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Abstract

The capacity regeneration
in lithium-ion batteries is
leads to non-monotonic fluctuations in
capacity degradation trajectories, significantly
complicating accurate remaining useful life (RUL)
prediction. To address this challenge, this paper
proposes a hybrid prediction model based on
CEEMDAN-SSA-SVR-BiGRU. The method first
employs Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (CEEMDAN)
to decompose the original capacity sequence
into multiple Intrinsic Mode Functions (IMFs)
representing local regeneration fluctuations, and
a residual component (RES) referring to the
global degradation trend, thereby achieving
effective signal decoupling. Subsequently, distinct
prediction strategies are applied to different
components after decomposition. Support Vector
Regression (SVR) is utilized to capture nonlinear
local fluctuations, while Bidirectional Gated
Recurrent Unit (BiGRU) models long-term
dependencies. To further enhance the model
performance, the Sparrow Search Algorithm (SSA)
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is introduced to jointly optimize kernel parameters
and penalty factors in SVR, as well as architectural
hyperparameters in BiGRU. Experimental results
on the NASA lithium battery dataset demonstrate
that the proposed model achieves higher accuracy,
with Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), and Root Mean Square
Error (RMSE) no more than 0.0067, 0.0049, and
0.0094, respectively, significantly outperforming
the ablated models and some baseline models.
This study validates that the integration of signal
decomposition, component-specific modeling, and
hyperparameter optimization yields a significant
improvement in the accuracy and robustness of
the RUL prediction for lithium-ion batteries under
capacity regeneration.

Keywords: remaining useful life, capacity regeneration,
CEEMDAN, sparrow search algorithm, support vector
regression, bidirectional gated recurrent unit.

1 Introduction

Lithium-ion batteries serve as the primary power
source for new energy vehicles, portable electronic
devices, and energy storage systems. Owing to the
significant nonlinear and time-varying nature of their
performance degradation, the RUL prediction has
become a pivotal task in battery health management.
Currently, the RUL prediction methods for lithium-ion
batteries can be broadly categorized into three
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types, i.e., physic-based, data-driven and hybrid
approaches [1]. Model-based studies which construct
models based on the internal physicochemical
mechanisms of batteries, offer clear mechanistic
interpretability [2]. Ma et al. [3] combined Particle
Filter (PF) with the Mann-Whitney U test to
identify capacity regeneration points, utilizing an
autoregressive model and PF algorithm for lithium-ion
battery RUL prediction, where the capacity predicted
by the autoregressive model was used to update the
degradation model parameters of the PF algorithm.
Nevertheless, such methods typically entail complex
modeling processes and rely heavily on expert prior
knowledge, which restricts their generalizability in
practical applications.

In contrast, data-driven methods leverage historical
operational data and employ machine learning
techniques to uncover underlying degradation
patterns [4], thereby avoiding dependence on
complex internal battery characteristics and enhancing
their practical applicability in intricate real-world
application scenarios. Fang et al. [5] proposed
a least squares SVR algorithm for the prediction
of voltage variations in individual cells, which
resulted in a successful improvement of prediction
accuracy. Liu et al. [6] developed an improved SVR
method for predicting the self-discharge voltage
drop in lithium-ion batteries and demonstrated the
performance. Furthermore, Sun et al. [7] proposed
a novel fault prediction method named CNN-LSTM
based on Convolutional Neural Network, Long
Short-Term Memory and correlation coefficients,
where CNN extracts spatial features and LSTM learns
long-term dependencies. The prediction results on the
dataset demonstrated that the proposed CNN-LSTM
method achieves higher accuracy and reliability
compared to LSTM and BiLSTM models, exhibiting
significant potential for vehicle battery management
systems.

To combine the strengths of both physic-based and
data-driven paradigms, hybrid approaches have
been developed to enhance prediction accuracy
and robustness. Tian et al. [8] developed an
intelligent online RUL prediction method for lithium
batteries based on the artificial fish swarm algorithm
and PF, optimizing particle distribution to improve
prediction accuracy and convergence. Similarly,
Chang et al. [9] proposed a hybrid approach
integrating Unscented Kalman Filter (UKF), CEEMD,
and Relevance Vector Machine (RVM). The method
generates both prediction results and raw error

sequences via UKF, analyzes and constructs new
error sequences with CEEMD, and finally employs
RVM to predict and correct prognostic errors, with
experimental results validating its high reliability.
Although the aforementioned hybrid methods have
made significant progress in the field of RUL
prediction for lithium-ion batteries, there are still some
limitations and challenges in addressing the capacity
regeneration phenomenon.

In real-world battery degradation processes, capacity
regeneration manifests as a temporary recovery
of capacity following several cycles of rest or
low-load operation [10].  Driven by intricate
electrochemical mechanisms such as lithium-ion
redistribution, SEI film repair, and electrode stress
release, this phenomenon gives rise to non-monotonic
fluctuations in the capacity trajectory. Thereby, it
severely undermines the predictive performance
of traditional prediction models built on the
assumption of monotonic degradation behavior.
Current research efforts targeting the capacity
regeneration phenomenon in RUL prediction
predominantly focus on models that integrate signal
decomposition algorithms with machine learning
methods. For example, Yang et al. [11] employed
ensemble empirical mode decomposition (EEMD)
to decompose capacity data sequences and used
grey wolf optimizer (GWO) to optimize parameters
in SVR. Hence, an improved GWO-SVR model is
presented to reduce the interference of capacity
regeneration and improve RUL prediction accuracy.
Yao et al. [12] utilized particle swarm optimization
(PSO) to optimize the parameters in extreme learning
machine (ELM) and RVM, and then the optimized
ELM and RVM models are used to predict diverse
sequences respectively, aiming to mitigate the impact
of the capacity regeneration. However, PSO is
prone to falling into local optima, which impairs the
accuracy of RUL prediction results. Furthermore,
the performance of deep learning models is largely
contingent on hyperparameter tuning, making the
choice of an appropriate optimization algorithm
crucial in enhancing predictive performance. Xue et
al. [13] tested SSA on 19 benchmark functions and
compared its performance with other optimization
algorithms like GWO and PSO, and the results
demonstrated that SSA outperforms GWO and PSO in
terms of accuracy, convergence speed, and stability.

To some extent, these above studies have reduced
the prediction uncertainty incurred by the capacity
regeneration in lithium-ion battery degradation
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modeling and RUL prediction. However, such
methods still suffer from certain limitations when
confronted with the complex, variable, and stochastic
characteristics of battery capacity fluctuations. For
example, EEMD is prone to mode mixing issues,
which hinder the accurate analysis of battery capacity
data. This, in turn, leads to insufficient reliability and
adaptability of prediction results in the face of complex
real-world capacity regeneration scenarios. Therefore,
to improve the accuracy and stability of RUL prediction
in the context of capacity regeneration, it is imperative
to explore more accurate capacity decomposition
algorithms and design tailored model construction
strategies for lithium-ion battery degradation analysis.

To overcome the above limitations, this paper proposes
a novel lithium-ion battery RUL prediction method
based on CEEMDAN-SSA-SVR-BiGRU, with the

following specific contributions:

1) CEEMDAN is employed to decompose the original
lithium-ion battery capacity sequence, which enables
the effective decoupling of non-stationary capacity
signals into global degradation components and local
regeneration components, thereby separating capacity
regeneration fluctuations from long-term degradation
trajectories of lithium-ion batteries.

2) A hybrid SVR-BiGRU prediction model is
constructed to achieve accurate prediction in
accordance with the dynamic characteristics of
distinct decomposed components. Specifically, SVR is
specialized in capturing local nonlinear fluctuations,
while BiGRU is harnessed to model the long-term
temporal dependencies in the battery capacity
sequence.

3) To address the local optima problem of traditional
optimization algorithms, we incorporate the SSA for
the global optimization of hyperparameters in both
SVR and BiGRU models, which enhances model
convergence efficiency and prediction accuracy of the
hybrid model.

The remainder of this paper is structured as
follows. Section 2 elaborates on the CEEMDAN-based
capacity decomposition. Section 3 introduces the
proposed CEEMDAN-SSA-SVR-BiGRU prediction
framework.  Section 4 provides comprehensive
experimental validation and comparative analyses.
Finally, conclusions are presented in Section 5.
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2 Capacity Based on

CEEMDAN

Based upon EEMD [14], CEEMDAN is designed to
more effectively address the mode mixing problem
inherent in traditional empirical mode decomposition,
enabling the stabilization of non-stationary signals
[15]. In the CEEMDAN framework, the original time
series is defined as z(t) , and E; represents the i-th
modal component obtained by decomposition using
the EMD algorithm. The calculation steps are as
follows:

Decomposition

Step 1: Add white noise Syw’ with a noise coefficient
of §p to x(t) :
z'(t) N

= x(t) + dow'(t) i=1,2,..

(1)
Step 2: Perform EMD decomposition on z‘(t) and
calculate the average to obtain the first modal
component I M F1 :

N
1 i
IMFy =+ z; IMFi(t) 2)
Then the first RES 4 (¢) is calculated as follows:
r1(t) = z(t) — IMFi(t) (3)

Step 3: Perform EMD decomposition for ri(t) +
§1E1[w(t)] and calculate the average to obtain the
second modal component M F

Z E{r(t)

Then we have the second RES ry(t), which is given by:

ra(t) =r1(t) (5)

IMFy(t +6E W ®]}  (4)

— IMPFy(t)
Step 4: Repeat Steps 2 to 3. The m-th RES and the

(m + 1)-th modal component are expressed as:

TMF,(t) M (6)

Tm(t) = rm_1(t) —

Z El {’I”m

Step 5: Repeat Step 4 until the RES shows a monotonic
trend, and the original signal is decomposed into:

M
t)=> IMFpu(t)+
m=1

m=1,2,..

IMF i (t £) + O B |w

W (@)

R(t) (8)
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Figure 1. Flowchart of capacity decomposition based on
CEEMDAN.

in which, M is the number of modal components, and
R(t) is the final RES. The specific process is shown in
Figure 1.

To decompose the non-stationary capacity signals,
we implemented the CEEMDAN algorithm on three
specified lithium-ion battery cells from the NASA
battery dataset. As illustrated in Figure 2, the
capacity signals are decomposed into 6 IMFs and
a RES. It is obviously seen that the RES shows a
decreased curve that is consistent with the battery
degradation trajectory. Figure 3 demonstrates that the
RES captures the global degradation trend of battery
capacity, while the IMFs reflect local regeneration
characteristics. Consequently, the RES is defined as the
global degradation indicator, and the IMF components
are characterized as local regeneration indicators.

3 RUL Prediction Model
CEEMDAN-SSA-SVR-BiGRU

3.1 Support Vector Regression

Based on

SVR is a supervised learning algorithm based on
support vector machine theory, designed for solving
regression problems [16]. By adhering to the structural
risk minimization principle, SVR exhibits significant
advantages in addressing nonlinear problems. For a
given training dataset, the SVR algorithm employs
nonlinear mapping to project the data from a
low-dimensional input space to a high-dimensional
feature space [17]. Consider a dataset D = ((xi, ;)i
, where each input z; € R" and its associated output
y; € R. An SVR function is characterized by a linear
mapping, and defined as:

flzi) =w- (i) +b 9)

where w , and b are the weight vector and bias vector
respectively. The nonlinear function ¢ maps the input
x; to a high-dimensional feature space. The SVR can
be formulated as:

1 -
min o o] +CY Le(f(xi) — i)

=1

(10)

where C'is the penalty factor, (e > 0) is the maximum
allowable regression error, and /. is the sensitivity loss
function, which is expressed as:

le(z) = { 0,
2| — e,

Then, the slack variables &; and &; are introduced and
Eq.10 can be rewritten as:

|z| <e

otherwise

(11)

S B a :
— C i i 12
Jnin, 5 lw]|* + ;(f +&) (12)
f(zi) —ys §€+é}
s.t. yi — f(z) <e+& (13)

£>0,6>0, i=1,2,..,n

By introducing Lagrangian multipliers and kernel
functions, the objective function is transformed into its
dual form.

ot {zwai ) =0

. . (14)
0<a;,a; <C,i=1,2,....n

where «; and &; are Lagrange multipliers, and the
kernel function can transform the inner product
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Figure 2. Decomposition results based on CEEMDAN.
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Figure 3. Decomposition diagram of B0005.

operations in the low-dimensional space into kernel

function computations in the high-dimensional space.

After minimizing the Lagrangian function, the SVR
expression can be formulated as follows:

n

> (@i, @)K (i, ) + b

=1

fz) = (15)

3.2 Bidirectional Gated Recurrent Network

The gated recurrent unit (GRU), as a variant of
recurrent neural network, comprises reset and update
gates [18]. The reset gate determines the integration
of new information with historical memory, while
the update gate regulates the utilization of current
state information relative to historical temporal data.
The gating architecture enables efficient extraction of
temporal features while maintaining lower parameter
complexity and diminished computational demands
[19]. The basic structure of GRU is shown in Figure 4
[20], and the unit output &, at time ¢ can be obtained
as follows:

2t =o(W.q, + Ushy—1 + by) (16)
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Ty = O'(qu;g + Urhtfl + br) (17)
¢y = tanh(Weq; + r¢(Us - he—1) + be) (18)
hy=c; ® (1—2¢)+hs—1 © 2 (19)

where ¢; is the input capacity at time ¢, and z, ¢, ¢t
are the update gate output, reset gate output, and
candidate variable, respectively. W,, W, and W,
denote the weights of the update gate, reset gate, and
candidate variable with the input. U, b,, U,, b, U,
and b, represent the weights and biases of the update
gate, reset gate, and candidate variable, respectively.
The tanh in Eq.18 is the hyperbolic tangent function,
and ©® in Eq.19 denotes the dot product operation.

i [ 1,

>

g,

Figure 4. Gated recurrent unit.

To utilize the reverse capacity time series, a
bidirectional GRU network is adopted, the forward
and backward recurrent layers are used to acquire the
hidden state through a splicing operation. On this
basis, the input of the forward GRU is q;, so that the
forward output is obtained in the following Eq.20:

e =GRU(q)hiy), t=1,2,..,L  (20)
where G Rﬁ is the expression of the forward GRU, hg
is initialized to 0. Correspondingly, the reverse output
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is written as:

e = GRU(q heer), t=L,L—1,.,1  (21)
where GRU is the expression of the backward GRU
and the final hidden layer output h; is defined as:

o= [ 5]

(22)

Thus, the forward and backward lithium-ion battery
capacity sequences are fused to promote the efficiency
of information usage, improve the capacity prediction
performance of the classical GRU. Therefore, the
capacity ¢r4+1 can be derived through hidden
full-connected layers, which can be shown as:

dr41 =17 (ﬁt) —¢ (Wu (5 (Wlfzt + bl) ) + bu)
(23)

where 7 is the mapping function of fully connected
layers, ¢ is the activation of each fully connected
layer, W, and b; are the weight matrix and bias of
the first fully connected layer, and W, and b, are the
weight matrix and bias of the u-th fully connected layer,
respectively.

3.3 Hyperparameter optimization with SSA

SSA is an intelligent optimization algorithm that
simulates the foraging and anti-predation behaviors
of sparrow populations. This algorithm classifies the
population into three distinct roles i.e., discoverers,
followers and vigilantes [21].  Additionally, it
incorporates an alert mechanism to facilitate danger
and population migration. Discoverers are highly
adaptive individuals within the sparrow population
whose primary function is to locate food sources and
communicate the positions of these sources to follower
individuals. Discoverers typically account for 10% and
20% of the total sparrow population. The position
update for discovers is expressed as follows:

i+ Xfi-exp(557) R<ST
g XL+Q-L R> ST

where ¢ denotes the current iteration number, X;; is the
position of the i-th sparrow in the j-th dimension, the
variable o is defined as a uniformly distributed random
variable over the interval (0,1]. M is the maximum
number of iterations, () is a positive random number,
Lisal x jmatrix. R € [0,1] and ST € [0.5,1] are
defined as warning or safety value, respectively.

(24)

The position update of followers is as follows:

Xfuijfj)
72

R N

1>

Q-exp(

N3

t+1 __
X = (25)

|3

where X,,; denoting the iterated global worst position,
Xp; is the optimal position in iteration. Aisa 1l x j
matrix with values of either 1 or -1 and we have A" =
AT (AAT) 7

Upon detecting danger, a sparrow initiates an alarm
signal to summon the vigilante individuals within the
population. Accordingly, its position is updated as:

Xi;+ 8 <ijf )fgj) fi> 1y

¢ X=X B
X+ ke (Gtgse) =t

where Xj; is the global optimal position, 3 is the step
control parameter, k is a uniform random number and
k € [-1,1], ¢ is the minimum actual number, and f;
and f,, are the best and worst fithess values of the
current sparrow population, respectively. The specific
process is shown in Figure 5.

t+1 _
X = (26)

SVR and BiGRU models exhibit strong dependence
on their hyperparameter configurations to achieve the
optimal prediction performance. The most common
way is to manual hyperparameter tuning according
to empirical knowledge, which is time-consuming.
Moreover, it is largely difficult to ensure the accuracy
since there are some model parameters related
to its architecture. Thus, the optimization for
hyperparameters presents a nontrivial challenge. We
propose the hyperparameter optimization of SVR and
BiGRU models independently through SSA, with the
objective of obtaining optimal models to enhance the
prediction accuracy [22].

The hyperparameter optimization process can be
divided into the following steps:

Step 1: Determine the hyperparameters in SVR and
BiGRU to be optimized by SSA, which involve the
penalty factor C' and radial basis kernel function
parameter o in the SVR model, as well as parameters
such as the number of network layers, number of
neurons, and dropout rate in the BiGRU model.
Meanwhile, initialize the SSA parameters.

Step 2: Select RMSE as the fitness function. RMSE
(Root Mean Square Error) is defined as the square
root of the average of the squared differences between
predicted and actual values, as shown in Eq.27, where
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Figure 5. Flowchart of SSA.

C; and C‘t represent the actual and predicted capacity
values, respectively, and n is the length of the test
sample. The initial fitness of each sparrow was
computed, with the optimal fitness value and its
corresponding sparrow position being preserved.

fitness = (27)

1 & 5
- E (et — Ct)2
n

t=1

Step 3: The positions of discoverers, followers, and

individual from the current population is subsequently
selected as the best solution for the present iteration.

Step 5: A termination check is performed to determine
whether the optimal fitness has been achieved
or the maximum number of iterations has been
reached. If either condition is satisfied, the optimal
hyperparameters are returned. Otherwise, return to
Step 3.

3.4 CEEMDAN-SSA-SVR-BiGRU Prediction

Model

The RUL prediction flowchart of lithium-ion battery
based on the CEEMDAN-SSA-SVR-BiGRU is shown in
Figure 6, and expressed as follows.

(1) During data preprocessing, the dataset is first
partitioned as the training and test sets, and then
normalized. The proposed CEEMDAN is adopted
to decompose NASA battery training datasets and
generate multiple IMFs and RESs.

The lithium-ion battery dataset is chronologically
partitioned, with the first 50% allocated as the training
set and the remaining 50% as the test set. The raw
capacity data of the training set is normalized to the
interval [0,1] using Eq.28:

X — Tmin
Lnorm =

(28)

Tmax — Lmin
where z represents the raw data, while zpyin and
Tmax denote the minimum and maximum values
of the dataset, respectively. The training set was
decomposed by employing the CEEMDAN method
from the PyEMD library. This process yields multiple
IMF components (IMF1, IME2,..., IMEN) and one RES.

(2) Initialize SSA parameters, determine the
hyperparameters with their value ranges for both SVR
and BiGRU models and then optimize them via SSA.

The SSA parameters are initialized with a population
size of 30, maximum iterations of 50, discoverer
proportion of 10%, follower proportion of 80%,
vigilante proportion of 10%, and warning value of
0.5. SSA is employed to optimize SVR and BiGRU
respectively. For SVR, the radial basis function is
selected as the kernel, with the kernel parameter and
penalty factor defined as tunable parameters. For
BiGRU, the number of hidden units, learning rate,
batch size, dropout rate, and time steps are designated

vigilantes are updated using Eq.24, 25, and 26, as the optimizable hyperparameters. The specific

respectively.

Step 4: The fitness value of each individual is
computed to evaluate its quality. The optimal
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hyperparameter ranges are provided in Table 1.

(3) The IMF and RESs are fed into SVR and BiGRU
models with the optimal hyperparameters for training,
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Figure 6. Prediction flowchart of CEEMDAN-SSA-SVR-BiGRU.

Table 1. Hyperparameter ranges for SSA optimization.

Hyperparameter Range

Penalty Factor [0.01, 100]

Kernel Parameter [le-4,1]

Number of Hidden Layer [16,32, 64, 128]

Units

Number of Layers [1,2,3,4]

Learning Rate [1e-4, 5e-4, 1e-3, 5e-3, 1e-2]
Batch Size [10, 20, 50, 100]

Dropout rate [0.05, 0.10, 0.15, 0.20]

Time Step [5, 10, 15, 20]

respectively. The training data for the SVR model is
structured into supervised learning format using a
sliding window approach with a window size of 10,

where the previous 10 time steps are utilized to predict
the next value. Each IMF component is normalized
individually. The SVR model is trained with the
optimal hyperparameters obtained by SSA to forecast
IMF values from the historical sequences, effectively
capturing nonlinear degradation characteristics while
balancing fitting capability and generalization. For
the BiGRU model, the training utilizes SSA-optimized
hyperparameters, with input being three-dimensional
residual sequences constructed by sliding windows
(samples x time steps x features). The model
employs bidirectional GRU layers for temporal feature
extraction, Dropout layers for overfitting prevention,
and the Adam optimizer to minimize the MAE
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with adaptive learning rates. Early stopping is
implemented, which implies that the training halts
if the validation loss fails to be improved for 10
consecutive epochs, and GPU acceleration is applied.
The final model captures long-term dependencies
in RESs through multiple iterations.The predicted
IMFs and RESs are reconstructed via CEEMDAN and
denormalized to generate the final capacity prediction.

4 Experiment analyses and Comparisons

4.1 Data description

The proposed CEEMDAN-SSA-SVR-BiGRU prediction
method was evaluated on the publicly available NASA
battery dataset. To capture the aging process of
lithium-ion batteries, the internal parameters such
as capacity, along with operational data including
current, voltage, and resistance, were measured across
various operating conditions and charge-discharge
cycles. The present study employs a publicly available
NASA battery dataset to validate the effectiveness of
the proposed prediction method. Table 2 summarizes
the experimental operating conditions for all NASA
batteries.

Here, we select the first group dataset and this
dataset comprises four lithium-ion batteries (BO005,
B0006, B0007, and B0018) with a rated capacity of
2Ah. All cycling tests were conducted under a
constant ambient temperature of 24°C, with the specific
charge-discharge processes. In the charging stage,
a constant current-constant voltage (CC-CV) regime
was implemented, commencing with a 1.5A constant
current charge until the battery voltage reached 4.2V,
followed by a constant voltage charge maintained until
the current decayed to 20mA. In the discharging stage,
discharge was performed at a constant current of 2 A
until the voltage fell to the cut-off threshold. Since cell
B0007 did not reach failure threshold during testing,
this study exclusively utilizes data from B0005, BO006,
and B0018 for experimental analysis.

4.2 Ablation Experiment

The RUL prediction experiment utilizes three
lithium-ion battery datasets (B0005, B0006, and
B0018) from the NASA public dataset.  The
end-of-life threshold is defined as 70% of the
nominal capacity and equals to 1.4 Ah, with the
prediction starting point set at 50% of the data
length. To evaluate the contributions of different
submodules, the proposed model is compared
against four baseline models through ablation studies,
ie, SSA-SVR, SSA-BiGRU, CEEMDAN-SSA-SVR,
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and CEEMDAN-SSA-BiGRU. Figure 7 presents
the RUL prediction results for the three battery
units, where M1 denotes SSA-SVR, M2 represents
SSA-BiGRU, M3 corresponds to CEEMDAN-SSA-SVR,
M4 indicates CEEMDAN-SSA-BiGRU, and MO refers
to the proposed CEEMDAN-SSA-SVR-BiGRU model
with the failure threshold set at 1.4 Ah. As shown in
Figure 7, the prediction curve of model MO0 achieves
a closer alignment with the actual battery capacity
values in comparison with the curves of other models.

4.3 Model Evaluation

To comprehensively evaluate the proposed method,
MAE, MAPE, and RMSE are employed as evaluation
metrics. Smaller values for these metrics indicate
better predictive performance [23]. The corresponding
calculation of these metrics are as follows:

MAE = %Z‘ct—a’ (29)
t=1
1 “|C -G,
MAPE = — ; G (30)
RMSEJ:LZn:(Ctay (31)
t=1

where C; and a represent the actual and predicted
capacity values, respectively; and n denotes the length
of the test samples.

To conduct a quantitative assessment of prediction
performance, the MAE, MAPE, and RMSE were
calculated for all five models, and the corresponding
results are given in Table 3. It can be noted that the
CEEMDAN-SSA-SVR-BiGRU model achieves superior
performance across all evaluation metrics compared
to the other four models.

(1) Analysis of prediction results based on capacity
decomposition

In Table 3, neither Model M1 nor Model M2 considers
capacity decomposition, while the remaining three
models perform RUL prediction based on capacity
decomposition with CEEMDAN. It is evident that
the prediction errors of the models M3, M4 and M0
are generally smaller than those of models without
CEEMDAN. For the B0005 battery, model M3 achieves
a relative reduction of 0.0090 in MAE, 0.0064 in
MAPE and 0.0097 in RMSE compared with model
M1. The underlying reason for this is that the capacity
decomposition algorithm not only achieves effective
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Figure 7. Results of ablation experiments.

Battery Remaining Capacity Curve
191 1

— 80018

Remaining Capacity

0 20 40 60 80 100 120 140

(c) Prediction outcome of B0O018

Table 2. Experimental conditions for NASA dataset.

Battery Temperature/°C'  Charge current/A Discharge current/A  Cut-off voltage/V
B05, B06, B07, B18 24 1.5 2 27,25,22,25
B25, B26, B27, B28 24 1.5 4 2,22,25,27
B29, B30, B31, B32 43 1.5 4 2,22,25,27
B33, B34, B36 24 1.5 4,2 2,22,27

B38, B39, B40 24 1.5 1,2,4 22,25,27

decomposition of lithium battery capacity data but also
counteracts the impact of the capacity regeneration
phenomenon on the accuracy of prediction results.

(2) Analysis of prediction results based on different
methods

Table 3 further illustrates significant performance
discrepancies among three models in consideration
of CEEMDAN. In relation to battery B0005, model
MO attains a reduction of 0.0010, 0.0008, and 0.0008
across the three evaluation metrics when compared
to M3, and a reduction of 0.0090, 0.0066, and 0.0088
in comparison with model M4. This superiority
stems from the complementary strengths of SVR in
predicting local capacity regeneration components
and BiGRU in modeling global capacity degradation
trends, thereby demonstrating the effectiveness of the
integrated CEEMDAN-SSA-SVR-BiGRU framework
for accurate lithium-ion battery RUL prediction.

4.4 Comparative Experiments

To further validate the effectiveness of the proposed
model, a series of comparative experiments were
conducted with three established RUL prediction
methods(CNN-GRU [24], BiGRU-Transformer [25]
and EEMD-GWO-SVR [11]) under the same datasets
and consistent prediction starting points.  The

prediction results and corresponding errors are shown
in Figures 8 and 9, respectively.

Battery Remaining Capacity Curve

B0005

CNN-GRU
BiGRU-Transformer
EEMD-GWO-SVR

CEEMDAN-SSA-SVR-BIGRU

145+
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(
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Figure 8. RUL prediction results of various models.

As visually depicted in Figures 8 and 9, the proposed
model manifests significantly diminished prediction
errors (the error is defined as the difference between
the actual value and the predicted value) in handling
capacity regeneration phenomena, as compared to
other methods. This performance advantage arises
from the CEEMDAN decomposition technique,
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Table 3. Evaluation metrics of different models.

Battery Model MAE MAPE RMSE
M1:SSA-SVR 0.0157 0.0111 0.0184
M2:SSA-BiGRU 0.0232 0.0169 0.0279

B0005  M3:CEEMDAN-SSA-SVR 0.0067 0.0047 0.0087
M4:CEEMDAN-SSA-BiGRU 0.0147 0.0105 0.0167
MO:CEEMDAN-SSA-SVR-BiGRU  0.0057 0.0039  0.0079
M1:SSA-SVR 0.0143 0.0105 0.0223
M2:SSA-BiGRU 0.0443 0.0347 0.0561

B0006 ~ M3:CEEMDAN-SSA-SVR 0.0071 0.0052  0.0091
M4:CEEMDAN-SSA-BiGRU 0.0337 0.0261 0.0391
MO:CEEMDAN-SSA-SVR-BiGRU  0.0067 0.0049  0.0093
M1:SSA-SVR 0.0104 0.0073 0.0219
M2:SSA-BiGRU 0.0317 0.0226 0.0348

B0018  M3:CEEMDAN-SSA-SVR 0.0071  0.0050 0.0102
M4:CEEMDAN-SSA-BiGRU 0.0185 0.0132 0.0212
MO:CEEMDAN-SSA-SVR-BiGRU  0.0067 0.0047  0.0094

Error

CNN-GRU |
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EEMD-GWO-SVR

-0.08 + CEEMDAN-SSA-SVR-BIGRU |
- = =B0005

-0.06 [
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Figure 9. Error curves of various models.

which mitigates the negative impacts of capacity
regeneration on prediction accuracy effectively.
Although the EEMD-based decomposition strategy is
taken into account in the EEMD-GWO-SVR model, it
depends on a single predictive model SVR that fails
to achieve optimal performance for all components.
In contrast, our framework strategically integrates
SVR for capturing local capacity regeneration trends
with BiGRU for characterizing global capacity
degradation trajectories. This synergistic integration
enables substantial improvement in RUL prediction
accuracy for lithium-ion batteries. ~Furthermore,
the proposed methodology not only tackles the
issues posed by capacity regeneration phenomena
but also enhances the RUL prediction accuracy.
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A comparative evaluation conducted against five
models-namely CNN-GRU, BiGRU-Transformer,
EEMD-GWO-SVR, Temporal and Differential Attention
Network (TDANet) [26], and Gaussian Process
Regression Model Based on Ant-Lion Optimization
Algorithm (ALO-GPR) [27]-confirms the superior
predictive performance of our developed approach,
with detailed MAE and RMSE results shown in Table 4.
As is clearly illustrated in Table 4, the proposed model
attains markedly lower MAE and RMSE values than
the other five benchmark models. These results
highlight the enhanced capability of our approach
in dealing with datasets characterized by capacity
regeneration phenomena, thereby confirming the
effectiveness of the proposed model.

Table 4. MAE and RMSE of predictive models.

Prediction model MAE RMSE
CNN-GRU 0.0066 0.0087
BiGRU-Transformer  0.0080 0.0143
EEMD-GWO-SVR 0.0076  0.0096
TDANet 0.0101 0.0145
ALO-GPR 0.0060 0.0093
The proposed model 0.0057 0.0079

5 Conclusions

To address the challenge of improving RUL prediction
accuracy for lithium-ion battery in the presence
of capacity regeneration scenario, this paper
develops a novel CEEMDAN-SSA-SVR-BiGRU
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framework. The methodology first decomposes
battery capacity degradation time-series data
with CEEMDAN technique to extract distinct
local capacity regeneration components and
global capacity degradation components. These
decomposed sub-components are subsequently
predicted individually. An SSA-optimized SVR is
employed for local capacity regeneration prediction,
while a BiGRU model is utilized for global capacity
degradation prediction. The final RUL prediction is
obtained by reconstructing the predictive outputs of
these individual components. Extensive comparisons
assessments in ablation experiments demonstrate the
superior performance of the proposed model across
three battery units, which attains MAE, MAPE, and
RMSE values of less than 0.0067, 0.0049, and 0.0094,
respectively. Furthermore, the proposed model also
exhibits a competitive advantage when compared
against the previously well-established methods. The
experimental findings confirm that the proposed
CEEMDAN-SSA-SVR-BiGRU framework markedly
elevates RUL prediction accuracy and provides a
viable and effective strategy for the estimation of
lithium-ion battery lifespan in practical applications.
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