

EDITORIAL

Editorial: Summary of 2025

Rui Peng^{1,*}

¹ School of Economics & Management, Beijing University of Technology, Beijing 10083, China

Founded in May 2025, our journal *ICCK Transactions on Systems Safety and Reliability* has already published two issues. The published papers include both review papers and original research papers. These papers shed light on the state-of-art researches on the safety and reliability of various important systems, such as transportation systems, ecosystems, production systems, and computing systems. Some of them focus on pure reliability modelling methods whereas some others care about related optimization problems, such as maintenance strategy determination.

Specifically, there are 3 review papers. Gao et al. [1] focus on the recent works related to the operation of metro systems, which include the review of a series of works on vulnerability of metro systems. The challenges in current researches are identified and future research directions are suggested. Gao et al. [2] reviews the recent works on routing optimization of UAVs (Unmanned aerial vehicles), where lots of works consider different types of uncertainty and impacts that may cause failure of UAV missions. Given that the UAVs are more and more prevalent in different applications, there are a lot of future researches to be done. Mo et al. [4] review the recent works on the performance analysis of computing systems, where typical methods are identified and future directions

are discussed.

There are 6 original research papers. Zhou et al. [7] proposes a deep learning framework based on a multi-branch serial-parallel fusion of CNN-BiLSTM-Transformer architectures for remaining residual life estimation. Experiments conducted on the C-MAPSS aero-engine dataset and the A123 lithium battery dataset validate the effectiveness of the proposed method. Zhao et al. [9] present a hybrid approach for remaining useful life (RUL) prediction of lithium-ion batteries, addressing the challenge of capacity regeneration through CEEMDAN decomposition, component-specific modeling with SVR and BiGRU, and hyperparameter optimization via SSA. Validation on the NASA dataset demonstrates superior accuracy and robustness compared to baseline models. Liang et al. [3] focuses on the preventive maintenance and competitive strategies in IIoT-enabled after-sales markets. Specifically, an additive degradation model is proposed to characterize the internal deterioration of products and the impact of efforts into preventive maintenance. It then introduces a sequential game model based on the IIoT platform, examining interactions between manufacturers and cooperative competitors under three competitive schemes. The profit and reliability functions of manufacturers and cooperative competitors under each competition scheme are analyzed. Zhao [6] focuses on the sustainability of ecosystems based on business model innovation, proposing a framework

Submitted: 31 December 2025

Accepted: 07 January 2025

Published: 20 January 2026

Vol. 2, No. 1, 2026.

10.62762/TSSR.2025.899033

*Corresponding author:

Rui Peng

pengrui1988@bjut.edu.cn

Citation

Peng, R. (2025). Editorial: Summary of 2025. *ICCK Transactions on Systems Safety and Reliability*, 2(1), 1-2.

© 2025 by the Author. Published by Institute of Central Computation and Knowledge. This is an open access article under the CC BY license (<https://creativecommons.org/licenses/by/4.0/>).

for achieving sustainable development goals within interconnected commercial networks. Wang et al. [5] introduces a novel approach for enhancing production decision-making by applying Reinforcement Learning to optimize the Economic Manufacturing Quantity (EMQ) model within discrete-time production-inventory systems. Numerical simulations show that the suggested Reinforcement Learning model surpasses conventional EMQ models and steady-state probability models in both convergence speed and cost-effectiveness. Li et al. [8] conduct a reliability analysis of non-invasive continuous glucose monitoring (CGM) systems using the Design Failure Mode and Effects Analysis (DFMEA) method. By decomposing key functional modules, identifying potential failure modes, and prioritizing risks via Risk Priority Numbers (RPNs), the study proposes targeted improvements for high-risk modes to enhance system reliability and patient safety in diabetes management.

In the year to come, *ICCK Transactions on Systems Safety and Reliability* welcome more submissions on the safety and reliability of critical systems.

Data Availability Statement

Not applicable.

Funding

This work was supported without any funding.

Conflicts of Interest

The author declares no conflicts of interest.

AI Use Statement

The author declares that no generative AI was used in the preparation of this manuscript.

Ethical Approval and Consent to Participate

Not applicable.

References

[1] Gao, K., Wu, D., Zhang, S., Peng, R., & Wu, S. (2025). The State-of-the-Art Development and New Challenges: Operations Management of Metro Systems. *ICCK Transactions on Systems Safety and Reliability*, 1(1), 4-20. [\[CrossRef\]](#)

[2] Gao, Y., Li, S., Liu, W., & Zhou, H. (2025). State-of-the-art advances and emerging challenges in UAV routing optimization: A comprehensive review. *ICCK Transactions on Systems Safety and Reliability*, 1(1), 43-62. [\[CrossRef\]](#)

[3] Liang, H., Zhao, Y., & Xu, M. (2025). Preventive maintenance and competitive strategies in IIoT-enable after-sales markets: A degradation modeling and game theoretic approach. *ICCK Transactions on Systems Safety and Reliability*, 1(1), 21-42. [\[CrossRef\]](#)

[4] Mo, Y., Fan, Y., Miao, C., Chynybaev, M., Gui, F., Zhang, R., ... & Chymyrov, A. (2025). Performability Analysis for Large-Scale Multi-State Computing Systems: Methodologies, Advances, and Future Directions. *ICCK Transactions on Systems Safety and Reliability*, 1(2), 81-97. [\[CrossRef\]](#)

[5] Wang, L., Sun, F., & Li, J. (2025). Optimization and control of discrete-time production-inventory systems using reinforcement learning. *ICCK Transactions on Systems Safety and Reliability*, 1(2). [\[CrossRef\]](#)

[6] Zhao, J. (2025). Beyond firm boundaries: Orchestrating ecosystem sustainability through business model innovation. *ICCK Transactions on Systems Safety and Reliability*, 1(1), 63-80. [\[CrossRef\]](#)

[7] Zhou, T., & Yang, S. (2025). Remaining useful life prediction using optimized multi-source features and model fusion. *ICCK Transactions on Systems Safety and Reliability*, 1(2). [\[CrossRef\]](#)

[8] Li, M., Song, G., Liu, P., Zhu, K., & Zhang, A. (2025). Non-invasive Continuous Glucose Monitoring (CGM) System Reliability Analysis Based on the DFMEA Model. *ICCK Transactions on Systems Safety and Reliability*, 1(2), 128-135. [\[CrossRef\]](#)

[9] Zhao, F., & Dai, X. (2025). A Hybrid RUL Prediction Approach for Lithium-ion Batteries Based on CEEMDAN-SSA-SVR-BiGRU. *ICCK Transactions on Systems Safety and Reliability*, 1(2), 136-148. [\[CrossRef\]](#)

Rui Peng received the Ph. D degree in Industrial and Systems Engineering, from National University of Singapore in 2011. He is a professor in School of Economics & Management, Beijing University of Technology. He is listed as a highly cited Chinese Scholar by Elsevier for 7 consecutive years. He is the Editor-in-Chief of *ICCK Transactions on System Safety and Reliability*. (Email: pengrui1988@bjut.edu.cn)