi be a proposition stating that "the individual
at index i is the best competitor selected".

• Let C be a proposition stating that "the circular

22



ICCK Transactions on Swarm and Evolutionary Learning

Table 1. Unimodal benchmark test functions.
Function Name Range Shift position fmin

f1(x) =
n∑
i=1

x2
i Sphere [−100, 100] [−30, · · · ,−30] 0

f2(x) =
n∑
i=1

|xi|+
n∏
i=1

|xi| Schwefel 2.20 [−10, 10] [−3, · · · ,−3] 0

f3(x) =

n∑
i=1

 i∑
j=1

xj

2

Rotated hyper-ellipsoids [−100, 100] [−30, · · · ,−30] 0

f4(x) = max
i=1,··· ,n

|xi| Schwefel 2.21 [−100, 100] [−30, · · · ,−30] 0

f5(x) =

n−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2] Rosenbrock [−30, 30] [−15, · · · ,−15] 0

f6(x) =

n∑
i=1

(xi + 0.05)2 Step [−100, 100] [−750, · · · ,−750] 0

f7(x) =

n∑
i=1

ix4
i + rand[0, 1] Quartic [−128, 128] [−25, · · · ,−25] 0

Table 2. Multimodal benchmark test functions.
Function Name Range Shift position fmin

f8(x) =
n∑
i=1

−xi sin
(√
|xi|
)

Schwefel [−500, 500] [−300, · · · ,−300] −418.9829× dim

f9(x) = 10n+
n∑
i=1

(
x2
i − 10 cos(2πxi)

) Rastrigin [−5.12, 5.12] [−2, · · · ,−2] 0

f10(x) = −20 exp

−0.2

√√√√ 1
n

n∑
i=1

x2
i

 −

exp
(

1
n

∑n
i=1 cos(2πxi)

)
+ 20 + exp(1)

Ackley [−32, 32] 0

f11(x) = 1 +
n∑
i=1

x2
i

4000
−

n∏
i=1

cos

(
xi√
i

)
Griewank [−600, 600] [−400, · · · ,−400] 0

f12(x) = π
n · {10 sin2(πyi) +

n−1∑
i=1

(yi − 1)2[1 +

10 sin2(πyi+1)}+
n∑
i=1

u(x, 10, 100, 4), yi = 1+ 1
4(xi+

1), u(x, 10, 100, 4) =
k(xi − a)m, if xi > a

0, if − a < xi < a

k(−xi − a)m, if xi < −a

Penalized [−50, 50] [−30, · · · ,−30] 0

f13(x) = 0.1[sin2(3πx) + (xi − 1)2(1 + sin2(3πy)) +

(xn − 1)2(1 + sin2(2πxn))] +
n∑
i=1

u(xi, 5, 100, 4)

Levy [−50, 50] [−100, · · · , 100] 0

array wraps around such that if the neighbor’s
index exceeds N , it will return to zero, and if it
reaches below zero, it will return to N − 1".

Now, assuming the best individual from either the
left or right neighborhood is to be selected as the
competitor for the current individual j, we can
represent this using the following propositional logic

statement:
pj → (Lj ∨Rj ∧Bi) (7)

This states that if pj (we are considering the individual
at index j, then either Lj (the best from the left
neighborhood is selected) or Rj (the best from the
right neighborhood is selected) must be true, and as a
result, Bi (individual i is the best competitor selected)
is true. For the wrapping around the circular array, we
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Table 3. Fixed-dimension multimodal benchmark functions.
Function Dim Range fmin

f14(x) =

 1
500 +

25∑
j=1

1

j +

2∑
i=1

(xi + aij)
6


−1

2 [−65, 65] 1

f15(x) =

11∑
i=1

[
ai −

x1(b2i + bix2)

b2i + bix3 + x4

]2

4 [−5, 5] 3× 10−4

f16(x) = 4x2
1 − 2.1x4

1 + 1
3x

6
1 + x1x2 − 4x2

2 + 4x4
2 2 [−5, 5] −1.0316

f17(x) =
(
x2 − 5.1

4π2x
2
1 + 5

πx1 − 6
)2

+
10
(
1− 1

8π

)
cos(x1) + 10

2 [−5, 5] 0.3980

f18(x) = [1+(x1 +x2 +1)2(19−14x1 +3x2
1−14x2 +

6x1x2 + 3x2
2)] × [30 + (2x1 − 3x2)2 × (18 − 32x1 +

12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

2 [−2, 2] 3

f19(x) = −
4∑
i=1

ci exp

− 3∑
j=1

aij(xj − pij)2

 3 [1, 3] −3.86

f20(x) = −
4∑
i=1

ci exp

− 6∑
j=1

aij(xj − pij)2

 6 [0, 1] −3.32

f21(x) = −
5∑
i=1

[(X − ai)(X − ai)T + ci]
−1 4 [0, 10] −10.1532

f22(x) = −
7∑
i=1

[(X − ai)(X − ai)T + ci]
−1 4 [0, 10] −10.4028

f23(x) = −
10∑
i=1

[(X − ai)(X − ai)T + ci]
−1 4 [0, 10] −10.5363

could express:

C ↔ ((j < 0→ j = N − 1) ∨ (j > N − 1→ j = 0))
(8)

This says that C (the array wraps around) is true if
and only if both conditions for wrapping below zero
or above N − 1 are satisfied.
The ring topology uses four neighboring individuals
to produce diversity-enhanced exemplars, which can
improve the exploration ability.

4 Experimental results and evaluation
The proposed modified BRO algorithm has been
compared with the original BRO and six other
well-known metaheuristic optimization algorithms:
Genetic Algorithm (GA) [46], Particle Swarm
Optimization (PSO) [40], Artificial Bee Colony
(ABC) [12], Gravitation Search Algorithm (GSA) [48],
Firefly Algorithm (FA) [49], and Differential
Evolution (DE) [47]. Since different test functions are

capable of challenging an algorithm in different ways,
different test functions with diverse characteristics
should be used. For this reason, all algorithms have
been evaluated using 24 well-known continuous
benchmark functions with different properties
selected from among classical functions applied by
many researchers, CEC2005 [43] and CEC2010 [44].
These functions are listed in Tables 1, 2, 3, and 4.
These benchmarks have different properties. One
of the properties is the shift position that indicates
a fixed shift vector o, where all components take
the same constant value. This vector is used to
translate the global optimum away from the origin
according to z = x−o, following standard benchmark
definitions. While all test functions are formulated
as minimization problems, f1 − f7 are unimodal,
while f8 − f23 are multimodal. Furthermore, f3, f5,
f12, and f13 are non-symmetric, while the rest of
the functions are symmetric. Also, f9,f10, and f11

are evenly distributed whereas f8, f12, and f13 are
unevenly distributed. Finally, f24-f27 are composite
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Table 4. Composite benchmark functions.
Function Dim Range fmin
f24 (CF1):
f1, f2, . . . , f10 =
Sphere Function
[σ1, σ2, . . . , σ10] =
[1, 1, . . . , 1]
[λ1, λ2, . . . , λ10] =
[5/100, 5/100, . . . , 5/100]

30 [−5, 5] 0

f25 (CF2):
f1, f2, . . . , f10 =
Griewank’s Function
[σ1, σ2, . . . , σ10] =
[1, 1, . . . , 1]
[λ1, λ2, . . . , λ10] =
[5/100, 5/100, . . . , 5/100]

30 [−5, 5] 0

f26 (CF3):
f1, f2, . . . , f10 =
Griewank’s Function
[σ1, σ2, . . . , σ10] =
[1, 1, . . . , 1]
[λ1, λ2, . . . , λ10] =
[5/100, 5/100, . . . , 5/100]

30 [−5, 5] 0

f27 (CF4):
f1, f2 =
Ackley’s Function, f3, f4 =
Rastrigin’s Function
f5, f6 =
Weierstrass Function, f7, f8 =
Griewank’s Function
f9, f10 = Sphere Function
[σ1, σ2, . . . , σ10] =
[1, 1, . . . , 1]
[λ1, λ2, . . . , λ10] =
[5/100, 5/100, . . . , 5/100]

30 [−5, 5] 0

functions. Figure 2 shows the search space for all
tested benchmark functions in two-dimensional form.
Since metaheuristics carry out a form of stochastic
optimization, the estimated solutions are affected by
the set of random variables generated. To alleviate the
effect of randomness, the statistical evaluations were
performed by taking the average fitness value over
25 independent runs. Furthermore, the compression
spring design problem was also used to estimate
the proposed method’s ability to solve real-world
engineering problems. The statistical evaluations
for the compression spring design problem were
also performed by taking the average fitness value
over 25 independent runs. Apart from the mean
value, the best, worst, median, standard deviation,

Figure 1. Plot of the local neighborhood of an individual.

and algorithm run times were considered in the
evaluations. Experiments were performed on a single
machine with a 2.81 GHz Intel Core i7 processor and
32 GB of memory to provide a fair assessment. The
algorithms were coded in MATLAB R2020b. A swarm
population size of 200 was used for all algorithms
to optimize all test functions. Finally, the number of
maximum iterations was set to 500. The best control
parameters for all algorithms were tuned by trial and
error or taken directly from the original papers. These
parameters are listed in Table 5.
Tables 6, 8, 10, and 12 summarize all numerical
outcomes for all performance criteria for test functions.
For the sake of clarity, the best results are in bold. The
approaches are then ranked in terms of performance
criteria for each function (see Tables (7, 9, 11, and
13)). The best-averaged rank is also in bold. Finally,
the average of each algorithm’s ranks across all
performance criteria is shown in the last row of the
table.
As shown in Table 6, all algorithms were tested in
seven separate unimodal functions. Based on the
overall results, BRO has the most successes across
most performance criteria. With respect to f1, BRO
performed better than its competitors except for run
time. On the other hand, BRO-RT yielded extremely
competitive results with BRO; the run time of BRO-RT
is 1.9883 seconds faster than that of BRO. According to
this function, GSA ranked third, but this algorithm’s
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Table 5. The initial values of the parameters of optimization algorithms.
Algorithms Parameter Value
BRO &
BRO-RT

Max Damage Level 4
GA Crossover probability 0.8

Mutation probability 0.1
Selection mechanism Roulette

wheel
Crossover type Whole

Arithmetic
Crossover

Mutation type Uniform
mutation

PSO Inertia weights range [0.9, 0.6]
acceleration coefficients 2.1 and 2.1

ABC Limit 8
GSA 20

Gravitational constant 100
Velocity range rand[0, 1]

WOA linearly decrease from [2 to 0]
rand[0, 1]

DE Crossover probability 0.55
Differential weight 0.5

run time was not acceptable. For f2, similar to the
results for f1, BRO outperformed the others, but
BRO-RT closely followed the results of BRO with a
better run time. Therefore, despite satisfactory results,
the algorithm’s run time was not acceptable. It is
evident that the same situation observed for these two
functions exists in the other functions as well.

Upon closer analysis, the mean and best BRO tests
were successful five out of seven times. As shown
in Table 8, all algorithms were put to the test in six
different multimodal functions. The results indicate
that the outcomes using BRO-RT were competitive.
The data in Table 9 demonstrate that BRO-RT ranks
first overall, while BRO and FA rank second and third,
respectively. PSO ranks fourth alongside GSA. ABC,
DE, and GA rank sixth to last, respectively. It is clear
that the outcomes of BRO and BRO-RT are competitive;
however, BRO-RT runs faster due to the ring topology.
Although the FA algorithm performed well, it is
too slow, rendering its performance unacceptable in
practical terms. In addition, Table 10 demonstrates that
BRO-RT is the overall winner, with BRO, FA, PSO, ABC,
GSA, DE, and GA ranking second to last, respectively.

In terms of f8, it is clear that PSO outperformed its
competitors. FA ranked second, but the run time was
not acceptable. BRO and BRO-RT yielded extremely
competitive results and ranked third and fourth,

respectively. With respect to f9, it is clear that BRO and
BRO-RTperformed far better than the other algorithms.
The mean values of BRO-T and BRO are 1.36859e− 01
and 1.636288, respectively. The corresponding values
for GA, DE, PSO, ABC, FA, and GSA are 375.3837,
391.2683, 151.578, 125.359, 73.7860, and 7.24330. It is
worth noting that BRO-RT obtained better results than
BRO in less time. Also, in terms of f10 and f11, BRO
and BRO-RT outperformed others, followed by GSA.
For f12 and f13, FA surpassed the other algorithms,
but the running time of this algorithm is considerably
longer than that of the others.
The convergence curves of the eight algorithms
for the thirteen benchmark functions are shown in
Figure 3. This figure demonstrates that, in almost
every case, the convergence curve of BRO plunges
rapidly. Furthermore, it is clear that DE and ABC
are very competitive and behave quite similarly. As
shown in Table 8, the performance of the optimization
algorithms varies across different objective functions.
While the BRO algorithm performs well in some cases,
it shows higher variability. Other algorithms like
BRO-RT, GA, DE, PSO, ABC, and FA also demonstrate
competitive performance, with slight differences in
their best solutions and execution times. The choice
of the most suitable algorithm depends on the specific
optimization problem and its characteristics. For
Objective Function f14, the BRO-RT, BRO, GA,DE, PSO,
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Table 6. Outcomes for unimodal benchmark functions when the dimension is 30.
F Metrics BRO-RT BRO GA DE PSO ABC FA GSA

F1

mean 9.89E-20 5.87E-23 4391.778 239.261 10.7531 572.051 2.27E-07 2.87E-18
median 1.56E-20 3.35E-23 3960.613 238.928 6.88792 466.242 2.32E-07 2.81E-18
best 3.25E-22 3.11E-25 2740.399 184.58 1.57468 195.224 1.94E-07 1.75E-18
worst 1.22E-18 2.75E-22 6659.923 301.243 87.857 1594.3 2.56E-07 5.16E-18
SD 2.56E-19 8.26E-23 1113.52 34.8715 17.0463 346.202 1.75E-08 7.24E-19
time 3.076579 5.06492 1.405496 3.75196 1.40959 0.55398 209.252 19.485

F2

mean 1.18E-12 3.77E-14 42.5415 16.6453 8.36035 9.71763 2.58E-04 1.18E-08
median 1.04E-12 3.05E-14 40.25567 16.7377 5.72143 9.54642 2.59E-04 1.17E-08
best 3.65E-13 1.20E-14 30.51653 12.9923 3.19271 4.90615 2.21E-04 9.60E-09
worst 2.72E-12 8.55E-14 73.327 19.4763 25.0081 14.3522 2.78E-04 1.38E-08
SD 6.26E-13 2.30E-14 9.180281 1.92487 5.82822 2.29684 1.17E-05 1.10E-09
time 3.093874 5.021733 1.471881 3.62379 1.39673 0.60891 213.424 19.2101

F3

mean 19.77956 22.6468 10866.67 119796.1 6359.11 59579.9 7.71E-04 412.063
median 1.244508 5.02E-06 10529.46 120167.8 6219.16 59024.7 6.20E-04 395.923
best 1.02E-02 3.48E-09 5302.346 97353.6 3.952.38 46390.1 1.60E-04 298.493
worst 1.89E+02 5.23E+02 22029.5 141630.5 1.1553.7 76673 2.21E-03 590.187
SD 4.60E+01 1.04E+02 3769.457 10719.85 1706.471 6346.64 6.13E-04 81.9464
time 3.013068 6.35402 1.344457 3.844894 1.336824 0.56482 230.617 19.279

F4

mean 0.4692125 3.70E-05 29.08226 74.9011 24.2813 67.1112 2.13E-04 1.31569
median 7.25E-03 4.76E-06 27.84905 75.083 23.3449 67.6384 2.15E-04 1.34119
best 1.10E-04 2.15E-08 20.54251 66.2556 16.2397 58.6671 1.90E-04 0.20446
worst 7.770726 3.49E-04 48.85631 79.6231 33.6071 72.0583 2.37E-04 2.51112
SD 1.647391 8.33E-05 6.079352 2.94754 4.12026 3.43772 1.29E-05 0.53355
time 6.941026 5.067939 1.373684 3.37252 1.41172 0.50484 201.168 19.2023

F5

mean 47.446 46.9953 1216223 246158.6 991.961 48805.12 57.08101 48.3232
median 47.28329 46.8696 1164298 233895.9 610.214 38016.14 36.77909 47.6299
best 46.6425 46.327 406005.7 151182.9 304.939 12857.43 35.33959 47.1232
worst 48.75226 48.0083 2552054 418990.6 6782.41 172208.1 95.65826 61.8891
SD 0.566056 0.553441 528944.7 59713.12 1307.14 36542.03 28.1458 2.87154
time 3.761625 6.150595 1.383168 3.8866 1.362195 1.187242 259.6817 19.1355

F6

mean 4.266958 3.50669 4999.388 251.863 10.1068 542.131 2.28E-07 2.74E-18
median 4.374491 3.373831 4651.235 249.14 8.48404 437.848 2.29E-07 2.74E-18
best 2.314128 2.772362 1730.207 201.74 1.28578 212.998 1.88E-07 2.05E-18
worst 6.180951 5.002485 8500.485 300.979 30.3469 1357.14 2.57E-07 3.73E-18
SD 0.924035 0.575598 1518.946 25.3621 8.51881 314.533 1.81E-08 4.42E-19
time 3.081463 5.095228 1.370656 3.32608 1.25716 0.51172 205.053 19.2512

F7

mean 1.09E-03 3.13E-04 1.432707 0.497741 0.195812 2.73182 8.81E-04 5.03E-03
median 8.87E-04 2.09E-04 1.33887 0.474839 0.183945 2.57166 8.39E-04 4.30E-03
best 2.87E-04 1.79E-05 0.573331 0.324987 0.121315 1.42377 4.87E-04 1.94E-03
worst 3.03E-03 1.24E-03 2.323878 0.628954 0.334519 4.81694 1.24E-03 1.18E-02
SD 7.43E-04 3.22E-04 0.49384 0.086247 0.053036 0.74299 2.16E-04 2.59E-03
time 4.176776 5.055593 2.167874 4.540451 2.0153 1.63726 336.88 19.9882

Table 7. Ranks of algorithms for unimodal benchmark functions.
Metrics BRO-RT BRO GA DE PSO ABC FA GSA
mean 2 1 8 6 5 6 3 4
median 3 1 8 6 5 6 2 4
best 2 1 8 6 5 6 3 4
worst 3 1 8 6 5 6 2 4
SD 3 1 8 6 5 7 2 4
time 4 6 3 5 2 1 8 7
Average
rank

2,833,333 1,833,333 7,166,667 5,833,333 4,5 5,333,333 3,333,333 4,5

Overall rank 2 1 8 7 4 6 3 4

ABC, and FA algorithms show similar performance,
with mean and median values close to each other.
They all achieve the same best solution, except for
the BRO algorithm, which exhibits higher variability.
The convergence curves indicate that BRO-RT is
competitive in terms of convergence speed, but its

advantage is not consistent across all functions.

The standard deviation is small for most algorithms,
except for GSA. The BRO-RT algorithm has the fastest
execution time. Moving on to Objective Function F15,
BRO-RT, BRO, GA, DE, PSO, ABC, and FA algorithms
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Table 8. Outcomes for multimodal benchmark functions when dimension is 30.
F BRO-RT BRO GA DE PSO ABC FA GSA

F8

mean -5.71E+03 -4.99E+03 -5382.12 -8534.37 -3.53E+08 -15025.1 -3.73E+05 -4241.5
median -5.70E+03 -4.73E+03 -5253.44 -8454.39 -1.97E+07 -14870.7 -3.69E+05 -4249.24
best -6.97E+03 -6.74E+03 -6584.45 -9474.46 -3.54E+09 -16271.3 -5.13E+05 -5034.36
worst -4.45E+03 -4.31E+03 -4624.65 -7938.29 -2.29E+02 -14291.2 -2.45E+05 -3532.09
SD 6.15E+02 6.07E+02 430.7446 361.6365 8.15E+10 451.9381 8.38E+04 391.6468
time 3.236725 5.02087 1.442667 3.572773 1.35358 0.895489 231.5539 19.3615

F9

mean 1.37E-01 1.636288 375.3837 391.2683 151.578 125.359 73.786 7.2433
median 0 0 375.101 395.9235 154.244 126.667 68.6521 6.96471
best 0 0 314.1879 358.9837 115.496 93.7395 44.7731 0.994959
worst 2.41392 4.09E+01 442.6328 411.4047 198.525 153.82 137.3039 11.93951
SD 5.15E-01 8.181439 34.31645 13077453 21.2774 17.8855 21.27878 2.821781
time 3.620391 4.98046 1.495178 3.62615 1.31506 0.93893 221.576 19.28205

F10

mean 2.45E-11 7.41E-13 11.4562 5.23008 4.12624 9.73673 8.68E-05 1.01E-09
median 1.57E-11 6.83E-13 11.47951 5.23397 4.04327 9.94132 8.74E-05 9.84E-10
best 6.94E-12 1.11E-13 9.86301 4.67643 2.73075 7.17064 7.79E-05 8.29E-10
worst 1.29E-10 1.92E-12 14.02094 5.6451 6.6873 11.6284 9.17E-05 1.21E-09
SD 2.52E-11 4.24E-13 0.894059 0.21023 0.9119 1.12242 3.64E-06 1.09E-10
time 3.661268 5.157007 1.429408 3.6979 1.28834 0.84873 222.009 19.2007

F11

mean 0 0 19.00958 3.22116 1.04902 5.68854 2.78E-07 71.0519
median 0 0 18.92544 3.16782 1.05459 4.55041 2.76E-07 71.15
best 0 0 13.17232 2.70994 0.59566 2.41973 2.12E-07 58.0763
worst 0 0 24.94573 3.89793 1.29285 10.3612 3.41E-07 89.7934
SD 0 0 3.530459 0.31253 0.14579 2.31052 3.18E-08 7.4951
time 3.909983 5.535054 1.550043 4.04207 1.54122 1.044 239.424 19.4032

F12

mean 0.148087 0.2722615 12578.28 69894.36 44.705 3.39743 3.12E-10 3.96732
median 0.135403 0.2807726 4434.572 61623.55 46.3028 2.88565 3.10E-10 4.00574
best 9.63E-02 0.1518162 24.09496 986.1339 29.2854 0.38921 2.72E-10 2.02784
worst 0.250838 0.3991045 98544.08 193054 62.3999 12.1385 3.73E-10 5.23723
SD 3.96E-02 0.0635199 20716.89 50368.31 8.87854 2.35947 2.72E-11 0.86778
time 5.889444 7.506429 1.953383 5.87513 1.56256 2.89062 436.174 19.7423

F13

mean 2.725685 1.541302 493830.3 443010.3 97.3785 1290.9 8.12E-09 16.5465
median 2.775046 1.54433 377427.8 429121.8 95.7855 45.9665 8.17E-09 16.9436
best 1.827252 6.74E-01 24980.59 199280.4 66.3891 3.42733 6.85E-09 11.0854
worst 20.539404 2.943649 1259385 781729.6 122.482 11094.2 9.41E-09 21.4251
SD 4.46E-01 6.27E-01 330224.6 147595.9 15.2666 2876.67 5.97E-10 3088704
time 5.21362 7.194583 1.853909 5.95661 1.54294 2.90933 462.095 19.9154

Table 9. Ranks of algorithms for multimodal benchmark functions.
Metrics BRO-RT BRO GA DE PSO ABC FA GSA
mean 1 3 8 7 4 5 2 5
median 1 2 8 7 4 5 2 6
best 1 1 8 7 5 4 3 6
worst 1 3 8 7 4 6 1 5
SD 1 2 8 6 7 5 3 4
time 4 6 3 5 1 1 8 7
Average
rank

1.5 2.833333 7.166667 6.5 4.166667 4.333333 3.166667 5.5

Overall rank 1 2 8 7 4 5 3 6

exhibit comparable performance with similar mean
and median values. The BRO-RT algorithm finds
the best solution slightly lower than other algorithms.
The standard deviation is relatively high for GA and
ABC. PSO has the lowest execution time among the
algorithms. For Objective Function f16, BRO-RT, BRO,
GA, DE, PSO, ABC, and FA algorithms all converge to
the same solution. The standard deviation is relatively
small across the algorithms. GA, PSO, and ABC have
the highest execution times. Analyzing Objective

Function f17, BRO-RT, BRO, GA, DE, PSO, ABC, and
FA algorithms produce similar mean, median, and best
solutions. The standard deviation is relatively small
for all algorithms. GA, PSO, and ABC have the highest
execution times. Considering the Objective Function
f18, BRO-RT, BRO, DE, PSO, and FA algorithms find
the same best solution, while GA and ABC deviate
slightly. The standard deviation is relatively small
across all algorithms. GA, PSO, and ABC have
the highest execution times. Lastly, for Objective
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Table 10. Outcomes for fixed-dimension multimodal benchmark functions.
F BRO-RT BRO GA DE PSO ABC FA GSA

F14

mean 9.98E-01 9.98E-01 1.020103 9.98E-01 9.98E-01 9.98E-01 9.98E-01 2.445938
median 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 2.355065
best 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 1.014279
worst 9.98E-01 9.98E-01 1.523844 9.98E-01 9.98E-01 9.98E-01 9.98E-01 3.96825
SD 1.34E-07 2.59E-07 1.05E-01 0 0 1.11E-16 1.13E-16 9.90E-01
time 1.73E+00 1.56078 4.300697 1.750402 2.016239 1.048118 2.09E+02 6.321202

F15

mean 3.89E-04 3.16E-04 1.35E-03 3.07E-04 5.82E-04 6.25E-04 3.07E-04 1.49E-03
median 3.56E-04 3.16E-04 1.15E-03 3.07E-04 3.07E-04 6.12E-04 3.07E-04 1.41E-03
best 3.13E-04 3.15E-04 4.77E-04 3.07E-04 3.07E-04 4.27E-04 3.07E-04 9.13E-04
worst 5.30E-04 3.16E-04 4.41E-03 3.08E-04 1.22E-03 8.52E-04 3.07E-04 2.08E-03
SD 9.92E-05 9.27E-07 8.94E-04 1.08E-08 4.42E-04 1.22E-04 2.31E-15 4.53E-04
time 7.11E-01 8.31E-01 1.692333 9.86E-01 5.61E-01 2.03E-01 7.54E+01 5.21724

F16

mean -1.031628 -1.031628 -1.03161 -1.031628 -1.031628 -1.031628 -1.031628 -1.031628
median -1.031628 -1.031628 -1.031628 -1.031628 -1.031628 -1.031628 -1.031628 -1.031628
best -1.031628 -1.031628 -1.031628 -1.031628 -1.031628 -1.031628 -1.031628 -1.031628
worst -1.031626 -1.031628 -1.031448 -1.031628 -1.031628 -1.031628 -1.031628 -1.031627
SD 1.18E-06 3.72E-07 5.19E-05 6.80E-16 0 5.36E-16 3.51E-16 1.00E-06
time 5.63E-01 8.44E-01 1.764582 8.75E-01 5.83E-01 1.55E-01 6.31E+01 3.012975

F17

mean 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
median 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
best 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
worst 3.98E-01 3.98E-01 4.02E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
SD 2.32E-04 8.58E-05 7.69E-04 0 0 2.50E-15 3.56E-16 0
time 5.60E-01 7.48E-01 1.726655 8.57E-01 5.30E-01 1.27E-01 6.79E+01 3.160106

F18

mean 3 3 3.003973 3 3 3.000123 3 3.000001
median 3 3 3 3 3 3.000002 3 3
best 3 3 3 3 3 3 3 3
worst 3 3 3.025455 3 3 3.001199 3 3.000002
SD 1.56E-07 1.57E-07 7.25E-03 7.53E-16 7.40E-16 3.18E-04 9.75E-15 9.75E-15
time 5.97E-01 8.17E-01 1.754178 8.34E-01 5.64E-01 1.31E-01 6.30E+01 3.154308

F19

mean -3.86212 -3.858598 -3.861157 -3.862782 -3.862782 -3.862782 -3.862782 -3.862781
median -3.86217 -3.858598 -3.861739 -3.862782 -3.862782 -3.862782 -3.862782 -3.862782
best -3.862782 -3.862532 -3.862683 -3.862782 -3.862782 -3.862782 -3.862782 -3.86242
worst -3.862218 -3.854664 -3.856577 -3.862782 -3.862782 -3.862782 -3.862782 -3.861779
SD 3.14E-04 5.56E-03 1.78E-03 2.27E-15 9.36E-16 1.89E-15 1.01E-15 9.36E-09
time 8.03E-01 1.334279 2.153489 1.052812 6.52E-01 3.21E-01 9.64E+01 3.781642

F20

mean -3.247418 -3.25873 -3.159494 -3.293461 -3.262549 -3.321995 -3.321995 -3.321994
median -3.276975 -3.25873 -3.165188 -3.321995 -3.262549 -3.321995 -3.321995 -3.321995
best -3.294015 -3.290655 -3.299126 -3.321995 -3.321995 -3.321995 -3.321995 -3.321995
worst -3.141706 -3.226805 -2.946335 -3.203102 -3.203102 -3.321995 -3.321995 -3.321992
SD 7.11E-02 4.51E-02 8.41E-02 5.18E-02 6.27E-02 1.56E-11 3.35E-14 4.68E-16
time 8.47E-01 1.152988 2.141157 1.097036 7.68E-01 3.39E-01 9.89E+01 5.368243

F21

mean -7.633255 -6.896374 -8.497846 -1.02E+01 -4.818715 -1.02E+01 -1.02E+01 -7.321239
median -1.02E+01 -7.626986 -9.130951 -1.02E+01 -4.818715 -1.02E+01 -1.02E+01 -7.339522
best -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 -6.466687 -1.02E+01 -1.02E+01 -8.292549
worst -2.788623 -2.630472 -2.68159 -1.02E+01 -3.170744 -1.02E+01 -1.02E+01 -6.313362
SD 3.281182 2.330584 1.842866 5.44E-15 3.546332 5.92E-04 2.65E-12 1.089776
time 9.50E-01 1.181533 2.370532 1.12655 8.74E-01 3.85E-01 1.10E+02 4.290946

F22

mean -7.18753 -7.675265 -8.319781 -1.04E+01 -6.286392 -1.04E+01 -1.04E+01 -1.04E+01
median -7.494097 -7.675265 -9.042958 -1.04E+01 -5.108247 -1.04E+01 -1.04E+01 -1.04E+01
best -8.690756 -8.048532 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01
worst -5.071172 -7.301998 -2.715277 -1.04E+01 -2.751934 -1.04E+01 -1.04E+01 -1.19E+01
SD 1.524091 5.28E-01 2.199572 2.76E-15 3.656552 2.71E-03 2.90E-12 1.87E-09
time 9.92E-01 1.413426 2.64555 1.200651 9.98E-01 4.54E-01 1.15E+02 4.634844

F23

mean -8.700753 -9.48943 -8.324636 -1.05E+01 -7.394579 -1.05E+01 -1.05E+01 -1.05E+01
median -1.05E+01 -9.48943 -9.373038 -1.05E+01 -7.139911 -1.05E+01 -1.05E+01 -1.05E+01
best -1.05E+01 -1.03E+01 -1.05E+01 -1.05E+01 -8.920549 -1.05E+01 -1.05E+01 -1.05E+01
worst -4.871143 -8.727387 -3.602712 -1.05E+01 -6.377942 -1.05E+01 -1.05E+01 -1.05E+01
SD 3.220772 1.077692 2.291127 1.81E-15 1.227986 1.26E-03 3.14E-12 1.57E-15
time 1.346778 1.288167 2.563596 1.323928 1.214182 5.40E-01 1.43E+02 5.175969

Function f19, BRO-RT, BRO, GA, DE, PSO, ABC, and
FA algorithms exhibit similar mean, median, and best
solutions. The BRO-RT algorithm achieves the lowest
best solution. The standarddeviation is relatively small

for all algorithms. GA, PSO, and ABC have the highest
execution times.

While the Firefly Algorithm (FA) may have shown
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Figure 2. The plots of the problem instance of all benchmark functions.
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Table 11. Ranks of algorithms for fixed-dimension Ranks of algorithms for composite functions.
Metrics BRO-RT BRO GA DE PSO ABC FA GSA
mean 5 4.8 6.6 2.2 3.7 2.6 1.1 4.7
median 3.9 5.3 5.4 1.9 3 2.8 1.1 2.7
best 3.6 5.8 3.7 2.5 2 2.2 1.3 3.7
worst 5.7 4.2 7.5 2.1 3.6 2.6 1.1 4.9
SD 6.1 5.4 7.2 2.3 3.8 4 2.5 4.1
time 2.7 4.1 6 4.4 2.8 1 8 7
Average
rank

4,5 4.93 6.06 2.56 3.15 2.53 2.51 4.51

Overall rank 5 7 8 3 4 2 1 6

Table 12. Outcomes for composite benchmark functions
F BRO-RT BRO GA DE PSO ABC FA GSA

F24

mean 4.247777 6.961867 5.81E+01 6.97E-06 6.107698 9.81E-03 - 1.18E-18
median 4.315002 6.961867 5.77E+01 2.28E-10 4.733647 7.95E-03 - 1.26E-18
best 1.56858 6.721801 2.79E+01 3.43E-21 0 2.60E-03 - 6.00E-19
worst 7.257057 7.201933 1.09E+02 7.68E-05 1.95E+01 2.58E-02 - 1.61E-18
SD 1.792177 3.40E-01 1.92E+01 1.96E-05 6.277467 5.62E-03 - 2.89E-19
time 5.59E+01 5.85E+01 1.10E+01 6.74E+01 5.795678 6.05E+01 - 1.63E+01

F25

mean 3.044667 7.965057 8.30E+01 1.39E-05 1.03E+01 7.84E-02 - 3.62E-17
median 2.785652 7.965057 8.99E+01 4.71E-16 8.933087 5.55E-02 - 0
best 1.630956 7.709063 3.34E+01 7.46E-22 3.55E-01 6.97E-03 - 0
worst 4.808106 8.221052 1.19E+02 1.37E-04 2.07E+01 2.87E-01 - 3.61E-16
SD 8.50E-01 3.62E-01 2.36E+01 3.70E-05 5.789537 6.48E-02 - 1.14E-16
time 7.14E+01 7.82E+01 9.756016 7.92E+01 5.856811 8.80E+01 - 1.68E+01

F26

mean 4.99E+01 6.56E+01 5.40E+02 0 3.42E+02 3.36E-01 - 0
median 4.62E+01 6.56E+01 5.73E+02 0 3.53E+02 2.83E-01 - 0
best 3.23E+01 6.41E+01 2.60E+02 0 5.19E+01 5.64E-02 - 0
worst 1.31E+02 6.71E+01 7.36E+02 0 4.98E+02 8.76E-01 - 0
SD 2.10E+01 2.137125 1.40E+02 0 1.56E+02 2.40E-01 - 0
time 5.88E+01 6.23E+01 1.19E+01 6.26E+01 5.931329 6.75E+01 - 1.21E+01

F27

mean 3.99E+01 3.31E+01 2.86E+02 4.31E-13 1.09E+02 9.05E-01 - 3.96E-15
median 2.90E+01 3.31E+01 2.93E+02 1.12E-13 1.39E+02 8.54E-01 - 4.40E-15
best 2.51E+01 2.93E+01 1.16E+02 1.98E-14 2.56E+01 8.55E-02 - 0
worst 2.61E+02 3.69E+01 3.86E+02 4.29E-12 1.82E+02 2.267773 - 8.81E-15
SD 4.65E+01 5.393872 6.74E+01 8.75E-13 6.15E+01 5.72E-01 - 2.90E-15
time 7.67E+01 7.70E+01 1.31E+01 8.06E+01 6.262372 6.26E+01 - 1.14E+01

Table 13. Ranks of algorithms for composite functions.
Metrics BRO-RT BRO GA DE PSO ABC FA GSA
mean 4.25 5 7 1.75 5.75 3 - 1
median 4 5.25 7 1.75 5.75 3 - 1
best 4.5 6 7 1.75 3.75 3.25 - 1.5
worst 5 4.25 7 1.75 5.75 3 - 1
SD 5 4 6.75 1.75 6.25 3 - 1
time 4.25 5.25 2.25 6.5 1 6 - 2.75
Average
rank

4.5 4.958333 6.166667 2.541667 4.708333 3.541667 - 1.375

Overall rank 4 6 7 2 5 3 - 1

better performance in terms of optimization results for
certain objective functions, it is important to consider
the execution time as a crucial factor in practical
applications. Despite its success in achieving favorable
solutions, if the execution time of FA is deemed
unacceptable or impractical for an optimization task,
it can limit its usefulness in real-world scenarios.
In such cases, alternative algorithms that strike a

balance between solution quality and execution time,
such as BRO-RT, GA, DE, PSO, or ABC, might
be more suitable choices. These algorithms have
demonstrated competitive performance and relatively
faster execution times, making them more practical
options for optimization tasks with time constraints.

As it is clear from Table 11, among the algorithms
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Figure 3. Average convergence curves over 25 runs.
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evaluated, FA emerges as the top-performing
algorithm overall, achieving the lowest average
rank and securing the first position. However, if
the execution time of FA is deemed unacceptable or
impractical for an optimization task, it can limit its
usefulness in real-world scenarios. DE follows closely
behind in the third position, while ABC claims the
second position. BRO-RT and BRO hold the fifth and
seventh positions, respectively, indicating relatively
good performance. GA, PSO, and GSA occupy the
sixth, fourth, and sixth positions, respectively, in
terms of overall rank. The Firefly Algorithm (FA) is
excluded from the reported results (Table 12) due
to its unacceptable execution time, as the evaluation
of each function using FA takes more than one day.
The impracticality of FA’s execution time makes it
challenging to obtain timely and efficient results
within the scope of the benchmarking process. As
a result, the focus of the reported results is on the
other algorithms that offer more reasonable execution
times while still providing valuable insights for
the composite benchmark functions. Table 13 lists
the rank of each algorithm. The table shows that
the BRO-RT is not only faster than BRO but also
provides competitive results. Across all benchmark
categories, the reported execution times (Tables 6– 13)
consistently indicate that BRO-RT is faster than the
original BRO, confirming that the proposed ring
topology effectively reduces computational cost

In Table 14, we present the results of a comprehensive
pairwise statistical analysis conducted to evaluate
the comparative performance of the BRO algorithm
against a suite of established optimization algorithms:
GA, DE, PSO, ABC, FA, and GSA. The performance
metrics assessed in this analysis are derived from a set
of standardized benchmark functions, denoted as f1

through f13, which are commonly usedwithin the field
to test the efficacy of optimization algorithms. Each
function provides a unique landscape to challenge
the algorithms’ ability to locate global optima within
a multidimensional search space. The Wilcoxon
Signed-Rank Test, with a significance level of α =
0.05, was utilized to determine if there are statistically
significant differences in the algorithms’ performance
with respect to the quality of solutions found, as
opposed to processing time or convergence speed.
The resulting p-values and corresponding effect sizes
(denoted as h2) provide a robust statistical basis to
infer the relative performance advantages of the BRO
algorithm. Where p-values fall below the threshold
of α, we interpret this as indicative of a statistically

significant difference in solution quality, favoring
the BRO algorithm over its counterparts for the
corresponding benchmark function.
A score of 1 indicates that BRO-RTwasmore successful
than its competitors. On the other hand, a score of
0 indicates that both algorithms performed equally.
This table shows that in most cases, BRO-RT exhibits
competitive behavior compared to other algorithms,
although several state-of-the-art methods achieve
superior convergence on specific benchmark functions
or during certain stages of the optimization process.
It is important to validate the results in an application
case. The constrained engineering design optimization
problem (compression spring design) was used
in the evaluations to demonstrate the proposed
method’s feasibility and effectiveness in addressing
real-world applications (see Figure 4). The main
objective is to minimize the weight subject to different
constraints on the minimum deflection, reduce stress
and surge frequency, and place limits on the geometric
dimensions. The three design variables to be
optimized are wire diameter x1, mean coil diameter
x2, and the number of active coils x3. The objective
function is expressed mathematically as:

f(x) = (x3 + 2)x2x
2
1 (9)

Subject to:

g1(x) = 1− x2
2x3

71785x4
1

≤ 0

g2(x) =
4x2

2 − x1x2

12566(x2x3
1 − x4

1)
+

1

5108x2
1

− 1 ≤ 0

g3(x) = 1− 140.45x1

x2
2x3

≤ 0

g4(x) =
x1 + x2

1.5
− 1 ≤ 0

(10)

where variables are bounded by: 0.05 ≤ x1 ≤ 2, 0.25 ≤
x2 ≤ 1.3, 2 ≤ x3 ≤ 15.
It is important to mention that constraint violations
were handled using a penalty function added to
the objective value. All algorithms were executed
for 25 independent runs with different random
initializations; no common random seed was enforced
across algorithms, and results are reported as averaged
statistics.
Table 15 lists the outcomes of algorithms for the
spring design problem. Clearly, the proposed
method achieved competitive results in four out
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Table 14. Pairwise statistical comparison between BRO-RT and all other algorithms using the Wilcoxon Signed-Rank Test
(α = 0.05).

BRO GA DE PSO ABC FA GSA
p-value h p-value h p-value h p-value h p-value h p-value h p-value h

F1 1,23E+09 1 0.000239 1 0.000266 1 0.00172 1 0.000295 1 1,23E+09 1 1,23E+09 1
F2 1,23E+09 1 0.000174 1 0.001078 1 0.004162 1 0.003507 1 1,23E+09 1 1,23E+09 1
F3 0.000664 1 0.000295 1 0.000194 1 0.000445 1 9,04E+09 1 1,23E+09 1 0.000194 1
F4 1,23E+09 1 0.000402 1 0.000664 1 0.000445 1 0.000215 1 1,23E+09 1 0.0001743 1
F5 0.000295 1 0.000295 1 0.00014 1 0.000194 1 0.000215 1 0.000295 1 0.0005451 1
F6 0.287862 0 0.000493 1 9,04E+09 1 0.001569 1 0.000215 1 1,23E+09 1 1,23E+09 1
F7 1,23E+09 1 0.000295 1 1,23E+09 1 1,23E+09 1 0.716423 0 1,23E+09 1 1,23E+09 1
F8 0.000239 1 0.00014 1 0.000266 1 0.000125 1 0.00014 1 0.000239 1 0.000266 1
F9 0.003507 1 0.000194 1 0.000402 1 0.000295 1 0.000445 1 0.000445 1 0.008041 1
F10 1,23E+09 1 0.001885 1 0.02643 1 0.121827 0 0.002469 1 1,23E+09 1 1,23E+09 1
F11 1,23E+09 1 0.001078 1 0.544909 0 3,62E+09 1 0.024657 1 1,23E+09 1 0.000363 1
F12 1,23E+09 1 0.000295 1 0.000328 1 0.000602 1 0.353257 0 1,23E+09 1 0.157769 0
F13 0.001885 1 0.000295 1 0.000295 1 0.000194 1 0.000239 1 1,23E+09 1 0.00098 1

Figure 4. Compression spring design problem.

of six performance criteria and ranked first overall.
However, it ranked seventh with respect to time,
and it took almost twice as long as BRO-RT. Upon
closer analysis, DE ranked first in terms of mean,
median, worst, and SD, while BRO-RT ranked first
in terms of best. Furthermore, although DE ranked
first for most performance criteria, BRO and BRO-RT
achieved competitive outcomes. Finally, while BRO
and BRO-RT obtained competitive results, BRO-RT
had lower computational complexity and ran 1.5 times
faster overall than the original BRO algorithm.

To complement the research, the proposed BRO-RT is
compared with the original BRO, the six algorithms
previously worked on the 13 benchmark functions,
and the Liver Cancer Algorithm (LCA) [41] and
Dung Beetle Optimizer (DBO) [42] algorithms, using
CEC2020 [45] were added to the comparison. Table 16
shows the results using the statistics of mean, median,

worst, best, standard deviation, and average execution
time. Winning results are placed in bold. The CEC2020
consists of 10 benchmark functions: one unimodal,
three basics, three hybrids and three compounds.
Table 17 shows the rankings of the algorithms in the
CEC2020 for the six statistics. It is observed that the
DE is the winning algorithm in the mean, the best, the
worst, and the standard deviation, but in the median
and the execution time, it does not dominate. The
BRO-RT wins in the mean, and the median, in the
best it gets second place, the worst and the sd gets the
third, but in the execution time it gets the eighth place.
Comparing the BRO-RT with the BRO, a substantial
improvement is seen in all six statistics.
In f1, the DE is the winner by far, leaving the BRO-RT
in second place, although the BRO-RT achieves an
improvement in results with respect to the BRO.
The LCA execution times were much better in all
CEC2020 functions, and in this particular function,
there is no exception. For f2, the DBO wins in three
statistics, but the DE recovers for the best results
for the worst obtained and the standard deviation.
For f3 and f4, DE obtains better results compared to
the other algorithms. The BRO-RT is the winner at
f5 for the mean and median, but the BRO wins at
the best, for the standard deviation, and the worst,
the FA stands out. In f6, the BRO-RT wins in three
of the six indicators (mean, worst, t and sd), the
GA in the median, and the FA in the best. At f7,
the FA algorithm obtains the best results, and the
BRO-RT follows closely. Finally, in functions f8, f9,
and f10, the DE resumes leadership, and the BRO-RT
maintains closeness regarding the best results. The
performance of the proposed algorithm overall ranks
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Table 15. Results and ranks of algorithms for spring design problem.
Metrics BRO-RT BRO GA DE PSO ABC FA GSA
mean 1.27E-02 1.27E-02 1.62E-02 1.27E-02 1.30E-02 1.29E-02 1.28E-02 1.52E-02
median 1.28E-02 1.27E-02 1.63E-02 1.27E-02 1.27E-02 1.29E-02 1.28E-02 1.51E-02
best 1.27E-02 1.27E-02 1.33E-02 1.27E-02 1.27E-02 1.28E-02 1.27E-02 1.35E-02
worst 1.28E-02 1.27E-02 1.82E-02 1.27E-02 1.39E-02 1.32E-02 1.29E-02 1.67E-02
SD 4.50E-05 1.66E-05 1.41E-03 3.34E-07 4.93E-04 1.73E-04 3.37E-05 1.14E-03
time 6.143011 8.808807 6.446486 13.01927 5.508894 6.542683 1042.801 9.618786
Average
rank

2.833,333 2.666667 7 2.166667 4.166667 5.166667 4.833333 7

Overall rank 3 2 7 1 4 6 5 7

Table 16. Outcomes for CEC2020 benchmark functions when dimension is 20.
F BRO-RT BRO GA DE PSO ABC FA GSA LCA DBO

F1

mean 1.49E+09 2.09E+09 1.30E+11 1.95E+06 4.93E+10 2.51E+10 1.61E+09 1.22E+10 3.75E+10 2.46E+10
median 1.33E+09 2.00E+09 1.27E+11 1.95E+06 5.12E+10 2.51E+10 1.64E+09 1.22E+10 3.86E+10 2.49E+10
best 7.36E+08 9.03E+08 6.18E+10 4.69E+05 2.98E+10 2.12E+10 9.17E+08 1.03E+10 1.64E+10 1.64E+10
worst 3.21E+09 4.11E+09 2.81E+11 4.29E+06 6.16E+10 3.15E+10 2.23E+09 1.45E+10 4.76E+10 3.49E+10
SD 5.73E+08 7.42E+08 4.86E+10 9.01E+05 8.05E+09 2.34E+09 3.02E+08 1.23E+09 6.62E+09 5.09E+09
time 2.92E+00 3.41E+00 1.44E+00 3.18E+00 2.13E+00 2.48E+00 2.74E+00 1.25E+01 5.45E-01 2.09E+00

F2

mean 4.57E+03 4.76E+03 8.98E+03 4.19E+03 6.53E+03 5.42E+03 4.76E+03 4.90E+03 6.61E+03 4.03E+03
median 4.53E+03 4.82E+03 9.08E+03 4.20E+03 6.59E+03 5.43E+03 4.84E+03 4.90E+03 6.59E+03 4.10E+03
best 3.54E+03 3.76E+03 7.02E+03 3.72E+03 5.82E+03 4.63E+03 3.86E+03 4.49E+03 6.17E+03 2.82E+03
worst 5.26E+03 5.65E+03 1.00E+04 4.61E+03 7.10E+03 5.84E+03 5.16E+03 5.40E+03 7.13E+03 5.14E+03
SD 4.71E+02 5.08E+02 8.21E+02 2.05E+02 3.40E+02 2.44E+02 3.11E+02 2.44E+02 2.46E+02 6.56E+02
time 3.12E+00 3.58E+00 1.70E+00 3.45E+00 2.43E+00 2.62E+00 2.69E+00 1.29E+01 5.74E-01 1.67E+00

F3

mean 8.66E+02 8.70E+02 3.29E+03 8.14E+02 1.99E+03 1.50E+03 9.09E+02 8.45E+02 1.10E+03 9.67E+02
median 8.62E+02 8.69E+02 3.32E+03 8.17E+02 2.00E+03 1.50E+03 9.08E+02 8.45E+02 1.11E+03 9.73E+02
best 8.21E+02 8.27E+02 2.24E+03 7.98E+02 1.77E+03 1.34E+03 8.69E+02 8.16E+02 1.05E+03 9.01E+02
worst 9.07E+02 9.45E+02 4.41E+03 8.26E+02 2.23E+03 1.64E+03 9.35E+02 8.83E+02 1.15E+03 1.07E+03
SD 2.43E+01 2.40E+01 5.91E+02 6.62E+00 1.15E+02 7.57E+01 1.44E+01 1.79E+01 2.91E+01 3.75E+01
time 2.94E+00 3.46E+00 1.59E+00 3.43E+00 2.40E+00 2.40E+00 2.63E+00 1.26E+01 5.52E-01 1.59E+00

F4

mean 1.92E+03 1.94E+03 3.80E+09 1.91E+03 4.13E+06 3.59E+05 1.99E+03 1.82E+05 2.07E+06 2.05E+05
median 1.92E+03 1.92E+03 8.00E+08 1.91E+03 3.99E+06 2.80E+05 1.99E+03 1.80E+05 1.61E+06 1.92E+05
best 1.91E+03 1.91E+03 8.12E+06 1.91E+03 7.44E+05 7.17E+04 1.92E+03 1.25E+05 2.99E+05 4.56E+03
worst 1.95E+03 2.12E+03 2.25E+10 1.91E+03 1.02E+07 8.95E+05 2.11E+03 2.53E+05 6.44E+06 4.91E+05
SD 8.37E+00 3.90E+01 6.42E+09 6.25E-01 2.27E+06 2.18E+05 4.30E+01 3.76E+04 1.66E+06 1.59E+05
time 3.01E+00 3.52E+00 1.58E+00 3.39E+00 2.37E+00 2.30E+00 2.58E+00 1.29E+01 5.66E-01 1.81E+00

F5

mean 5.40E+05 5.92E+05 2.80E+09 1.23E+06 4.75E+07 6.75E+06 5.45E+05 2.22E+06 2.36E+07 1.01E+06
median 4.55E+05 5.11E+05 2.79E+09 1.12E+06 4.01E+07 6.81E+06 5.87E+05 2.18E+06 2.60E+07 9.17E+05
best 1.59E+05 8.65E+04 9.99E+07 4.06E+05 8.03E+06 1.82E+06 1.60E+05 1.25E+06 6.36E+06 1.17E+05
worst 1.35E+06 2.19E+06 4.70E+09 2.22E+06 1.64E+08 1.12E+07 1.00E+06 3.27E+06 4.50E+07 2.99E+06
SD 3.05E+05 5.03E+05 1.71E+09 4.93E+05 3.10E+07 2.32E+06 2.09E+05 5.39E+05 1.25E+07 7.32E+05
time 3.02E+00 3.57E+00 1.63E+00 3.56E+00 2.38E+00 2.41E+00 2.69E+00 1.32E+01 7.06E-01 1.82E+00

F6

mean 1.73E+03 1.87E+03 1.77E+03 1.91E+03 1.96E+03 1.93E+03 1.93E+03 1.98E+03 1.95E+03 1.81E+03
median 1.74E+03 1.82E+03 1.61E+03 2.05E+03 2.05E+03 2.02E+03 1.93E+03 2.04E+03 1.97E+03 1.75E+03
best 1.61E+03 1.62E+03 1.61E+03 1.60E+03 1.61E+03 1.62E+03 1.60E+03 1.62E+03 1.60E+03 1.62E+03
worst 2.05E+03 2.10E+03 2.12E+03 2.20E+03 2.67E+03 2.44E+03 2.21E+03 2.41E+03 2.32E+03 2.30E+03
SD 1.29E+02 1.66E+02 2.32E+02 2.31E+02 3.30E+02 2.50E+02 1.79E+02 1.92E+02 2.48E+02 1.74E+02
time 3.19E+00 3.51E+00 1.46E+00 3.30E+00 2.25E+00 2.81E+00 2.10E+01 1.32E+01 4.80E-01 1.74E+00

F7

mean 1.77E+05 1.51E+05 1.12E+09 1.78E+05 2.38E+07 1.60E+06 1.09E+05 2.51E+06 3.74E+07 4.32E+05
median 1.39E+05 1.18E+05 1.36E+09 1.72E+05 2.10E+07 1.70E+06 1.03E+05 2.47E+06 2.73E+07 2.85E+05
best 4.81E+04 3.12E+04 2.34E+08 3.65E+04 3.20E+06 4.76E+05 2.86E+04 8.49E+05 1.69E+06 4.96E+04
worst 1.05E+06 4.22E+05 1.36E+09 3.53E+05 6.34E+07 3.08E+06 2.32E+05 5.80E+06 1.28E+08 1.94E+06
SD 1.80E+05 1.02E+05 3.63E+08 7.63E+04 1.56E+07 7.32E+05 4.84E+04 9.36E+05 3.21E+07 4.55E+05
time 3.83E+00 3.47E+00 1.58E+00 3.37E+00 2.35E+00 2.41E+00 2.74E+00 1.30E+01 6.41E-01 1.83E+00

F8

mean 2.69E+03 2.74E+03 1.06E+04 2.30E+03 7.61E+03 5.47E+03 2.57E+03 5.37E+03 7.09E+03 4.28E+03
median 2.45E+03 2.48E+03 1.09E+04 2.30E+03 7.66E+03 5.43E+03 2.58E+03 5.43E+03 7.38E+03 4.33E+03
best 2.39E+03 2.40E+03 9.35E+03 2.30E+03 5.68E+03 4.42E+03 2.46E+03 4.09E+03 4.89E+03 2.94E+03
worst 6.91E+03 6.34E+03 1.10E+04 2.31E+03 8.81E+03 6.37E+03 2.70E+03 6.03E+03 8.56E+03 5.24E+03
SD 9.50E+02 9.39E+02 5.10E+02 2.87E+00 7.76E+02 4.33E+02 4.70E+01 3.88E+02 8.30E+02 5.48E+02
time 4.24E+00 3.96E+00 1.93E+00 3.86E+00 2.68E+00 2.82E+00 3.26E+00 1.37E+01 9.23E-01 2.00E+00

F9

mean 2.92E+03 2.93E+03 4.25E+03 2.90E+03 3.55E+03 3.15E+03 2.93E+03 3.54E+03 3.80E+03 3.10E+03
median 2.92E+03 2.93E+03 4.28E+03 2.90E+03 3.55E+03 3.16E+03 2.94E+03 3.57E+03 3.83E+03 3.11E+03
best 2.89E+03 2.90E+03 3.95E+03 2.88E+03 3.27E+03 3.07E+03 2.90E+03 3.28E+03 3.39E+03 2.97E+03
worst 2.96E+03 2.96E+03 4.28E+03 2.91E+03 3.79E+03 3.21E+03 2.95E+03 3.68E+03 4.06E+03 3.21E+03
SD 1.73E+01 1.58E+01 8.75E+01 7.68E+00 1.39E+02 3.35E+01 1.22E+01 9.71E+01 1.89E+02 6.16E+01
time 4.40E+00 4.18E+00 2.07E+00 3.96E+00 2.83E+00 3.07E+00 3.58E+00 1.35E+01 1.25E+00 2.13E+00

F10

mean 3.01E+03 3.02E+03 6.10E+04 2.91E+03 9.13E+03 5.25E+03 3.05E+03 3.80E+03 7.65E+03 4.00E+03
median 3.01E+03 3.01E+03 4.24E+04 2.91E+03 9.13E+03 5.24E+03 3.04E+03 3.79E+03 7.58E+03 3.89E+03
best 2.94E+03 2.94E+03 8.79E+03 2.91E+03 5.68E+03 4.26E+03 2.99E+03 3.56E+03 4.88E+03 3.42E+03
worst 3.11E+03 3.11E+03 2.01E+05 2.91E+03 1.40E+04 6.27E+03 3.11E+03 3.99E+03 1.09E+04 4.96E+03
SD 4.72E+01 4.61E+01 4.86E+04 4.29E-02 1.96E+03 5.66E+02 2.72E+01 9.67E+01 1.44E+03 4.36E+02
time 3.94E+00 3.90E+00 1.88E+00 3.79E+00 2.64E+00 2.71E+00 3.20E+00 1.34E+01 8.93E-01 2.00E+00
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Table 17. Ranks of algorithms for CEC2020 benchmark functions.
BRO-RT BRO GA DE PSO ABC FA GSA LCA DBO

mean 1 3 10 1 9 7 4 6 8 5
median 1 3 10 2 9 7 4 6 8 5
best 2 3 10 1 9 7 3 6 8 5
worst 3 4 10 1 9 7 2 6 8 5
SD 3 4 10 1 9 7 2 5 8 6
time 8 9 2 7 4 5 6 10 1 3
Average
rank

3 4.33333 8.666 2.1666 8.1666 6.666 3.5 6.5 6.833 4.833

Overall rank 2 3 8 1 6 4 1 2 2 1

Figure 5. Comparative Analysis of Dimension-Wise Diversity Across Iterations for BRO and BRO-RT.
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Table 18. Friedman statistical analysis for CEC2020 results.
Algorithm Score Rank
BRO-RT 2.2 1
DE 2.2 1
BRO 3.5 2
FA 3.6 3
DBO 4.7 4
GSA 5.9 5
ABC 6.8 6
LCA 8.2 7
PSO 8.7 8
GA 9.2 9

second, beating the original BRO. To validate the
results, the Friedman statistical test (Table 18) is used
on the means of the results in Table 16. This test
allows obtaining a general ranking of the algorithms.
A p-value equal to 2.57E + 11 is observed, so there is
a significant difference in the results of the compared
algorithms and the BRO-RT with the DE obtains first
place. Second place goes to BRO, and third place to
FA.

Figure 5 illustrates the dimension-wise diversity trends
of two optimization algorithms, BRO and BRO-RT,
across various benchmark functions (F1 to F10) over a
series of iterations. Diversity is plotted on the vertical
axis, while the number of iterations is represented on
the horizontal axis. The diversitymeasurement reflects
the variance of the population in each dimension,
highlighting the algorithm’s ability to explore the
search spacewithout converging prematurely. It can be
observed that BRO-RT consistently maintains higher
diversity compared to BRO across most benchmark
functions, which suggests a greater exploratory
capability. Notably, in functions F2, F3, F5, and
F6, BRO-RT exhibits a pronounced advantage in
maintaining diversity throughout the iterative process.
This robust preservation of diversity is indicative
of BRO-RT’s potential to escape local optima and
explore a broader range of solutions, which could
translate to improved optimization performance. The
fluctuations in diversity levels reflect the dynamic
adjustments made by the algorithms in response to
the topology of the search space. These findings
highlight the importance of maintaining diversity
in optimization algorithms, particularly in complex,
multimodal functions where the risk of premature
convergence is substantial.

5 Conclusion and future work
Our research method used a modified version of
a recently proposed BRO algorithm, BRO-RT. To
improve the computational complexity of BRO, ring
neighborhood topology was used. So, instead
of calculating the Euclidean distance between all
individuals to find a neighbor, the ring topology
chooses the proper neighbor. Using ring topology
results in a decrease in the computational complexity
by a factor of n. Although the computational
accuracy of the algorithm is slightly reduced, the
results show that the proposed algorithm is very
effective in reducing computational time. Overall,
the proposed method respectively ranks second,
first, and third in unimodal, multimodal, and
real-world optimization problems. Furthermore, the
simulation and statistical results for the constraint
and unconstrained optimization problems reveal that
BRO-RT can compete with or exceed the existing
optimization algorithms used for comparison in this
research. Therefore, for future work, it has enormous
potential for use as a tool to hone various optimization
tasks in many real-world fields. We also plan to
use the same strategy for solving binary optimization
problems.
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