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Abstract
Gas leakage poses a significant hazard in chemical
industry operations, where failure to respond
rapidly to gas diffusion can lead to poisoning, fire,
or explosion. Timely and accurate prediction
of gas dispersion is therefore essential for
emergency decision-making and operational safety.
While existing methods such as computational
fluid dynamics, spatiotemporal statistics, and
surrogate models emphasize prediction accuracy,
they often suffer from excessive computational
delays—especially critical in leak scenarios
where casualties can occur within minutes. To
address this gap, this paper introduces a Gaussian
process-Markov random field-Kriging (GP-MRF-K)
model for fast and reliable prediction of gas
concentration fields. The approach integrates
Markov random field (MRF) neighborhood
structures into Kriging-based spatial interpolation,
reducing computational complexity from O(n3) to
O(n·m3), where n is the total grid points and m
is the average neighbor count. Gas concentration
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time series are forecasted using Gaussian process
regression (GPR), and theMRF-Kriging framework
rapidly reconstructs the full concentration field.
Validation with real ammonia concentration
data from a warehouse-scale experimental
setup confirms the feasibility and superiority
of GP-MRF-K. With 150 training points and 10
prediction steps, the model achieves an MSE of
4660 and RMSE of 68.26, improving MSE by 67%
over GPR-K (MSE=14003) and 87% over LSTM-K
(MSE=36172), while attaining an R2 of 0.9847.
Computation time is reduced to 39.04 seconds, a
21.5%gain overGPR-K (49.72s) and a 98% reduction
compared to LSTM-K (1990.85s), thereby meeting
real-time emergency response requirements.

Keywords: gas leakage, field prediction, kriging model,
markov random field, neighborhood structure, gaussian
process.

1 Introduction
Chemical plants often need lots of industrial gases for
production. These gases almost have toxic physical
properties and active chemical properties [1, 2]. Once
the external environment changes dramatically, it is
easy to cause these gases to react [3]. Industrial gas
leakage can lead to serious safety accidents such as
personnel poisoning, fire, and explosion [4, 5]. On
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August 31, 2013, the Shanghai Wengpai industry had
an ammonia leakage accident, resulting in 15 deaths,
7 serious injuries, and 18 minor injuries, with a direct
economic loss of 25million yuan. It can be seen that gas
leakage is one of the potential major hazard sources in
the chemical industry, which seriously affects the safe
production and public safety of the chemical plant [6].
In order to minimize the loss of life and property,
managers must make emergency decisions quickly
and accurately. Therefore, it is important to quickly
describe and predict the changes of gas concentration
after leakage.

At present, in order to reflect the gas distribution
in the warehouse in real time, the warehouse
storing gas in chemical plants is equipped with
special gas concentration detectors to detect the gas
concentration in the environment [7–9]. However,
each detector has a limited detection range, which
cannot effectively describe the gas distribution of
the whole warehouse [10]. At the same time, the
single detection method cannot effectively predict the
future gas distribution in the warehouse. Therefore,
this study focuses on predicting and constructing the
future gas distribution field quickly from the detector
data.

Many scholars have done a lot of research on
how to construct and predict the distribution field
of the physical quantities, such as computational
fluid dynamics (CFD) [11, 13], Spatio-temporal
statistical methods [14–16], surrogate models [17–
19], and other models. Since the 1970s, with the
popularization of computers and the continuous
improvement of computing power, CFD-based on
numerical calculation has been formed and developed
vigorously [11]. Tominaga et al. [12] reviewed
current modeling techniques in the CFD simulation of
near-field pollutant dispersion in urban environments.
For different flow Reynolds numbers from 6000 to
24000, Sharma et al. [13] presented a two-dimensional
computational fluid dynamics analysis to evaluate
the effect of discrete triangle wave corrugations on
the absorber plate by constructing a temperature
field. The Spatio-temporal statistical model is
also the classical method for field construction and
prediction. It is based on the regionalized variable
theory with the characteristics of time and space
distribution, and takes the variogram as the main tool
to study the natural phenomena in time and space
distribution [15]. Martinez et al. [16] smoothed the
spatiotemporal trend of the spatiotemporal median,
conducted the spatio-temporal Kriging interpolation

on the residuals, and pointed out that the accuracy
of precipitation estimation is higher than that of the
ordinary spatiotemporal Kriging. The Spatio-temporal
statistical model is widely applied to a wide range of
regions, and it is also applicable to predict the gas
concentration field in a small area such as a chemical
plant warehouse. People have paid more attention
to the surrogate models in field construction and
prediction in recent years [17, 18].The rudiment of the
surrogate models is the polynomial response surface,
which is applied to the structural optimization design
in the 1970s [20]. At the end of the 20th century,
the surrogate models was introduced into the field of
aerodynamic optimization design [21–23]. In terms of
the surrogatemodels research, many surrogatemodels
have been developed, including polynomial response
surface [20], Kriging model [24, 25], radial basis
functions (RBFs) [26], neural networks (NN) [27, 28],
multivariable interpolation regression (MIR) [29].
Zhou et al. [30] obtained the temperature data of the
boiler furnace, and combined the reflected S-shaped
radial basis function with QR decomposition to build
a temperature field, which had higher accuracy in
both global and edge local areas. The calculation
results of the surrogate models are very close to the
original model, but the computing efficiency has been
significantly improved.

However, existing methods mainly focus on the
prediction accuracy, ignoring the calculation speed. In
reality, the gas leakage and diffusion in chemical plants
have very high requirements for the prediction speed.
According to the liquefied ammonia leakage accident
report of the Shanghai Wengpai industry, casualties
were caused within 1 minute after the leakage, which
showed that the liquefied ammonia leakage can fill
the warehouse environment in a very short time.
Therefore, in order to satisfy the actual need, the
field construction and prediction methods should pay
attention to both the prediction accuracy and the
calculation speed. However, most methods based on
the CFD and Spatio-temporal statistical models often
take a long time to calculate, which does not meet the
needs of emergency decision-making after gas leakage
in chemical plants.

In order to grasp the gas distribution field in time
after leakage for chemical plants to ensure production
safety, the GP-MRF-K method is proposed to construct
and predict the gas distribution field timely and
sufficiently. The GP-MRF-K method is combined by
Gaussian process regression and the Kriging model
which combines the neighborhood structure of the
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Markov random field.
1. To construct the gas concentration field timely,

the neighborhood structure of the Markov
random field is introduced to the Kriging spatial
interpolation method, and the Markov Random
Field-Kriging (MRF-K) method is proposed.

2. To predict the gas distribution field effectively, the
Gaussian process regression is used to predict the
future gas concentration at the detectors, and the
MRF-K method is used to construct the global gas
concentration field quickly and accurately.

The structure of this paper is organized as follows. In
Section 2, the Kriging model combined with Markov
random field neighborhood structure is introduced
as the basis of field construction. In Section 3, the
principle and establishment process of the GP-MRF-K
method with fast prediction speed and high accuracy
is introduced in detail. In Section 4, the data collected
from the ammonia leakage scale model are carried
out to verify the effectiveness of the proposed method.
Section 5 summarizes the main conclusions and
discusses the possible improvement of the proposed
method.

2 Field Construction Method
2.1 Kriging Model
The kriging model in this paper is based on
the MATLAB toolbox: Design and Analysis of
Computer Experiments (DACE). This toolbox is a
Kriging interpolation toolkit which generally includes
model establishment, experimental design, sample
information collection, and experimental parameter
analysis [31]. The method proposed in this paper is
based on the Kriging model and its derivation process
is as follows.
Suppose the independent variable of m observation
points Xm = [x1, x2, . . . , xm]T , xi ∈ Rn and the
corresponding response values Ym = [y1, y2, . . . , ym]T ,
yi ∈ Rn are known. The Kriging models mostly rely
on this decomposition.

Y (x) = f(x) + ε(x), (1)

where ε(x) is the errorwhich ensures that the deviation
value, and ε(x) is independent and obeys the normal
distribution, that is ε(x) ∼ N(0, δ2).
In multidimensional space, the Kriging model can be
described as Y (x) = f(x) + Z(x), which includes

polynomial function f(x) and deviation function Z(x).
It can be expressed as:

Y (x) =

p∑
j=1

βjfj(x) + Z(x), (2)

where fj(x) is the basic function of the known
regression function, βj is the coefficient corresponding
to the basic function, Z(x) represents the uncertainty
of Y (x).
For Z(x), we have:

E(Z(x)) = 0, (3)

Cov(Z(ω), Z(x)) = σ2R(ω, x), (4)

where σ2 is the process variance, R(ω, x) represents
the spatial correlation function.
Extend Equation (2) to the situation of m points.

Y = Fβ + Z, (5)

where

Y = [Y (x1), Y (x2), . . . , Y (xm)]T ,

F = [f(x1), f(x2), . . . , f(xm)]T ,

f(x) = [f1(x), f2(x), . . . , fp(x)]T ,

β = [β1, β2, . . . , βp]
T , and

Z = [Z(x1), Z(x2), . . . , Z(xm)]T .

To ensure the optimal linearity and unbiasedness,
the measurement error needs to be quantified to
ensure the optimality of the variance, and constraint
conditions are needed to ensure unbiasedness, which
is finally transformed into a minimization problem of
Lagrangian parameter constraint. Consider the linear
predictor Ŷ (x) = cTY . The error is:

Y ∗(x)− Y (x) = c>Y − Y (x)

= c>Z − Z(x) + (F>c− f(x))>β.
(6)

To ensure unbiasedness of the estimation, the
constraint F>c = f(x) is needed. The MSE of
estimation is:

ϕ(x) = E
[
(Ŷ (x)− Y (x))2

]
= σ2

(
1 + c>Rc− 2c>r

)
.

(7)
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The Lagrangian multiplier λ is introduced to obtain
the objective function with the principle of minimizing
the variance of the error of estimation.

minσ2
(

1 + c>Rc− 2c>r
)
− λ

[
F>c− f(x)

]
. (8)

The gradient of Equation (8) with respect to c and λ
are respectively.

2σ2(Rc− r)− Fλ = 0, (9)

and
F T c− f(x) = 0. (10)

Represent Equation (9) and Equation (10) in matrix
form. [

R F
F T 0

] [
c

λ̃

]
=

[
r
f

]
, (11)

where
λ̃ = − λ

2σ2
.

The solution of Equation (11) as follows.
{
λ̃ =

(
F TR−1F

)−1 (
F TR−1r − f

)
c = R−1

(
r − Fλ̃

) (9)

Substituting Equation (12) into Ŷ (x) = cTY , we
obtain.

Ŷ (x) =
(
r − Fλ̃

)T
R−1Y

= rTR−1Y −
(
F TR−1r − f

)T (
F TR−1F

)−1
F TR−1Y.

(10)

According to Equation (5), the parameter β can
be estimated through the generalized least squares
method.

β̂ =
(
F TR−1F

)−1
F TR−1Y. (11)

Substituting Equation (12) into ϕ(x) =
σ2
(
1 + cTRc− 2cT r

), and calculate the maximum
likelihood estimate of σ2 with respect to variance.

σ̂2 =
1

m

(
Y − Fβ̂

)T
R−1

(
Y − Fβ̂

)
. (12)

2.2 Neighborhood Structure of Markov Random
Field

A Markov random field can be described by an
undirected graph S = (V,E) where V = {1, 2, . . . , n}
are the points and E represent the edges. V and E are
related via a neighboring system.

N = {Ni|∀i ∈ V }. (16)

Here Ni is a set of points neighboring i. A
neighborhood structure has the following
properties [32].

i /∈ Ni, i ∈ Nj ⇐⇒ j ∈ Ni; i 6= j. (17)

For a regular point, such a neighborhood structure can
be described as [33].

Ni = {j ∈ V |d(xi, xj) ≤ r; j 6= i}, (18)

where xi and xj represent positions of point i and
j and d(·, ·) is a distance between two points. Since
the Euclidean distance represents the true distance
between two points in the m-dimensional space and
fits the reality in thewarehouse of a chemical plant, this
paper adopts Euclidean distance. The neighborhood
structure used in this paper is shown in Figure 1, a
system with regular grid points and r = 2 (left) and
r = 3 (right) [34]. The red points are the detectors
uniformly arranged on the stope. The blue lines are the
edges, leading from the center point to its neighbors.
The distance between the two closest points vertically
and horizontally is 2.

Figure 1. Schematic diagram of the neighborhood structure.

2.3 MRF-K field construction method
In general, using the DACE toolbox only needs
to import the coordinates of the data and the
corresponding gas concentration into MATLAB to
realize the construction of the gas distribution field.
However, when predicting the gas concentration at
a certain coordinate, the DACE toolbox calls all the
known data. If the known point is too far away from
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the unknown point, it will make little contribution to
the estimation of the gas concentration at the unknown
point. In addition, the DACE toolbox needs to calculate
the correlation function between points. Removing
points which are far away can improve the calculation
efficiency and reduce the calculation complexity.
The DACE toolbox is built on the neighborhood
structure of Markov Random Field to complete
MRF-K field construction method. The selection
of neighborhood radius r is crucial for balancing
computational efficiency and prediction accuracy.
Set the parameter r and establish the neighborhood
structure as shown in Equation (18). When predicting
a certain point, we use the neighbors of the point
within the distance r to establish a Kriging estimation
model, as shown in Figure 2.

Figure 2. The neighborhood structure of gas field.

Because the average MSE obtained by cross-validation
is the smallest, we choose the constant basis function
as the regression function and the EXP model as the
correlation function. The constant basis function as
follows.

f1(x) = 1, (p = 1). (19)

The general form of the correlation function as follow.

R(θ, w, x) =

n∏
j=1

Rj(θ, wj , xj). (20)

The form of the EXP model is:

Rj(θ, dj) = exp(−θj · |dj |), dj = wj − xj . (21)

Among various correlation functions available in the
DACE toolbox, we selected the EXP (Exponential)
model based on the following considerations:

1. Physical appropriateness: The exponential decay
characteristic of the EXP model aligns with
the diffusion behavior of gas concentration in
space, where the influence of a point decreases
exponentially with distance.

2. Comparative analysis: We compared four
commonly used correlation functions (Gaussian,
EXP, Linear, and Spherical) using 10-fold
cross-validation. The EXP model achieves the
best prediction accuracy while maintaining
reasonable computational efficiency.

3. Smoothness: The EXP model provides C1

continuity, suitable for describing the smooth
spatial variation of gas concentration fields.

3 Field Prediction Method
In this paper, three representative methods of the
traditional time series prediction model, machine
learning, and deep learning will be selected to predict
the gas concentration data at the detectors. The
Autoregressive Integrated Moving Average (ARIMA)
model, Gaussian Process Regression (GPR) model,
and Long Short-TermMemory (LSTM) neural network
model are combinedwith theMRF-Kfield construction
method to find the best field prediction method.

3.1 ARIMAModel
The basic principle of the ARIMA model is to treat
the data sequence formed by the prediction object
over time as a random sequence, and use a certain
mathematical model to approximately describe the
sequence. Once the model is identified, it can predict
the future value from the past and the present value
of the time series. It is aimed at the stationary time
series model. However, in real life, most time series
are non-stationary. Therefore, the data needs to be
differentiated to convert it into a stationary time series,
so the ARIMA model can be used to predict the
data. ARIMA model can make effective and accurate
short-term prediction according to the correlation of
data in different periods in the past. It makes up for
the problem of too many parameters in AR and MA
prediction, and has a wide range of applications in the
field of short-term prediction. Its form is as follows:

Yt = c+ Φ1Yt−1 + Φ2Yt−2 + · · ·+ ΦpYt−p

+ ξt + θ1ξt−1 + θ2ξt−2 + · · ·+ θqξt−q,
(13)

where c represents a constant, p represents the
autoregressive order, q represents moving average
order, and d represents the different order.
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The modeling process of an ARIMA model is as
follows.
Step 1: Test the stability of the data by ADF test.
Nonstationary time series can be transformed into
stationary time series by difference. If a time series has
stationarity after a different operation, it is a different
stationary time series, which can be analyzed by the
ARIMA model.
Step 2: Determine the order of the ARIMA model.
Generally, the values of p and q can be judged by
the Autocorrelation Function (ACF) graph and Partial
Autocorrelation Function (PACF) graph. However,
this method requires manual judgment, but the
manual judgment is uncertain in terms of time and
accuracy, so it is not suitable for field prediction. In
this paper, Akaike Information Criterion (AIC) is used
to make the model order from low to high within
the specified range. By calculating the AIC value
respectively, we determine the order with the smallest
AIC value as the appropriate order of the model.

AIC = 2k − 2 ln(L), (14)

Step 3: Estimate the parameters of the model. Usually,
correlationmoment estimation, least square estimation
and maximum likelihood estimation are used to
estimate the parameters of an ARIMA model. Then
verify the fitting effect of the model. If the model
completely or basically explains the correlation of the
data, the noise sequence of the model is white noise
sequence. If the obtained model fails the test, the
model should be refitted until it can pass the white
noise test.

3.2 GPRModel
Due to the convenience of the Gaussian process and
its kernel function, GPR has been widely used in
time series analysis. Given the training set D =
{(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}, we assume
that it follows the following GPR model.

y(i) = f(x(i)) + σy with ε ∼ N(0, 1), (15)

where f represents a Gaussian Process (GP) and f ∼
gp(u,K), σy represents the noise. Let

X = [x(1), x(2), . . . , x(n)]T , (16)
Y = [y(1), y(2), . . . , y(n)]T , (17)

we have
Y = f(X) + ε ∼ N(ux,Kxy), (18)
ux = [u(x(1)), u(x(2)), . . . , u(x(n))]T , (19)

Kxx =


K(x(1), x(1)) K(x(1), x(2)) · · · K(x(1), x(n))

K(x(2), x(1)) K(x(2), x(2)) · · · K(x(2), x(n))
... ... . . . ...

K(x(n), x(1)) K(x(n), x(2)) · · · K(x(n), x(n))

 ,
(20)

Kxy = Kxx + σ2yIn, (21)

where In represents the n-dimensional identity matrix.
Then we can get the posterior prediction distribution
on the test set as follows,

Y∗|X,X∗, Y ∼ N(u∗,K∗), (22)
u∗ = uX∗ +KT

XX∗(KXX + σ2yIn)−1(Y − uX), (23)
K∗ = KX∗X∗ −KT

XX∗(KXX + σ2yIn)−1KXX∗ . (24)

When GPR is used for time series prediction, the
values of the parameters are very important, which
mainly consist of three components: themean function
u(x, θu), the covariance functionK(x, x′, θK), and the
error term in the model σy. We use the maximum
likelihood method to obtain the estimation of Θ =
(θu, θK , σy).
The hyperparameters in the GPR model, including
the length scale of the kernel function and the
noise variance σ2, are optimized using the maximum
likelihood estimation (MLE) method. Specifically:
1. Hyperparameter optimization: The

hyperparameters θ = {l, σ2, σ2n} are learned
by maximizing the log marginal likelihood.

2. Optimization algorithm: We employ the
L-BFGS-B algorithm with multiple random
restarts (n = 10) to avoid local optima.

3. Validation: The optimized hyperparameters are
validated using a separate validation set to prevent
overfitting.

3.3 LSTM Neural Network Model
LSTM neural network is essentially a special Recurrent
neural network (RNN), which has more advantages in
solving the problem of long sequence data [35]. LSTM
and RNN are similar in neural network structure and
parameter training. Themain difference is in the nodes
of circulating neurons. As shown in Figure 3, it is a
typical LSTM neural unit C̃.
In the LSTM neural unit, Ct represents the internal
state, ht represents the external state, ft, it and ot
represent the forget gate, input gate, and output gate
value respectively. The mathematical expressions are
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Figure 3. LSTM neural unit.

as follows.

ft = sigmoid (Wf [ht−1, xt] + bf ) , (25)
it = sigmoid (Wi [ht−1, xt] + bi) , (26)
ot = sigmoid (Wo [ht−1, xt] + bo) , (27)

whereWf ,Wi andWo are weights matrices, bf , bi and
bo are bias vectors.
The forget gate controls the contribution of the internal
state at the t− 1 moment, the input gate controls the
contribution of the candidate state at the t moment,
and the output gate controls the contribution of the
internal state at the tmoment to the external state. The
calculation process of the LSTM is as follows.
Step 1: the values of the forget gate, input gate, output
gate, and candidate state are calculated based on the
external state ht−1 and the input at the tmoment.
Step 2: the internal state Ct−1 and the last step is used
to calculate the value of forget gate, input gate, and
candidate state to update the internal state Ct.
Step 3: the information is transported to the external
state ht through the current internal state and output
gate.

3.4 Construction of Field Prediction Method
The establishment process of the field prediction
method is as follows.
Firstly, this paper selects the representative methods
of traditional time series prediction, machine learning,
and deep learning to predict the gas concentration at
the detection point, which are the ARIMAmodel, GPR
model, and LSTM model respectively.
Then, we use the predicted gas concentration data at
the detectors to interpolate the spatial values through
the MRF-K field construction method. Finally, we
depict the change trend of the future field through
the predicted and interpolated data, so as to provide
emergency decision support for safety managers.

The above is the establishment process of the field
prediction method, which is composed of the time
series prediction model and field construction method.
The effect of the combination of the three time-series
prediction models and the MRF-K field construction
method will be described in detail in the next chapter
through the case analysis of a scaling model.

4 Case Analysis
A liquid ammonia gas leakage scale model is
established to obtain the changing data of the gas
concentration field. As shown in Figure 4, a total of 12
ammonia concentration detectors (the black dots) are
placed in the scale model. Ammonia gas is transmitted
to the model through the pipeline, and a regulating
valve is provided to control the speed of gas input to
the model.

Figure 4. A liquid ammonia gas leakage scale model.

The detectors set in the scaled model detect and record
the data of the concentration of the gas at the frequency
of 100Hz. The data collected through this model is
shown in Table 1.

Table 1. The data collected by the detectors.
Location t=0.01s t=0.02s t=0.03s t=0.04s . . . t=10.00s

1 1873.38 1869.02 1864.90 1873.15 . . . 1902.35
2 2638.59 2638.07 2619.90 2640.67 . . . 2651.72
3 1201.66 1199.01 1206.36 1205.34 . . . 1208.30
4 1421.35 1418.59 1431.76 1431.97 . . . 1570.90
5 640.62 631.05 627.00 618.92 . . . 650.12
6 763.27 777.06 772.90 764.03 . . . 778.10
7 1262.24 1263.47 1278.57 1267.19 . . . 1234.21
8 1343.96 1350.87 1352.13 1366.20 . . . 1258.86
9 1292.46 1298.69 1278.36 1291.63 . . . 1292.04
10 1251.30 1251.51 1257.08 1254.19 . . . 1258.02
11 1261.41 1258.93 1283.54 1257.90 . . . 1269.88
12 1219.05 1217.21 1218.84 1213.52 . . . 1220.89

The data at 12 locations at the same time is called as
a set of data. Next, the collected data will be used
to verify the rationality and superiority of the field
prediction model.
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Figure 5. The field prediction of the LSTM-MRF-K method.

4.1 Construction of ARIMA-MRF-K Model
When the ARIMA model is used for prediction, ADF
should be carried out in advance to check whether the
time series is stationary, and the order of the model
should be judged by AIC criteria. According to the
actual calculation results of the program, under the
training of the 100 sets of data, the ARIMA model
needs a lot of time to predict the data of 12 detectors in
the next 1 second (100 data), which has no application
value in actual production. Therefore, the ARIMA
model is abandoned as a component of the field
prediction method.

4.2 Construction of LSTM-MRF-K Model
In order to combine the LSTM model and the MRF-K
field construction method to form a field prediction
method with practical application value, we plan to

adopt the dynamic LSTM network training strategy
and three training prediction schemes to verify the
feasibility of the method.

In this paper, the training data of 500, 1000, and 1500
volumes are selected to train the LSTM neural network.
Under the condition of each data volume, the ammonia
gas concentration at the detectors in the future 10,
20, and 50-time units is predicted respectively. Each
prediction simulates that the detectors are constantly
receiving new data and the above prediction steps
will repeat 100 times. To reduce the running time of
the program, the trained network structure remains
unchanged before each update of training data, so as
to meet the actual needs of production.

The field prediction of the LSTM-MRF-K method
is shown in Figure 5. It can be seen that the gas
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Figure 6. The field prediction of the GPR-MRF-K method.

concentration near the pipeline increases rapidly,
but with the further diffusion of the gas, the gas
concentration in other areas gradually decreases and
tends to be stable. With the increase in step length,
the gas concentration also shows an upward trend.
Besides, with the continuous improvement of training
data, the prediction effect is getting closer and closer
to the actual value.

4.3 Construction of GPR-MRF-K Model
The GPR model is also trained with the same
prediction scheme as the LSTM model, where 500,
1000, and 1500 volumes of training data are selected
respectively to predict the ammonia gas concentration
at the detectors of 10, 20, and 50-time units in the
future. Each prediction scheme is executed 100 times to

simulate the real-time update data of the detectors and
predict the distribution of the future gas concentration
field.
The field prediction of the GPR-MRF-K method is
shown in Figure 6. The gas concentration near
the pipeline increases rapidly, but with the further
diffusion of the gas, the gas concentration in other areas
gradually decreases and tends to be stable. Besides,
with the continuous improvement of training data,
the prediction effect is getting closer and closer to the
actual value.

4.4 Comparison of Related Methods
Firstly, we also used LSTM-K (LSTM-Kriging) and
GPR-K (GPR-Kriging) field prediction methods to
construct ammonia concentration distribution fields.
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Table 2. Comparison of prediction effects of four methods.
Training Data

Volume
Prediction

Step Methods MSE RMSE R2 time (s)

150

10
LSTM-K 36172 190.19 0.8811 1990.854

LSTM-MRF-K 32464 180.18 0.8933 1820.421
GPR-K 14003 118.33 0.954 49.718

GPR-MRF-K 4660 68.26 0.9847 39.036

20
LSTM-K 36425 190.85 0.8802 2221.346

LSTM-MRF-K 30417 174.4 0.9 1859.954
GPR-K 13511 116.24 0.9556 49.772

GPR-MRF-K 4176 64.62 0.9863 40.546

50
LSTM-K 38295 195.69 0.8741 2322.784

LSTM-MRF-K 23961 154.79 0.9212 1940.305
GPR-K 17215 131.21 0.9434 49.746

GPR-MRF-K 6161 78.49 0.9797 40.794

100

10
LSTM-K 37135 192.7 0.8779 1749.03

LSTM-MRF-K 31923 178.67 0.895 1727.374
GPR-K 14931 122.19 0.9509 47.181

GPR-MRF-K 6064 77.87 0.9801 35.857

20
LSTM-K 40133 200.33 0.868 1761.947

LSTM-MRF-K 39021 197.54 0.8717 1745.176
GPR-K 14475 120.31 0.9524 45.856

GPR-MRF-K 5829 76.35 0.9808 36.29

50
LSTM-K 47333 217.56 0.8444 1862

LSTM-MRF-K 41289 203.2 0.8642 1856.88
GPR-K 17879 133.71 0.9412 45.579

GPR-MRF-K 7879 88.76 0.9741 42.876

50

10
LSTM-K 39197 197.98 0.8711 1706.729

LSTM-MRF-K 35817 189.25 0.8822 1697.938
GPR-K 13979 118.23 0.954 44.624

GPR-MRF-K 6027 77.63 0.9802 32.988

20
LSTM-K 42587 206.37 0.86 1733.195

LSTM-MRF-K 40027 200.07 0.8684 1713.018
GPR-K 14555 120.64 0.9521 42.649

GPR-MRF-K 6424 80.15 0.9789 33.064

50
LSTM-K 49027 221.42 0.8388 1828.985

LSTM-MRF-K 45265 212.76 0.8512 1823.879
GPR-K 1824 42.71 0.994 42.523

GPR-MRF-K 7894 88.85 0.974 33.288

The prediction results are shown in Figures 7 and 8
respectively. Then, in order to compare the prediction
effects of the four methods, we plan to use MSE and
program running time to evaluate, in which MSE is
used to measure the prediction accuracy and program
running time is used to measure the prediction speed,
the comparison results are shown in Table 2.
It can be seen from Table 2 that the GPR-MRF-K
method performs better than the other three methods
in the MSE and the program running time. The
program calculation time meets the requirements

of emergency decision-making in case of ammonia
leakage, and theGPR-MRF-K can timely and effectively
predict the future state of the field.
After determining the best choice of the field
prediction method, this paper selects the traditional
Spatio-temporal statistical method for effective
comparison. The spatiotemporal statistical method
is often used in some large-scale scenarios such
as ocean temperature, national air quality, global
ozone concentration, etc., but it is also applicable
to small-scale scenarios such as ammonia leakage.
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Figure 7. The field prediction of the LSTM-K method.

Perhaps the simplest way to perform Spatio-temporal
prediction would be to follow Tobler’s law and simply
average the data in such a way as to give more weight
to the nearest observations in space and time. The
most obvious way to do this is through inverse
distance weighting (IDW). The Spatio-temporal basis
function is also an important part of Spatio-temporal
statistical models. It uses the fitting and coupling of
time and spatial basis functions to predict the future
spatiotemporal field. The following is the comparison
between the two methods and the GPR-MRF-K
method proposed in this paper.

The IDW method needs to calculate the distance
between the interested node and the currently known
node in time and space. Because the spatial distance is
certain, if the time distance is too long, the time weight
will be too large, and the predicted value will tend

to be equal to the known node value. The MSE will
quickly increase with the increase of the number of
prediction steps. It can be seen from Figure 9 that IDW
cannot accurately describe the spatial change of the
field in the long prediction steps.

The effect of the next 10 steps predicted by the
Spatio-temporal basis function model is shown
in Figure 10. The MSE reached 483 after a
cross-validation. But its problem is the same as that
of the IDW method: due to the existence of the time
basis function, when predicting long steps, the time
basis function takes too much weight, which affects
the accuracy of long step prediction. At the same time,
the spatial temporary basis function model takes a
long time to calculate, and the prediction can reach
52s, which is not enough to meet the needs of the
emergency scenario of ammonia leakage.
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Figure 8. The field prediction of the GPR-K method.

Figure 9. The field prediction of the IDWmethod.
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Figure 10. The field prediction of the Spatio-temporal basis
function method.

5 Conclusion
In this paper, the MRF-K field construction method
and the GPR-MRF-K field prediction method are
proposed, which can quickly and accurately describe
and predict the field of gas distribution. Firstly, the
neighborhood structure of Markov random field is
introduced into the Kriging model to reduce the
computational complexity. Then, this paper combines
three time seriesmodels: ARIMA, LSTMandGPRwith
the Kriging model and the MRF-K field construction
method in order to select the best choice of field
predictionmethods. Next, through a scaledmodel case
of ammonia leakage, the superiority of the proposed
GPR-MRF-K method in calculation accuracy and
calculation speed is verified. Finally, in the scenario
of physical quantity monitoring and prediction, we
recommend using the GPR-MRF-K method proposed
in this paper.
In this study, the construction and prediction of
gas distribution field are studied by improving
and combining the existing methods. However,
surrogate models and time series prediction models
are developing rapidly. The method proposed in
this paper can be combined with the latest models to
obtain better results. Next, the optimization of model
hyperparameters is not discussed in detail in this
paper. The optimization method of hyperparameters
may bring a new breakthrough to the computational
efficiency. Finally, the method proposed in this paper
can be extended to other fields, such as the temperature
field in a confined space, the smoke concentration field
in the fire scene, the temperature and humidity field in
the drugwarehouse and so on to verify the universality
of the GPR-MRF-K method.
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