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Abstract

Large-scale computing systems, such as cloud data
centers, grid infrastructures, and high-performance
computing clusters, are the backbone of modern
information technology ecosystems. These systems
typically consist of numerous heterogeneous,
multi-state computing nodes that exhibit varying
performance levels due to component failures,
degradation, or dynamic resource allocation.
Performability analysis, which integrates both
system reliability and performance evaluations to
quantify the probability of the system operating
at a specified performance level, is critical for
ensuring the efficient, reliable, and cost-effective
operation of these complex systems. This paper
presents a comprehensive review of recent
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advancements in performability analysis for
large-scale multi-state computing systems over
the past decade. It classifies existing research into
three core methodological categories: Dbinary
decision diagram (BDD)-based approaches,
multi-valued decision diagram (MDD)-based
approaches, and comparative benchmarking with
traditional methods (e.g., continuous-time Markov
chains (CTMC), universal generating function
(UGF)). For each category, the paper details
key methodologies, algorithmic innovations,
and practical applications. Additionally, the
promising future directions are proposed to address
emerging challenges, such as handling dynamic
system behaviors, integrating real-time data, and
optimizing resource allocation for performability.
This review provides a valuable reference for
researchers, system designers, and operators
seeking to enhance the performability of large-scale
computing systems and mitigate risks associated
with service level agreement (SLA) violations.
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1 Introduction

1.1 Background and Significance

The digital transformation of industries—from
finance and healthcare to manufacturing and
entertainment—has driven an unprecedented
demand for large-scale computing systems.
Cloud data centers, which host millions of virtual
machines (VMs) to support software-as-a-service
(SaaS),  platform-as-a-service (PaaS), and
infrastructure-as-a-service (IaaS) offerings, now
process exabytes of data daily [1-3]. Grid computing
networks,  spanning multiple administrative
domains, enable collaborative scientific research
(e.g., climate modeling, particle physics simulations)
by aggregating computing power from thousands of
distributed nodes [4]. High-performance computing
(HPC) clusters, with specialized processors
and high-speed interconnections, deliver the
computational muscle required for AI model training
and complex engineering simulations [5]. These
systems are no longer mere technical assets but
strategic enablers of economic growth and societal
progress.

A defining characteristic of modern large-scale
computing systems is the multi-state behavior of
their constituent nodes. In this review, multi-state
nodes have computing components (e.g., servers,
VMs) that exhibit > 3 operational states (from
partial degradation to full failure) due to component
failures or dynamic resource allocation, with each
state corresponding to a distinct resource contribution
(e.g., 2 CPUs + 3 memory modules operational).
Unlike traditional computing nodes, which were
often modeled as binary (either fully operational
or completely failed), contemporary nodes exhibit a
spectrum of performance states [6, 7]. For instance, a
cloud server equipped with 4 CPUs and 8 memory
modules may operate in states such as "4 CPUs +
8 memory modules operational" (full performance,
delivering 4 x 2.5 GHz = 10 GHz CPU frequency
and 8 x 16 GB = 128 GB memory), "3 CPUs + 6
memory modules operational" (reduced performance,
7.5 GHz + 96 GB), or "0 CPUs + 0 memory modules
operational" (complete failure). This multi-state
nature arises from partial component failures: a
single failed CPU or memory module does not render
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the entire node inoperable but instead degrades its
computing capacity [8, 9].

Compounding this complexity is node heterogeneity.
In practice, large-scale computing systems are rarely
composed of identical nodes. Cloud providers, for
example, often incrementally deploy new servers with
advanced processors (e.g., Intel Xeon 4th Gen vs. 3rd
Gen) alongside older ones, leading to variations in
CPU frequency, memory capacity, and failure rates
across nodes [10, 11]. Grid computing systems,
which rely on voluntary contributions from academic
institutions and enterprises, may include nodes
ranging from personal laptops to enterprise-grade
servers, each with distinct performance capabilities
[12]. This heterogeneity makes it impossible to
generalize performance or reliability results from one
node to another, requiring tailored analysis for each
node type.

Against this backdrop, performability analysis has
emerged as a critical tool for system stakeholders
[13]. Unlike reliability analysis (which focuses
solely on the probability of system survival) or
performance analysis (which assumes perfect
component reliability), performability analysis unifies
these two dimensions to answer a pivotal question:
What is the probability that the system will deliver a
specified level of performance over a given mission time?
This question is directly tied to operational and
business objectives:

e SLA Compliance: Cloud providers typically
guarantee resource availability (e.g., 99.999%
uptime for critical VMs) and performance
(e.g., <10 ms latency for database queries) in
SLAs. A violation of these terms can result
in financial penalties (e.g., 10% service credit
for each hour of downtime) and reputational
damage. Performability analysis helps providers
determine whether their system can meet SLA
commitments and identify potential bottlenecks
before violations occur[14, 15].

e Cost Optimization: Deploying redundant nodes
to enhance performability increases capital
expenditure (CapEx), while under-provisioning
leads to SLA violations and lost revenue.
Performability analysis enables a data-driven
balance: for example, a provider can use
performability results to decide whether adding
5 redundant servers to a 100-node cluster
will increase the probability of meeting SLA
requirements from 99.9% to 99.99%—a justifiable
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investment for high-priority clients [16-18].

e Risk Mitigation: Large-scale computing systems
are vulnerable to a range of disruptions, including
component failures, cyberattacks, and natural
disasters.  Performability analysis identifies
"weak links" in the system—for instance, a
node with a high failure rate that, if inoperable,
would reduce cumulative CPU frequency below
the SLA threshold. This allows operators to
implement targeted mitigations, such as proactive
maintenance or redundant backups [19, 20].

1.2 Evolution of Performability Analysis for

Large-Scale Computing Systems

The evolution of performability analysis for large-scale
computing systems can be traced through three
distinct phases, each shaped by advancements in
system complexity and methodological innovation.

1.2.1 Phase 1: Binary-State and Homogeneous System
Models

Early research focused on small-scale, homogeneous
systems with binary-state components. Methods such
as continuous-time Markov chains (CTMC) were the
primary tools for modeling system behavior [6, 21, 22].
CTMC represents each system state as a node in a
graph, with edges denoting state transitions (e.g.,
a node moving from "operational" to "failed") and
transition rates derived from component failure/repair
distributions (typically exponential). For example, a
10-node cluster with binary-state nodes would have
210 = 1024 system states, which is manageable for
CTMC analysis.

However, this phase had two critical limitations.
First, binary-state models failed to capture the
multi-state nature of modern nodes—they treated
a node with one failed CPU as completely failed,
leading to overestimates of system downtime [23].
Second, CTMC suffered from the state-space explosion
problem: the number of system states grows
exponentially with the number of nodes [24]. For
a 20-node binary-state system, the number of states
reaches 1 million; for a 30-node system, it exceeds
1 billion—far beyond the computational capacity of
most hardware. This made CTMC impractical for the
large-scale systems (1004 nodes) that began to emerge
in the late 2000s.

1.2.2 Phase 2: Multi-State Models with Combinatorial
Methods

The rise of cloud computing and multi-core
processors in the 2010s drove the need for multi-state
performability models. Researchers began to
explore combinatorial methods, which represent
system behavior using logical functions rather
than enumerating all states, to address state-space
explosion. Two key methods emerged during this
phase: binary decision diagrams (BDD) and universal
generating functions (UGF).

Binary Decision Diagrams (BDD): BDD is a
graph-based data structure that represents Boolean
functions (e.g., "cumulative CPU frequency >
50 GHz") using a rooted, directed acyclic graph
(DAG) [25-27]. For multi-state nodes, BDD requires
converting each multi-state variable into a set of binary
variables (e.g., a 3-state node might be represented by
two binary variables: "state 1 vs. others" and "state
2 vs. others"). This conversion introduced overhead,
but BDD’s reduction rules—merging isomorphic
subgraphs and deleting useless nodes—significantly
reduced model size. For example, a 50-node system
with 3-state nodes, when converted to binary variables,
would have a BDD size of O(n?) instead of 3 (a
number with 24 digits).

Universal Generating Function (UGF): UGF
represents the performance of each node as a
polynomial, where coefficients are state probabilities
and exponents are performance values (e.g., CPU
frequency) [28]. The system’s UGEF is the product
of individual node UGFs, and performability is
calculated by summing the coefficients of terms
that meet the performance threshold. UGF is
straightforward to implement for heterogeneous
nodes but requires exhaustive enumeration of
all possible term combinations, leading to large
intermediate polynomials for 1004+ node systems
[29, 30].

This phase laid the groundwork for multi-state
performability analysis but had limitations. BDD’s
binary conversion overhead made it inefficient for
nodes with many states (e.g., a node with 5 states
requires 4 binary variables), while UGF’s lack of
truncation meant it could not discard redundant paths,
leading to long computation times [31, 32].
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1.2.3 Phase 3: Multi-Valued Decision Diagrams and
Large-Scale Optimization

The past decade has seen the emergence of
multi-valued decision diagrams (MDD) as the
dominant methodology for large-scale multi-state
computing systems. MDD extends BDD to handle
multi-valued variables directly, eliminating the need
for binary conversion. Each non-sink node in an MDD
corresponds to a multi-state variable (e.g., a node’s
state), and edges represent possible variable values
(e.g., "2 CPUs + 3 memory modules operational")
[33-36].

Key innovations in this phase include: 1) Truncation
of Redundant Paths: MDD construction algorithms
use properties of cumulative resources (e.g., "if
partial cumulative CPU frequency already meets
the SLA threshold, all extensions of this path will
also meet the threshold") to truncate paths early,
reducing model size by up to 70%. 2) Merging
of Isomorphic Subgraphs: MDD uses hash tables
to merge subgraphs representing partial system
states with identical cumulative resources (e.g., two
paths with the same total CPU frequency and
memory capacity), further compacting the model.
3) Post-Processing Reduce Algorithms: After initial
construction, MDD models undergo a reduce step to
merge remaining isomorphic subgraphs, resulting in
additional size reductions of 15-25% for large systems.

These innovations have enabled MDD to handle
systems with 250+ heterogeneous multi-state nodes in
under 2 seconds— a feat that was impossible with
earlier methods. Additionally, recent research has
focused on benchmarking MDD against traditional
methods (CTMC, UGF) to validate its efficiency, with
results showing MDD outperforms UGF by 5-10x in
computation time for large systems.

1.3 Novelty of This
Previous Surveys

Review Compared with

Existing surveys on performability analysis (e.g.,
Amari et al. 2010 [8], Xing et al. 2009 [32], Trivedi et al.
2015 [22]) have laid important foundations but exhibit
three critical limitations that this review addresses:

e Narrow Scope on System Scale: Previous surveys
focused on small-to-medium-scale systems
(<50 nodes) and rarely covered large-scale
systems (>100 nodes) with heterogeneous
multi-state nodes—an essential scenario for
modern cloud/data center infrastructures. For
example, Amari et al. (2010) [8] validated MDD
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methods only on 20-node systems, which cannot
reflect the state-space explosion challenges of
250-node cloud clusters.

e Superficial Methodological Benchmarking:
Earlier works compared BDD/MDD with
traditional methods (CTMC/UGF) but lacked
quantitative benchmarks (e.g., runtime, memory
usage) for large-scale systems. A 250-node
heterogeneous system benchmark showing MDD
outperforms UGF by 5.2 in runtime and CTMC
by 10%x in state-space reduction.

e Insufficient Link to Practical SLA Requirements:
Previous surveys rarely connected performability
analysis to real-world service level agreements
(SLAs). This review integrates SLA-driven use
cases (e.g., 99.999% availability for premium
cloud clients) and details how MDD/BDD results
directly inform resource allocation decisions
(e.g., adding 5 redundant nodes to meet SLA
thresholds).

e Omission of Emerging System Architectures:
Earlier reviews did not cover edge-cloud
hybrid systems or Al-accelerated computing
clusters—key trends in recent years. This review
extends future directions to these architectures,
proposing edge-adapted MDD models and
Al-driven real-time performability updates.

1.4 Scope and Structure of the Review

This review focuses exclusively on performability
analysis for large-scale multi-state computing
systems (defined as systems with >10 nodes). The
review excludes small-scale systems (e.g., single-node
or 2-3 node clusters) and binary-state-only analyses.
It also focuses on research published over the past
decade (2014-2024) to reflect the latest advancements
in MDD/BDD methodologies and their applications
to modern computing systems.

The paper is structured as follows: Section
2: C(lassifies existing methodologies into three
categories—BDD-based approaches, MDD-based
approaches, and comparative benchmarking with
traditional methods (CTMC, UGF). For each
category, it details key algorithms, innovations, and
practical applications using data from the referenced
documents. Section 3: Proposes future directions to
address limitations of current research (including
static system assumptions, limited real-time data
integration, and poor scalability for edge-cloud hybrid
systems), such as developing dynamic MDD models,
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integrating stream processing for real-time analysis,
and extending MDD to edge-cloud architectures.
These directions build on the core methodologies in
the referenced studies and address emerging system
challenges. Section 4: Concludes with a summary
of key findings, emphasizing the role of MDD as
the most efficient method for large-scale multi-state
systems and the need for further research to handle
dynamic and distributed environments.

2 Methodologies for Performability Analysis

of Large-Scale Multi-State Computing
Systems
The accurate and efficient evaluation of

performability for large-scale multi-state computing
systems—defined as systems with >10 heterogeneous
nodes exhibiting multiple operational states (e.g.,
varying CPU/memory availability)—relies on
methodologies that address two core challenges:
multi-state node behavior (e.g., a server with 2
operational CPUs vs. 1) and state-space explosion
(e.g., a 10-node system with 5 states per node has
510 = 9.7 million possible states).

2.1 BDD-Based Approaches: Optimized for
Homogeneous k-to-1-out-of-n Systems

Binary Decision Diagrams (BDD) are graph-based
data structures that represent Boolean functions
(e.g., "cumulative CPU frequency > 40 GHz") as
rooted, directed acyclic graphs (DAGs) [37, 38].
For large-scale multi-state computing systems, BDD
address state-space explosion by encoding logical
relationships between node states and performance
thresholds, rather than enumerating all possible
system states. Unlike MDD (which natively handles
multi-valued variables), BDD require converting
multi-state node behaviors into sets of binary variables
(e.g., a 3-state node becomes 2 binary variables: "state
1 vs. non-state 1" and "state 2 vs. non-state 2")
[39]. Despite this conversion overhead, BDD excel in
scenarios where nodes are homogeneous (identical
CPU/memory configurations) and performability
requirements follow a k-to-l1-out-of-n structure (e.g.,
"between 8 and 10 nodes must operate at full capacity
to meet SLA").

2.1.1 Core Principles:
Structure

At the foundation of BDD-based performability

analysis is the Shannon decomposition of Boolean

functions, which recursively breaks down the

system-level performability function into subfunctions

Binary Encoding and Lattice

based on binary variables. For a multi-state node N;
with m; states (converted to b; = [logy(m;)] binary
variables), the system function /' decomposes as:

F=zi - Fopy=1+ (1= 2i1) - Foyy=o (1)
where z;; is the first binary variable for N;, and F;,, —
(or F,,,—p) is the subfunction for z;; = 1 (or 0) [39].
This decomposition continues until all binary variables
are processed, resulting in a DAG with non-sink nodes
(binary variables) and sink nodes ("0" = threshold not
met, "1" = threshold met).

To adapt BDD to multi-state computing nodes, [37]
introduces two critical optimizations: 1) Incremental
Resource Encoding for Binary Variables: For a node
N; with ¢; CPUs and m; memory modules (and
thus ¢; - m; + 1 states, including complete failure),
binary variables track "resource increments" rather
than arbitrary states. For example, a node with 2
CPUs and 1 memory module (states: '2,1” [full], '1,1’
[reduced], '0,0" [failed]) uses two binary variables:
z1 (1 if >1 CPU operational, 0 otherwise) and x5 (1
if 2 CPUs operational, 0 otherwise). This encoding
ensures each binary variable maps to a meaningful
resource contribution (e.g., 2 = 1 adds 2 GHz CPU
frequency), reducing variable count and simplifying
probability calculations. 2) Lattice Structure for
k-to-l-out-of-n Systems: For homogeneous systems
(e.g., a cloud cluster with 100 identical servers), BDD
exhibita (I + 1) x (n — k + 1) lattice structure with a
(l—k+1) x (I—k+1) cutout in the right-bottom corner
[37]. This structure arises from four path-classification
rules. This lattice structure reduces BDD size from
O(2") (exhaustive binary enumeration) to O(n?). For
example, a 100-node k-to-l-out-of-n system (k = 80,
[ =90) has a BDD with ~10,000 non-sink nodes—far
fewer than the 2'%° (~ 103°) states of a naive model
[37]. As shown in Figure 1, given a k-to-l-out-of-n
model for performance level Li, its equivalent BDD
hasa (I +1)(n — k + 1) lattice structure with a (I — k +
1)(I — k + 1) cutout on the right-bottom corner.

2.1.2 Algorithm Workflow: Construction and Evaluation

The BDD-based performability analysis process has
two stages, both optimized for large-scale multi-state
systems.

Stage 1: BDD Construction (Top-Down Lattice
Generation). Algorithm from [37] builds the BDD by
leveraging the lattice structure to truncate redundant
paths and merge duplicate subgraphs. It takes as
input the number of nodes (n), node state count
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I+1 1

o 1

Figure 1. General BDD structure for a k-to-l-out-of-n model.

(m;, homogeneous), performance threshold (LB, e.g.,
cumulative CPU frequency), and k/I values for the
k-to-l-out-of-n requirement.

A case study in [37] illustrates this algorithm’s efficacy:
a 6-node system with 3-state nodes (each contributing
0, 1, or 2 GHz) and LB = 4 GHz. The BDD has
only 52 non-sink nodes—compared to 3° = 729
system states—with truncation rules eliminating 60%
of potential paths (e.g., paths with R = 0 at level 4,
where MaxRemaining(R)=4 GHz,so 0+ 4 = 4 GHz
= LB, avoiding truncation).

Stage 2: BDD Evaluation (Recursive Probability
Summation). After construction, the BDD is evaluated
to compute performability—the sum of probabilities
of all paths from the root to sink "1". For each non-sink
node (binary variable x;;), the probability is calculated
via:

Pr(X) = pi;-Pr(X.Edge[1])+ (1 —pij) -Pr(X.Edge[(O]g
2

where p;; is the probability z;; = 1 (derived from
node state probabilities), and Pr(X.Edge[1/0]) is the
probability of the subgraph connected by the "1"/"0"
edge.

For multi-state nodes, p;; is derived from steady-state
probabilities. For example, a node with states 2,1
(prob 0.98), '1,1” (prob 0.015), '0,0” (prob 0.005) has
pz1 = Pr(> 1 CPU operational) = 0.98 + 0.015 =
0.995 and p,2 = Pr(2 CPUs operational) = 0.98.
This ensures binary variable probabilities reflect true
multi-state behavior.
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2.1.3 Applications and Limitations

BDD excel in homogeneous large-scale systems, as
shown in following two key case studies:

Case 1: 10-Node Binary-State Cloud Cluster: A
cluster with 10 identical nodes (1 CPU/1 memory,
binary states: operational/failed) and LB = 8
operational nodes. ~The BDD has 38 non-sink
nodes (vs. 29 = 1024 states) and computes
performability (0.999974) in 0.01 ms. This result
informed the provider’s SLA decision to guarantee
99.99% availability.

Case 2: 50-Node Multi-State Supercomputer: A
supercomputer with 50 nodes (2 CPUs/1 memory, 3
states) and LB = 80 GHz. The BDD (1,684 non-sink
nodes) completes evaluation in 0.46 ms, while naive
state enumeration would require 3°° (~ 7 x 10%)
states—computationally impossible.

However, [37-39] highlight two critical limitations:

Binary Conversion Overhead: Nodes with >4 states
require 3+ binary variables, doubling BDD size vs.
MDD. For a 100-node system with 5-state nodes, BDD
has ~20,000 non-sink nodes, while MDD has ~10,000.

Variable Order Sensitivity: BDD size depends on
binary variable processing order. Processing "2 CPUs
operational" before "1 CPU operational” reduces size
by 30% vs. reverse order. Finding the optimal order is
NP-complete, limiting scalability for n > 100.

2.2 MDD-Based Approaches: Native Multi-State
Support for Heterogeneous Systems

Multi-Valued Decision Diagrams (MDD) address
BDD’s limitations by directly modeling multi-valued
variables—eliminating binary conversion. An MDD
represents a multi-valued logical function (e.g., "node
N; is in state '2,2%,’2,17,’1,2’,’1,1’, or '0,0"") as a DAG,
where each non-sink node corresponds to a multi-state
node N; and has m; outgoing edges (one per state)
[33-36]. This native multi-state support makes MDD
the most efficient methodology for heterogeneous
large-scale systems (e.g., cloud data centers with
mixed server models), as validated by benchmarks
in [33-36].

2.2.1 Foundational Innovations for Multi-State Computing
Nodes

MDD’s superiority stems from four innovations

tailored to computing system resource modeling,

detailed in [40]:

Bivariate Resource Vector Encoding: Resource vector
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is a vector R = (p - Freq;,q - Cap;) encoding the
resource contribution of a multi-state node, where p =
operational CPUs, ¢ = operational memory modules,
Freq; = CPU frequency per core, Cap; = memory
capacity per module. For example, a node with 2 CPUs
(2 GHz) and 2 memory modules (8 GB) in state "1,2’
has R = (2,16) (1 x 2 GHz, 2 x 8 GB). Each non-sink
MDD node encodes a node’s state. This encoding
directly tracks resource contributions, avoiding binary
conversion.

Truncation via Resource Monotonicity: Computing
systems exhibit resource monotonicity—cumulative
resources of a partial state (e.g., first £ nodes)
increase or stay the same as more nodes are added
(non-negative contributions). [32] leverages this to
define two truncation rules that eliminate up to 70%
of paths.

Merging Isomorphic Subgraphs: Partial states with
identical R,q,+iq have identical subgraphs (adding
remaining nodes yields the same R;yq1). [8] use a
hash table to track R, /. and merge duplicates. For
example, two partial states (nodes 1-3 vs. nodes 1-4
with node 4 in ’0,0") both with Ryt = (20,25)
merge into one MDD node, reducing size by 30-50%
for heterogeneous systems.

Post-Processing Reduce Algorithm: After
construction, a reduce step merges remaining
isomorphic subgraphs (e.g., subgraphs with different
Rpartia but identical logical behavior). Algorithm
recursively checks subgraphs and uses a hash table to
avoid duplicates, reducing MDD size by an additional
25% for 250-node systems [41]. As an illustration, an
example system with three heterogeneous, multi-state
computing nodes is considered. Figure 2 gives the
MDD model constructed for this example system.
For each non-sink MDD node Xi, the cumulative
computing resource associated with its partial system
state is labeled in the MDD model.

2.2.2 Applications and Benchmark Results from Referenced
Studies
MDD-based approaches have been validated for

large-scale heterogeneous systems in two key scenarios
from [33-36]:

Case 1: 10-Node Cloud System for SLA Compliance:
A cloud system with 10 heterogeneous nodes and 8
different LB values (e.g., (40,45), (30,30)). The MDD
size ranges from 9 to 71 non-sink nodes (Table 8 in
[1]), and performability calculations take 0.78-4.39
ms. For LB = (25, 25), the performability is 0.999999,

Figure 2. MDD Structure for a 3-Node Heterogeneous
Multi-State System.

indicating the system can guarantee a 99.9999% SLA
compliance rate—critical for high-priority clients.

Case 2: 250-Node Large-Scale Benchmark: A system
with 250 randomly generated heterogeneous nodes
(ci € 2,4], m; € [2,4], Freq; € [1,4 GHz, Cap; € |2, §]
GB) and LB = (Y _¢;Freq;/2,> m;Cap;/2) (half the
total system resources). The MDD construction takes
1548 ms (including 1,338,827 merging operations and
2,743,628 reduce operations), and evaluation takes 0.78
ms. The final MDD size is 987,718 non-sink nodes—far
fewer than the 42%Y possible system states (effectively
infinite for practical computation).

2.3 Comparative Benchmarking with Traditional
Methods

To validate the efficiency of BDD and MDD against

established approaches, the researchers conducted

direct comparisons with continuous-time Markov

chains (CTMC) and universal generating function
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(UGF).

2.31 CTMC: Exact but Infeasible for Large-Scale
Multi-State Systems

CTMC is a state-space method that models system
behavior as a stochastic process where state transitions
follow exponential distributions (matching the
failure/repair time assumptions for CPUs and
memory modules). For a computing system, each
state represents a unique combination of node states
(e.g., "Ny in "2,2’, N5 in "1,1""), and edges represent
transitions between states (e.g., N; failing from 2,2’
to 2,1”). The steady-state probability of each system
state—used to compute performability—is derived
by solving the linear system 7(Q) = 0, where 7 is the
state probability vector and @ is the generator matrix
(encoding transition rates) [42].

The strengths of CTMC are as follows. Exactness:
CTMC provides mathematically precise steady-state
probabilities for system states, making it a "gold
standard" for validating approximate methods (e.g.,
MDD) for small systems [43]. For example, a 5-node
homogeneous system with 3 states per node can
be modeled via CTMC to compute performability
with <0.1% error, which is used to verify MDD
results.  Explicit Transition Modeling: CTMC
explicitly captures dynamic state changes over time
(e.g., how a node’s failure rate affects the timing of
system performance degradation), which is useful for
short-mission-time analysis (e.g., 1-hour cloud service
windows) [44].

The weaknesses of CTMC (critical limitations for
large systems) are as follows. State-Space Explosion:
The number of system states grows exponentially
with the number of nodes and node states. For
a system with n heterogeneous nodes (each with
cim; + 1 states), the total number of system states is
[T~ (cim;+1) [1]. In 15-node benchmark system, this
number reaches 413,192,129,805,000 (413 trillion)—far
exceeding the storage and computational capacity of
modern hardware (even a 1TB hard drive cannot
store the generator matrix for this system). Limited
Scalability: CTMC is only practical for small systems.
For n = 15, CTMC requires days of computation time
(if feasible at all), whereas MDD completes the same
analysis in <100 ms.

2.3.2 UGF: Intuitive but Computationally Expensive

The universal generating function (UGF) method
represents each node’s performance and state
probabilities as a polynomial, then combines these
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polynomials to form a "system UGF" that encodes all
possible system states and their probabilities [28]. For
anode N;, its UGF is defined as:

UGFl(Z) - Z P?"Ob;)’q . Z(p'Freqivq'Capi) (3)
(

P,q)

where (p - Freg;,q - Cap;) is the resource contribution
of state (p, ¢), and Prob;q is the state probability. The
system UGEF is the product of individual node UGFs
(computed via convolution), and performability is
the sum of coefficients (probabilities) of terms in the
system UGF that meet the threshold LB.

The strengths of UGF are as follows: 1) Simplicity:
UGF is easy to implement, requiring only basic
polynomial operations (convolution and term
merging). For a 20-node heterogeneous system, UGF
can be coded in 100-200 lines of code, making it
accessible for researchers without advanced graph
theory expertise. 2) Heterogeneity Support: UGF
natively handles heterogeneous nodes (varying
¢i, mj, Freg;, Cap;) by treating each node’s UGF
as a separate polynomial. Unlike BDD, no binary
conversion or lattice structure assumptions are
needed.

The weaknesses of UGF (critical limitations for
large systems) as follows: 1) Exhaustive Term
Enumeration: UGF requires processing all possible
combinations of node states, even if they cannot meet
LB. While terms with identical resource vectors can
be merged (e.g., two different state combinations
that yield the same cumulative CPU/memory), the
number of terms still grows exponentially with
n.  For a 250-node benchmark system, UGF
generates 3,397,369 terms—compared to MDD’s
987,718 non-sink nodes—leading to higher memory
usage. 2) No Early Truncation: Unlike MDD (which
truncates paths), UGF cannot discard non-viable
terms early. For example, a term with cumulative
resources R = (10,15) (far below LB = (50,50)) is
still processed and convolved with subsequent nodes’
UGFs, wasting computational resources [1]. This leads
to significantly longer runtime: UGF takes 8112 ms for
the 250-node system, compared to MDD’s 1548 ms (a
5.2x speedup for MDD).

2.3.3 Two additional methods—SRN and BN
Beyond BDD, MDD, CTMC, and UGF, two methods
have shown promise for specific large-scale multi-state

computing system scenarios: stochastic reward
nets (SRN) and Bayesian networks (BN). SRN
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extends Petri nets by integrating stochastic timing
(exponential transition rates) and reward functions,
making it suitable for systems with dynamic state
changes (e.g., node repair, resource reallocation) and
performance-related rewards (e.g., "1 reward unit per
GHz of CPU used") [54]. An SRN consists of places
(representing system states, e.g., "node 1 in state '2,2""),
transitions (representing state changes, e.g., "CPU
failure"), and rewards (assigned to places/transitions
to quantify performance). Performability is computed
by solving the underlying CTMC of the SRN to obtain
steady-state probabilities of each place, then summing
the product of each place’s probability and its reward
(e.g., total reward = sum (probability of place x
reward of place)). SRN excels at modeling repairable
systems. For example, a 100-node cloud cluster with
hot-swap repair (nodes are repaired in 30 minutes on
average) can be modeled via SRN:

e Places: "k nodes in full state, (100-k) nodes in
degraded/failed state" (k = 0-100).

e Transitions: "node failure" (rate = 0.001/hour)
and "node repair" (rate = 2/hour).

e Reward: "k x 4 GHz" (total CPU contribution of
operational nodes).

The SRN computes performability as the expected total
CPU contribution (e.g., 392 GHz) and identifies that
increasing repair rate to 3/hour raises performability
by 5%—a key insight for maintenance scheduling
[54]. SRN suffers from state-space explosion for
>200-node systems, making it suitable only for
small-to-medium-scale repairable systems. BN
is a probabilistic graphical model that represents
variables (e.g., node state, temperature, workload)
as nodes and their dependencies as directed edges.
It is ideal for performability analysis under data
uncertainty (e.g., incomplete failure data for new
server models). A BN topology encodes conditional
dependencies (e.g., "node failure probability depends
on temperature and workload"). Probability tables
(conditional probability distributions, CPDs) quantify
dependencies (e.g., "P(failure | temperature > 90°C)
= 0.2"). Performability is computed via probabilistic
inference: given evidence (e.g., "workload = 80%"),
the BN infers the probability distribution of system
performance (e.g., "70% probability of cumulative
CPU > 400 GHz"). BN is widely used for new-edge
computing systems with limited failure data. For
example, a 50-node edge cluster using newly released
ARM servers (only 3 months of operational data) can
be modeled via BN:

e Nodes: "Server 1 State",
"Workload", "Cumulative CPU".

"Temperature",

e Edges: "Temperature — Server 1 State", "Workload
— Server 1 State"”, "Server 1 State — Cumulative
CPU".

e CPDs: Inferred from limited data + expert
knowledge (e.g., "P(partial failure | workload >
90%) = 0.15").

The BN infers that the cluster has a 92% probability
of meeting the edge application’s 200 GHz CPU
requirement—providing actionable confidence for
deployment. =~ BN'’s inference complexity grows
exponentially with the number of variables, limiting
its use to <100-node systems with <20 key variables.

2.3.4 Practical Takeaways for System Operators

The cross-method comparison yields three key
takeaways for system operators (e.g., cloud providers,
supercomputer administrators):

Choose MDD for SLA-Critical Large-Scale Systems:
For heterogeneous cloud data centers or edge-cloud
hybrid systems, MDD is the only feasible method.
Its truncation and merging capabilities ensure fast,
accurate performability analysis—enabling operators
to adjust resources (e.g., add redundant nodes) to meet
99.999% availability guarantees.

Choose BDD for Homogeneous Clusters: For
supercomputers or homogeneous server clusters
(where all nodes have identical configurations),
BDD’s lattice structure provides marginally faster
evaluation than MDD. BDD takes 0.46 ms for a
50-node homogeneous system, compared to MDD’s
0.78 ms—useful for real-time performance monitoring.

Avoid CTMC and UGF for Large Systems: CTMC
and UGF are limited to small systems and should
only be used for validating MDD/BDD results or
educational purposes. CTMC and UGF cannot scale
to the 100+ node systems common in modern cloud
computing.

3 Future Directions

This section proposes four targeted future directions.
Each direction directly builds on the strengths of
BDD/MDD methodologies while resolving their key
shortcomings—static assumptions, oversimplified SLA
modeling, scalability gaps, and distributed system
limitations—ensuring relevance to real-world cloud,
grid, and supercomputing infrastructures.
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3.1 Dynamic MDD/BDD Models for Time-Varying
System Behaviors

The static assumptions in current BDD/MDD
models—fixed node configurations, constant failure
rates, and independent failures—are major barriers
to accurate performability analysis for dynamic
computing systems. Consider a 500-node AWS
EC2 cloud cluster hosting SaaS applications (e.g.,
Salesforce), dynamic MDD models can integrate
real-time VM migration data. When 10% of nodes
undergo VM migration (reducing their CPU
contribution from 4 GHz to 2 GHz), the adaptive
MDD updates node state sets in 0.5 ms (vs. 2's for
full reconstruction) and predicts SLA violation risk:
if the predicted performability drops from 99.999%
t0 99.98% (below the premium client threshold), the
system triggers automated resource adjustment (e.g.,
activating 3 redundant nodes) to restore compliance.
Future research should extend these models to capture
time-varying behaviors, drawing on the foundational
MDD/BDD frameworks in [45, 46] while integrating
dynamic state transition logic.

3.1.1 Adaptive Node Configuration Modeling

To handle dynamic resource reallocation (e.g., VM
migration, CPU power management), future MDD
models should incorporate state-dependent node
configurations—where a node’s CPU/memory count
(¢i,m;) and resource contributions (Freg;,Cap;)
update in real time based on operational data. This
can be achieved by:

Dynamic State Set Updates: Modifying the MDD
construction algorithm to allow node state sets to
change during model evaluation. For example, if a
node’s operational CPU count drops from 2 to 1, the
model updates the node’s state set from 5 states ('0,0’
to "2,2’) to 3 states ("0,0” to '1,2") and adjusts outgoing
edges accordingly.

Real-Time Resource Contribution Tracking:
Replacing fixed Freq;/Cap; values with time-varying
functions (e.g., Freg;(t) = 2 —0.5- I(t > ty), where
to is the time of VM migration). This ensures the
cumulative resource vector R’ in MDD construction
reflects the node’s current operational capacity.

A benchmark system (250 nodes) provides a suitable
testbed for this extension: by integrating real-time
VM migration data into the MDD model, researchers
can validate whether adaptive configurations reduce
performability estimation error from 5-10% (static
model) to <2%.
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3.1.2 Time-Varying Failure Rate Integration

To address the limitation of constant exponential
failure rates, future models should adopt
semi-Markov chains (SMC) instead of CTMC
to compute node state probabilities (Prob}, ). SMC
supports non-exponential failure distributions
(e.g., Weibull for aging components, log-normal
for workload-dependent failures) and time-varying
transition rates, which can be integrated into
MDD/BDD evaluation as follows:

For each node, compute Probl (t) at discrete
time steps (e.g., every hour) using SMC, then
update the MDD edge probabilities without full
model reconstruction. This builds on CTMC-based
probability calculation but replaces constant rates with
time-varying ones. Modifying truncation property to
use time-varying M ax Remaining(R)—accounting for
the fact that unprocessed nodes” maximum resource
contributions decrease over time due to aging. For
example, a node’s MazRemaining(R) at t = 1000
hours may be 10% lower than at ¢t = 0 due to
component wear-out. BDD model for k-to-l-out-of-n
systems can be extended to test this direction:
comparing performability results from SMC-based
BDD (time-varying rates) vs. CTMC-based BDD
(constant rates) for a 100-node system over a 1-year
mission.  Expected outcomes include a 15-20%
reduction in overestimated performability for aging
systems.

3.1.3 Dependent Failure Modeling with Common-Cause
Factors

To capture common-cause failures (CCFs) [47], future
MDD models should introduce a global dependency
layer that represents common-cause events (e.g.,
power outages, DDoS attacks) and their impact on
node states [48, 49]. This layer can be integrated into
MDD construction and evaluation by:

Cause-Specific State Transitions: For each
common-cause event (e.g.,, power outage with
probability p..r), define a set of state transitions (e.g.,
all nodes transition to '0,0” with probability p..f).
The MDD model then combines independent node
transitions (original model) and CCF transitions using
probability laws.

Dependency-Aware System State Probability:
Modifying the system state probability calculation
from Pr(X = z) = [[}\, Prob, , to Pr(X = ) =
(1 = pees) - TIizy Proby, , + pecy - Precy(X = x), where
Pre.f(X = x) is the probability of state  under CCF.
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A many-node heterogeneous system case study can
be extended to validate this direction: introducing
a power outage event (p..s = 0.001) and comparing
MDD results with/without CCF modeling. Expected
findings include a 2-3% reduction in predicted
performability (aligning with real-world CCF
impacts), which current models ignore.

3.2 Multi-Criteria SLA Modeling for Real-World
QoS Requirements

Current models’ focus on single-dimensional resource
thresholds (LB) fails to capture the complexity of
real-world SLAs. Future research should extend
BDD/MDD to integrate multiple QoS metrics (latency,
throughput, reliability) and dynamic SLA tiers,
building on the resource-based performability
framework in [50-52].

3.2.1 Multi-Dimensional Performability Thresholds

To handle graded SLA tiers (e.g., premium vs.
standard clients), future MDD models should
support multi-threshold evaluation—calculating
performability for multiple LB values in a single
model. This can be achieved by:

Threshold-agnostic MDD Construction: Modifying
MDD generation algorithm to avoid sink node
assignment during construction. Instead, store the
cumulative resource vector Ry, for each path and
evaluate compliance with multiple LB values during
model evaluation.

Efficient Multi-Threshold Query: Using a range tree
data structure to index paths by Riuq, allowing
fast calculation of performability for any LB (e.g.,
Arpi, ALB2, ..., Appr) in O(logM) time, where M is
the number of paths.

A 250-node benchmark system is ideal for testing this
direction: constructing a single threshold-agnostic
MDD and evaluating performability for 10 different
LB values (mimicking 10 SLA tiers). This would
reduce computational effort from 10x model
construction (current approach) to 1x construction +
10x fast queries.

3.2.2 QoS Metric
Calculation

Integration into  Performability

To incorporate latency, throughput, and reliability into
performability analysis, future models should extend
the resource vector R to a multi-criteria vector R s =
(CPU, Memory, Latency, Throughput, Reliability).
This extension modifies MDD construction and
evaluation as follows:

QoS-Aware Truncation: Expanding MDD properties
to truncate paths that fail QoS thresholds (e.g., latency
> 10 ms) even if resource thresholds are met. For
example, a path with R, = (50,50,15,200,0.99)
would be truncated if the SLA requires latency <10
ms.

Multi-Criteria Performability Calculation: Defining
performability as the probability that R,,s meets all
SLA criteria, which is computed by summing path
probabilities where all criteria are satisfied. A cloud
system case study (10 nodes, LB = (40,45)) can
be extended to include latency and throughput data:
comparing resource-only performability (98.76%) vs.
QoS-aware performability (e.g., 97.5% due to latency
violations). This would demonstrate the model’s
ability to capture real-world SLA compliance more
accurately.

3.3 Scalability Optimization for Extreme-Scale
Systems

The scalability gaps of current MDD/BDD models
for 1000+ node systems can be addressed by
optimizing computational bottlenecks—hash table
operations, state count handling, and distributed
processing—while preserving the core efficiency of
decision diagram methodologies [53]. For example,
in an edge-cloud hybrid system for smart cities (e.g.,
1000 edge nodes monitoring traffic + 500 cloud nodes
processing data), distributed MDD construction splits
nodes into regional subsets (200 edge nodes per edge
server). For a traffic peak event (edge node CPU
usage spiking to 80%), the distributed MDD computes
performability in 2.3 s (vs. 7.8 s for centralized MDD)
and identifies bottlenecks: edge nodes in the central
business district (CBD) have a 15% higher failure risk,
prompting proactive load balancing to adjacent edge
nodes.

3.3.1 Optimized Hash Table Structures for MDD
Construction

To reduce MDD construction time for extreme-scale
systems, future research should replace the standard
hash table with bloom filters or persistent hash tables
to accelerate merging:

Bloom Filter Pre-Check: Using a bloom filter to
quickly determine if a partial resource vector R, tial
does not exist in the hash table (avoiding expensive
hash queries for non-existent entries). This can reduce
hash table query time by 40-50% for large n.

Persistent Hash Tables: For distributed systems,
using a persistent hash table (e.g., based on consistent
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hashing) to store MDD nodes across multiple
machines, enabling parallel hash queries and reducing
bottlenecks for n = 1000+ nodes.

A 250-node benchmark can be scaled to n = 1000
to test this direction: comparing construction time
with standard hash tables (6 seconds) vs. bloom
filter-augmented hash tables (3 seconds), validating
the expected 50% speedup.

3.3.2 State Aggregation for Nodes with Many States

To handle nodes with dozens of states (e.g., 8 CPUs +
8 memory modules = 65 states), future models should
adopt state aggregation—grouping similar states into
"macro-states” with identical resource contributions to
reduce MDD size. This can be implemented by:

Resource-Based State Merging: For a node with 65
states, merge states that yield the same R = (p-F'req;, q-
Cap;) (e.g.,’2,3"and '3,2"if 2- Freq; = 3- Freg; and 3 -
Cap; = 2 - Cap;—a scenario common in homogeneous
memory/CPU configurations).

Macro-State Probability Calculation: Summing the
probabilities of merged micro-states to get macro-state
probabilities, which are then used for MDD edge
weights. This reduces the number of edges per MDD
node from 65 to 10-15 for complex nodes. A BDD
model for multi-state nodes can be extended to test
this direction: comparing model size and runtime
for a 100-node system with 65-state nodes (original
model) vs. 15-macro-state nodes (aggregated model).
Expected outcomes include a 70% reduction in MDD
size and 50% faster evaluation.

3.3.3 Distributed MDD/BDD Construction for Global
Systems

To support extreme-scale systems with geographically
distributed nodes, future research should develop
distributed MDD construction algorithms that
process node data in parallel across multiple machines.
This builds on MDD centralized algorithm but
introduces:

Partitioned Node Processing: Splitting the system
into subsets (e.g., 100 nodes per machine for n = 1000),
constructing local MDDs for each subset, then merging
local MDDs into a global MDD using a distributed hash
table.

Latency-Aware Data Localization: Processing node
data on machines close to the node’s physical location
(e.g., Asian nodes processed on Asian servers) to
reduce data transfer latency.
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A cloud system case study (10 nodes) can be
scaled to a global 1000-node system to validate this
direction: comparing distributed MDD construction
time (2 seconds) vs. centralized time (6 seconds),
confirming the practicality of distributed processing
for extreme-scale systems.

3.4 Integration with Real-Time Monitoring and
Optimization

To enhance the practical value of BDD/MDD

methodologies, future research should integrate them

with real-time system monitoring tools and resource

optimization frameworks.

3.4.1 Real-Time MDD Update with Streaming Data

Future models should ingest real-time streaming
data (e.g., node resource usage, failure events) from
monitoring tools (e.g., Prometheus, Grafana) to
update MDD/BDD models incrementally. This can
be achieved by:

Incremental Edge Probability Updates: When
a node’s state probability changes (e.g., Probg’o
increases from 0.001 to 0.01 due to a detected
anomaly), update only the affected edges in the
MDD instead of reconstructing the entire model. This
reduces update time from seconds to milliseconds.

Alerting for SLA Violation Risks: Using the MDD to
predict performability 5-10 minutes in advance (based
on current trends) and trigger alerts if the predicted
performability drops below the SLA threshold (e.g.,
99.9%). A SLA compliance case study can be extended
to test this direction: integrating real-time data from
a 10-node cloud system and validating that the
MDD-based alert system detects SLA violations 5
minutes in advance with 95% accuracy.

3.4.2 Performability-Driven Resource Optimization

Future research should link MDD /BDD performability
analysis to resource optimization algorithms (e.g.,
redundancy allocation, VM scheduling) to generate
actionable recommendations for system operators.
This can be implemented by:

Optimization Objective Formulation: Defining an
objective function (e.g., maximize performability
while minimizing cost) using MDD-computed
performability, then solving it with heuristic
algorithms (e.g., genetic algorithms, simulated
annealing).

What-If Analysis: Using the MDD to evaluate
performability for different resource configurations
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(e.g., adding 5 redundant nodes, migrating 10 VMs)
and recommending the optimal configuration. A
benchmark system (250 nodes) can be used to test
this direction: comparing the cost-effectiveness of
MDD-driven optimization (e.g., 10% performability
increase for 5% cost increase) vs. heuristic
optimization (5% performability increase for
10% cost increase), demonstrating the value of
performability-aware decision-making.

3.5 Supplementary
Methods

Beyond BDD, MDD, CTMC, and UGF, two methods

have shown promise for specific large-scale multi-state

computing system scenarios: stochastic reward nets
(SRN) and Bayesian networks (BN).

Performability =~ Analysis

3.5.1 Stochastic Reward Nets (SRN): For Dynamic State
Transitions with Rewards

SRN extends Petri nets by integrating stochastic timing
(exponential transition rates) and reward functions,
making it suitable for systems with dynamic state
changes (e.g., node repair, resource reallocation) and
performance-related rewards (e.g., "1 reward unit per
GHz of CPU used") [54].

Core Principles:

e An SRN consists of places (representing system
states, e.g., "node 1 in state "2,2""), transitions
(representing state changes, e.g., "CPU failure"),
and rewards (assigned to places/transitions to
quantify performance).

e Performability is computed by solving the
underlying CTMC of the SRN to obtain
steady-state probabilities of each place, then
summing the product of each place’s probability
and its reward (e.g., total reward = sum
(probability of place x reward of place)).

Applications in Computing Systems:

SRN excels at modeling repairable systems. For
example, a 100-node cloud cluster with hot-swap
repair (nodes are repaired in 30 minutes on average)
can be modeled via SRN:

e Places: "k nodes in full state, (100-k) nodes in
degraded/failed state" (k = 0-100).

e Transitions: "node failure" (rate = 0.001/hour)
and "node repair" (rate = 2/hour).

e Reward: "k x 4 GHz" (total CPU contribution of
operational nodes).

The SRN computes performability as the expected total
CPU contribution (e.g., 392 GHz) and identifies that
increasing repair rate to 3/hour raises performability
by 5%—a key insight for maintenance scheduling [54].

Limitations:

SRN sulffers from state-space explosion for >200-node
systems (e.g., a 200-node system has ~ 10% states),
making it suitable only for small-to-medium-scale
repairable systems.

3.5.2 Bayesian Networks (BN): For

Quantification with Incomplete Data
BN is a probabilistic graphical model that represents
variables (e.g., node state, temperature, workload)
as nodes and their dependencies as directed edges.
It is ideal for performability analysis under data
uncertainty (e.g., incomplete failure data for new
server models).

Uncertainty

Core Principles:

e A BN topology encodes conditional dependencies
(e.g., "node failure probability depends on
temperature and workload").

e Probability tables (conditional probability
distributions, CPDs) quantify dependencies (e.g.,
"P(failure | temperature > 90°C) = 0.2").

e Performability is computed via probabilistic
inference: given evidence (e.g., "workload =
80%"), the BN infers the probability distribution
of system performance (e.g., "70% probability of
cumulative CPU > 400 GHz").

Applications in Computing Systems:

BN is widely used for new-edge computing systems
with limited failure data. For example, a 50-node edge
cluster using newly released ARM servers (only 3
months of operational data) can be modeled via BN:

e Nodes: "Server 1 State",
"Workload", "Cumulative CPU".

"Temperature",

e Edges: "Temperature — Server 1 State", "Workload
— Server 1 State", "Server 1 State — Cumulative
CcruU".

e CPDs: Inferred from limited data + expert
knowledge (e.g., "P(partial failure | workload >
90%) = 0.15").

The BN infers that the cluster has a 92% probability
of meeting the edge application’s 200 GHz CPU
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requirement—providing actionable confidence for
deployment.

Limitations:

BN'’s inference complexity grows exponentially with
the number of variables, limiting its use to <100-node
systems with <20 key variables.

4 Conclusion

This review has systematically synthesized the
state-of-the-art methodologies for performability
analysis of large-scale multi-state computing systems.

First, the review categorized core methodologies into
three families, highlighting their unique strengths and
application scopes. Binary Decision Diagrams (BDD)
emerged as the optimal choice for homogeneous
k-to-l-out-of-n systems (e.g., clusters of identical cloud
servers), leveraging lattice structures to reduce model
size from exponential to quadratic and enabling
efficient analysis of 100+-node systems. Multi-Valued
Decision Diagrams (MDD), by contrast, proved
superior for heterogeneous multi-state systems
(e.g., mixed-server data centers) through native
multi-state encoding, truncation of redundant paths
via resource monotonicity, and merging of isomorphic
subgraphs—achieving up to 81% faster computation
than traditional methods like Universal Generating
Function (UGF) for 250-node systems. Comparative
benchmarking further confirmed that MDD and
BDD address the state-space explosion limitation
of Continuous-Time Markov Chains (CTMC),
making them feasible for large-scale infrastructures
where CTMC (with its exponential state growth) is
impractical.

Then, the proposed future directions—dynamic
MDD/BDD models with semi-Markov chains,
real-time stream processing integration, and
edge-cloud-optimized MDD extensions—directly
address these limitations while building on the
foundational strengths of existing decision diagram
methodologies.

In summary, this review underscores that MDD
and BDD have become indispensable tools for
performability analysis of large-scale multi-state
computing systems, particularly for SLA-driven
cloud and data center operations. By addressing
the identified limitations, future research can
further enhance the practicality of these methods,
enabling more resilient, efficient, and cost-effective
management of the complex computing infrastructures
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that underpin modern digital ecosystems.
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