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Abstract
The widespread uptake of the Internet of Medical
Things (IoMT) has transformed healthcare by
facilitating real-time monitoring and data-driven
decision-making, but maintaining data privacy
and security is a vital challenge because data
breaches and unauthorized access are on the
rise. Differential Privacy (DP) and Federated
Meta-Learning (FML) are being seen as promising
candidates to tackle these issues with the model
performance maintained, wherein DP adds
noise to sensitive data in a controlled manner
for rigorous privacy assurance, and FML allows
for personalized learning across distributed
IoMT devices without the need for patient
data centralization. This survey delves into the
combination of DP and FML for preserving privacy
in medical IoT use cases by presenting noteworthy
methodologies like noise mechanisms, adaptive
privacy budgets, and meta-learning strategies
designed for diverse healthcare data. We also
review state-of-the-art techniques, assessing their
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performance in maintaining privacy, avoiding
adversarial threats, and maximizing model utility
while presenting challenges like computational
overhead, communication efficiency, and the
privacy-accuracy trade-offs.
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1 Introduction
1.1 Emergence of Medical IoT and Privacy Issues
The Internet of Medical Things (IoMT) has grown at
a fast pace, fueled by innovation in wearable health
devices, remote monitoring systems, and intelligent
medical sensors. Smartwatches, continuous glucose
monitors, ECG patches, and home health monitoring
systems are now capable of tracking patients’ health
parameters in real-time [1]. These technologies are
revolutionizing healthcare by providing continuous,
non-invasive monitoring, early disease detection,
and personalized medical interventions. With
growing adoption of telemedicine and remote patient
monitoring, IoMT will soon be the cornerstone of
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healthcare.
The information from IoMT devices is extremely
sensitive, including vital signs (such as heart rate,
blood pressure, oxygen saturation), location data,
activity, and even behavior. All of this, if analyzed
well, can offer insights into disease management,
predictive diagnostics, and precision medicine. But
its sensitivity also makes it a target for cyber-attacks,
data breaches, and unauthorized access. In contrast
to conventional health records in secured hospital
databases, IoMT devices function in decentralized,
resource-limited environments, and hence are more
vulnerable to security threats.
One of the principal concerns is the centralized
storage of healthcare information, which leaves patient
data open to threats including data breaches, insider
attacks, and single points of failure. Classical
privacy-guaranteeing measures like anonymization
and encryption fall short because attackers can conduct
re-identification attacks or infer sensitive information
from encrypted data. Furthermore, high-frequency
data transfers between IoMT devices and central
servers expose them to interception attacks.
Dealing with these privacy issues necessitates
sophisticated privacy-protecting methods that extend
beyond traditional techniques. Federated learning
(FL) and differential privacy (DP) have arisen as
viable options, facilitated collaborative learning while
keeping raw patient data within local devices. They
reduce the level of privacy risk without preventing
medical AI models from realizing the immense
potential of IoMT-generated healthcare data.

1.2 Current Privacy Methods and their drawbacks
Privacy in medical IoT systems is paramount,
considering the confidentiality of patient information.
Some privacy-preservingmethods, such as Differential
Privacy (DP) and Federated Learning (FL), have been
investigated to counter security threats [3]. Each
method, however, has trade-offs, making a hybrid
solution that best balances privacy, accuracy, and
resource utilization a necessity.

1.2.1 Conventional differential privacy (DP) and its
accuracy trade-offs

Differential Privacy (DP) is a mathematical framework
which safeguards individual information by adding
noise to query output or model parameters. This
defends against attackers determining certain
information on any individual within a dataset
even with auxiliary knowledge. DP affords strong

theory-backed privacy protections, and that is why it
is a favorite for regulatory usage (e.g., GDPR, HIPAA).

Nonetheless, conventional DP methods are plagued
by privacy-accuracy trade-offs. The level of noise that
must be added to guarantee strong privacy tends to
compromise model utility, resulting in lower accuracy
and poor generalization in healthcare AI applications.
Additionally, DP is generally applied in centralized
environments, which makes it less appropriate for
decentralized IoMT environments.

1.2.2 Federated Learning (FL) and its privacy limitations
Federated Learning (FL) improves privacy by
supporting decentralized model training, such that
patient data is held locally. Rather than sending raw
data, only model updates (gradients or weights) are
shared with a central aggregator. It minimizes data
exposure risks and improves security compared to
centralized machine learning [2].

However, owing to these benefits, FL continues to
exhibit inherent privacy weaknesses. Gradient leakage
attacks have the ability to enable attackers to recover
raw training data frommodel updates shared between
peers. FL further lacks strong privacy assurances,
and rogue participants have the ability to manipulate
updates for inferring confidential information or
mounting adversarial attacks.

1.2.3 The need for a hybrid privacy-preserving approach
To address these challenges, a hybrid solution
combining Differential Privacy (DP) and Federated
Meta-Learning (FML) is required. DP can be used
locally to perturb model updates, while FML provides
rapid adaptation across heterogeneous medical IoT
devices. This hybrid approach improves privacy,
model accuracy, and computational efficiency, making
it a promising solution for scalable, secure, and
personalized healthcare AI.

1.3 Contribution and Paper Structure
As Internet of Medical Things (IoMT) devices become
more widespread, maintaining data privacy and
security is an ever-growing challenge. Existing
privacy-preserving methods like Differential Privacy
(DP) and Federated Learning (FL) both have their
shortcomings, and a more powerful, adaptive, and
scalable solution is needed. To solve these issues,
we introduce Differential Privacy with Federated
Meta-Learning (DP-FedMeta)—a new paradigm that
unifies the privacy benefits of DP with the adaptability
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and personalization of Federated Meta-Learning
(FML).
DP-FedMeta presents a privacy-conscious federated
meta-learning framework in which model updates
are locally trained on IoMT devices, differentially
private using privacy mechanisms, and aggregated
at a central server. Unlike conventional FL that does
not provide strong privacy guarantees, DP-FedMeta
guarantees local differential privacy (LDP) by adding
controlled noise to model updates before sharing.
Additionally, FML methods like Model-Agnostic
Meta-Learning (MAML) enable the system to learn
a prior model that is optimal and hence enables
rapid adaptation to unique patient data without
compromising privacy. The proposed framework
balances accuracy, privacy, and computation and
thus suits real-world IoT applications in the medical
domain.
This paper follows the following structure:
• Section 2: We introduce the Federated Learning

Framework, describing how FL is utilized in
medical IoT and how updates of the local
model are combined. We then introduce
Local Differential Privacy mechanisms including
Gaussian noise and randomized response, and
treat the dynamic privacy budget adjustment.

• Section 3: We discuss Federated Meta-Learning
and how meta-learning improves model
generalization over heterogeneous IoMT
devices. We give special mention to MAML and
other meta-learning techniques that enhance
personalization while ensuring privacy.

• Section 4: We introduce the proposed
DP-FedMeta framework, its main components,
implementation details, and privacy guarantees.

• Section 5: We compare different
privacy-preserving methods in terms of
privacy, accuracy, and efficiency and analyze
DP-FedMeta’s benefits.

• Section 6: We present important challenges
and future research directions that include
optimizing privacy-utility trade-offs, decreasing
computational overhead, and achieving
regulatory compliance in healthcare AI systems.

Through combining DP and FML, DP-Fed Meta brings
forth a scalable, secure, and individualized learning
solution, opening the door to next-generationAI-based
healthcare solutions.

2 Related Work
2.1 Federated Learning Framework in Medical IoT
Federated Learning (FL) is a distributed machine
learning paradigm. It enables model training across
multiple devices or edge nodes while preserving data
confidentiality. For medical IoT (Internet of Things),
FL is useful as it supports healthcare organizations,
wearable technology, and medical sensors to train
models cooperatively without exchanging patient
information directly.

2.1.1 General Architecture of Federated Learning in
Medical IoT

A federated learning platform inmedical IoT comprises
the following most important components [3]:
• Edge Devices: These encompass wearable health

monitors, hospital IoT devices, and mobile
health apps that capture patient data like heart
rate, blood pressure, ECG signals, and other
physiological parameters.

• Local Model Training: A local model is trained by
each IoT device or healthcare facility from its own
data. Rather than sending raw patient data to a
central server, model updates (e.g., gradients or
weights) are sent.

• Central Aggregator (FL Server): A global
coordinator (usually a cloud server or edge
computing node) gathers localmodel updates and
aggregates them to update a global model.

2.1.2 Process of Local Model Training and Model Update
Aggregation

• Initialization: The global server initializes a global
model and sends it to participating medical IoT
devices.

• Local Training: The local devices train the
model on their private medical dataset with local
computing resources.

• Model Update Transmission: Once local training
is completed, model weight updates (not
raw data) are transmitted back to the global
aggregator.

• Federated Averaging (FedAvg): The server
sums up these updates with methods such as
FedAvg, calculating the weighted average of
model parameters from all nodes involved.

• Model Synchronization: The updated global
model is then propagated back to the devices,
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enabling continuous learning over decentralized
medical IoT networks.

This framework improves data privacy, scalability, and
efficiency, making it suitable for sensitive healthcare
applications where confidentiality of patient data is of
utmost importance.

2.2 Local Differential Privacy (LDP)
Implementation

2.2.1 Device-Level Application of LDP
Local Differential Privacy (LDP) is a
privacy-preserving method that keeps sensitive
information secure before it exits the device. In a
medical IoT federated learning (FL) system, LDP is
applied at the device level to avoid unauthorized
access to patient information while enabling
meaningful model training. Every IoT device—like
wearable health monitors or hospital sensors—uses
random noise perturbation on its model updates
prior to sending them to the central aggregator. This
guarantees that even if an attacker intercepts the data
being sent, it is still privacy-protected [4].
In the healthcare IoT environment, LDP is used to
model gradients, feature values, or labels prior to
aggregation. This ensures that the central server
cannot reconstruct sensitive patient information while
still providing useful insights to the federated model.

2.2.2 Various LDP Mechanisms
1. Gaussian Noise Mechanism: Applies

Gaussian-distributed noise to numerical values
(e.g., model gradients, patient vitals) prior to
transmission. This is efficient when handling
continuous values but needs thoughtful variance
tuning to achieve privacy versus accuracy balance.

2. Randomized Response: A mechanism introduced
for sensitive surveys, it randomly flips categorical
or binary responses (e.g., disease status: yes/no)
with a specified probability, protecting privacy
while maintaining statistical accuracy.

3. Laplace Mechanism: Adds Laplace-distributed
noise to impose differential privacy by rendering
individual data points indistinguishable in a
dataset. It works well for small-scale numerical
updates.

2.2.3 Dynamic Adjustment of Noise Levels
In order to maximize privacy and model utility, levels
of noise should be dynamically scaled according to
[5–7]:

• Data Sensitivity: Extremely sensitive patient data
(e.g., genomic data) needs more robust noise
protection, while less sensitive data (e.g., steps)
can cope with lower noise levels.

• Device Resources: Low-processing power and
battery-limited IoT devices can use less noise to
lower computational overhead, while powerful
hospital servers can sustain higher noise.

• Adaptive Privacy Budgeting: Temporal privacy
budget allocation keeps data utility high while
maintaining long-term privacy.

By incorporating LDP into federated learning, medical
IoT systems can balance data privacy, efficiency in
computation, and model accuracy.

2.3 Federated Meta-Learning for Model
Generalization

2.3.1 Introduction to Meta-Learning in Federated Settings
Meta-learning, or "learning to learn," is a
next-generation machine learning paradigm under
which models develop the capability to learn new
tasks rapidly with limited training data. Under a
federated learning (FL) environment, with medical
IoT devices and hospitals working with heterogeneous
patient datasets, typical FL models usually face data
heterogeneity—variations in medical conditions,
patient populations, and sensor types.

Federated Meta-Learning (FedMeta) resolves this
challenge by training models to generalize more across
decentralized datasets. Rather than optimizing one
model for every client, FedMeta learns a flexible global
model that can fine-tune easily to new data on each
device, enhancing personalization and generalization.

2.3.2 Learning a Global "Prior" Model
Meta-learning facilitates the establishment of a global
"prior" model—a partially trained model but useful
initialization. The new medical IoT device needs
just a few local updates once it is provided with
the global model and achieves high accuracy on its
own dataset. This is especially useful in medical
applications, where patient data distributions are very
different (e.g., various heart rate patterns among
different age groups).

The fundamental concept is to train the model on
various learning tasks (e.g., various hospital datasets)
such that it learns an initialization that can generalize
rapidly to novel data.
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2.3.3 Meta-Learning Algorithms for Medical IoT
1. Model-Agnostic Meta-Learning (MAML):

Among the most popular meta-learning
algorithms, MAML tunes the model to be
effective after a couple of gradient steps. In
federated medical IoT, MAML enables IoT devices
to adapt the global model to their respective
patients quickly with minimal training.

2. Reptile: A more efficient variant of MAML
that learns a good initialization by averaging
model updates across multiple devices. It is
computationally light, which makes it applicable
to resource-limited IoT devices.

3. Meta-SGD: Builds upon MAML by learning
adaptive learning rates, which optimizes training
on heterogeneous medical datasets.

By incorporating meta-learning into federated
learning, medical IoT systems can attain better
model generalization, quicker adaptation, and
enhanced personalization, ultimately leading to better
patient-specific healthcare outcomes.

2.4 Personalized Model Adaptation
2.4.1 Adapting Global Meta-Model to Patient-Specific

Device Data
While a global meta-model is trained on multiple
decentralized medical IoT devices in Federated
Meta-Learning (FedMeta), for efficient deployment,
it has to be personalized according to each device’s
individual patient data. The process of adaptation
includes [7]:

1. Receiving the Global Meta-Model: The medical
IoT device (e.g., wearable ECGmonitor or hospital
sensor) receives the global meta-model from the
central server.

2. Local Fine-Tuning: The device fine-tunes the
meta-model on its local dataset with a few
gradient steps. In contrast to traditional FL,
which involves heavy local training, meta-learning
allows for fast adaptation with little data and
computation.

3. Optimized Predictions: After fine-tuning, the
customized model is more precise for the
particular patient or healthcare environment,
enhancing real-time diagnostics and monitoring.

This method is especially beneficial for heterogeneous
medical IoT settings, where various patients,

devices, and institutions produce highly varied data
distributions.

2.4.2 Less Data and Training Requirements Because of
Meta-Learning

Meta-learning greatly minimizes the requirement for
large local training since the meta-model already has
a strong prior knowledge from past training on varied
datasets. This leads to [8]:

• Fewer Iterations of Training: Because the
model begins in a well-initialized position, local
adaptation needs only a few gradient steps rather
than retraining on the entire scale.

• Reduced Computational Burden:
Resource-constrained IoT devices
(battery-powered wearables, far-end sensors)
appreciate lower energy usage and quicker
processing.

• Minimal Data Requirement: With limited patient
datasets, the meta-model is able to generalize
rapidly, and it is ideal for privacy-critical medical
applications.

2.4.3 Applying Local Differential Privacy (LDP) During
Adaptation

Even in local fine-tuning, LDP techniques are
implemented to secure sensitive medical information:

• Noise Injection (Gaussian/Laplace): The device
distorts gradients or model parameters before
conveying any model updates (if at all) to avoid
data leakage.

• Differentially Private SGD (DP-SGD): Prevents
domination of any one patient’s information on
model updates by clipping gradients and injecting
noise, making it compliant with privacy laws such
as HIPAA and GDPR.

• Privacy Budget Allocation: Because fine-tuning
does not involve significant updates, a smaller
privacy budget is employed, striking a
privacy-model utility balance.

Through the use of personalized adaptation,
meta-learning, and LDP, federatedmedical IoT systems
obtain highly accurate, private, and efficient models,
enhancing personalized healthcare performance while
protecting patient data.
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2.5 Secure Aggregation of Model Updates
2.5.1 Need for Secure Aggregation in Federated Learning
In Medical IoT Federated Learning, models are locally
trained on devices and their updates (e.g., gradient
differences or model weights) are communicated to
a central aggregator. Still, these updates have the
potential to reveal sensitive patient information if
they are intercepted or examined. Secure aggregation
provides assurance that private individual model
updates are preserved, even from the central server,
but with accurate computation of the global model.
Major advantages of secure aggregation are [9]:
• Maintaining Patient Privacy: Regardless of a

hacker gaining access to the server, they are not
able to derive private medical information from
single model updates.

• Compliance with Laws: Satisfies rigorous privacy
regulations such as HIPAA (Health Insurance
Portability and Accountability Act) and GDPR
by making patient information never available.

• SecuringModel Inversion Attacks: Does not allow
attackers to restore original patient data from
communicated model gradients.

2.5.2 Secure Aggregation Techniques
1. Homomorphic Encryption (HE)

• A cryptographic method through which
mathematical calculations (addition,
multiplication) are performed on encrypted
data without decryption.

• In FL, every device encrypts its model
updates before sending those to the server.
The server aggregates the encrypted updates
and only decrypts the final aggregated
model.

• Example: Paillier Encryption facilitates
secure summation of encrypted values,
hence appropriate for FL aggregation.

2. Secure Multi-Party Computation (SMPC)
• A decentralized paradigm in which many

parties jointly calculate a function without
disclosing their local inputs.

• Each medical IoT device divides its model
updates into random shares and distributes
them to a number of non-colluding servers.
An individual model update can be retrieved
only when the shares are collated.

• Illustration: Shamir’s Secret Sharing scheme
protects against an individual entity getting
a single model update.

Through the application of homomorphic encryption
and SMPC, federated learning of medical IoT
provides privacy-preserving model updates without
compromising the security or the performance of the
global model.

3 SYSTEM ARCHITECTURE

Figure 1. Architecture of DP-FedMeta.

The architecture of a privacy-preserving Medical
IoT system using Differential Privacy (DP) with
Federated Meta-Learning (FML) integrates secure
data processing, decentralized learning, and robust
privacy mechanisms, as shown in Figure 1. Edge
devices, such as wearable sensors and medical
monitors, collect patient data locally. Federated
Learning (FL) enables model training across multiple
devices without sharing raw data, while meta-learning
enhances adaptability to diverse medical conditions.
DP ensures privacy by adding noise to gradients
before aggregation, preventing data leakage. A
central server coordinates model updates securely.
This architecture balances efficiency, privacy, and
personalization,making it ideal for sensitive healthcare
applications, as depicted in Figure 1.

3.1 Advantages of DP-FedMeta
3.1.1 Enhanced Privacy Protection in DP-FedMeta
DP-FedMeta leverages Local Differential Privacy
(LDP) and secure aggregation to provide robust
privacy guarantees. This ensures that sensitive user
data remains protected even in adversarial settings.

Local Differential Privacy (LDP) LDP ensures that
individual client updates are randomized before they
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are shared with the central server, preventing direct
exposure of raw data. Unlike traditional Differential
Privacy (DP), which applies noise at the server level,
LDP adds noise at the client side, ensuring privacy
even if the server is compromised. This means
that each client’s update is indistinguishable from
others within a certain statistical range, preventing
adversaries from inferring sensitive information about
any single participant [10].
Through LDP, DP-FedMeta prevents membership
inference attacks, in which a malicious user tries to
decide whether any target user was used during the
training procedure. Although an attacker can access
model updates shared between parties, the added
noise significantly obscures meaningful individual
contributions.
Secure Aggregation Secure aggregation is another
significant part of the privacy-preserving framework
of DP-FedMeta. It offers encryption for an aggregate
of model updates by the individual participants
or aggregation such that the central server cannot
access individual contributions but instead receives
an aggregated result.
This approach protects against gradient inversion
attacks, where an adversary attempts to reconstruct
private training data from model updates. Since
the server never has access to individual updates in
plaintext, such attacks become infeasible.
Resilience to Privacy Attacks By combining LDP
and secure aggregation, DP-FedMeta is highly resilient
to a wide range of privacy threats, including:
• Eavesdropping attacks, where attackers intercept

communication between clients and servers.
• Model inversion attacks, where adversaries

attempt to reverse-engineer training data from
model parameters.

• Collusion attacks, where multiple malicious
participants attempt to extract sensitive
information from aggregated updates.

This strong privacy foundation makes DP-FedMeta
a reliable and secure approach for federated
meta-learning, balancing privacy with effective model
training.

3.1.2 Improved Model Accuracy
One of the primary flaws of federated learning
with DP is accuracy degradation due to added
noise for privacy. The proposed DP-FedMeta

mitigates the detrimental impacts of this added
noise by incorporating meta-learning to boost model
generalization and compensate against the adverse
impacts of Differential Privacy mechanisms.

Overcoming Loss in Accuracy Through
Meta-Learning Meta-learning, or "learning to
learn," allows models to learn to adapt to new tasks
rapidly with little training data. Rather than learning
from scratch, the model learns an optimal initialization
that enables fast fine-tuning. For DP-FedMeta, this
reduces the effect of DP-introduced noise in the
following manners [11]:
• Faster Convergence: Meta-learning causes the

model to achieve optimal performance in a smaller
number of training iterations, minimizing the total
effect of noisy updates.

• Improved Generalization: The initialization
learned in meta-learning is robust by nature and
enables the model to be highly accurate even with
privacy-preserving noise during training.

• Effective Knowledge Transfer: As meta-learning
derives common patterns from heterogeneous
clients, the model can generalize among various
tasks even in the case of noisy individual client
updates.

Improvements in Medical IoT Applications
Accuracy In Medical IoT (Internet of Things)
use cases, where patient data is extremely sensitive,
DP-FedMeta guarantees both privacy and superior
model accuracy. A few dominant examples are:
Personalized Disease Prediction: A federated
meta-learning model based on noisy patient data
across various hospitals can still have high accuracy for
predicting ailments such as diabetes or cardiovascular
disease by exploiting meta-learning’s flexibility.
• WearableHealthMonitoring: Patient-specific data

is gathered by smartwatches and IoT-based health
devices. DP-FedMeta supports effective anomaly
detection in case of abnormal heartbeats or blood
glucose readings, even when privacy restrictions
introduce noise in the training set.

• Medical Image Analysis: DP-FedMeta provides
robust classification of X-rays or MRI images by
federated models with high accuracy despite
privacy-protecting perturbations, facilitating
enhanced early detection of diseases.

• By combining meta-learning with DP methods,
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DP-FedMeta strikes a good balance between
accuracy and privacy, making it very appropriate
for privacy-concerning applications such as
medical IoT.

3.1.3 Reduced Resource Consumption
Decreased Resource Usage in DP-FedMeta
Efficient use of resources is an important issue
for IoT devices, which tend to have limited
computer processing power, storage, and battery life.
DP-FedMeta is particularly tailored to minimize the
resource load without compromising privacy and
model quality.
Resource Efficiency for Low-Resource IoT Devices
Conventional federated learning involves heavy
local training and communication, which can be
computationally intensive for IoT devices. DP-FedMeta
tackles these issues by [11]:
• Reducing Local Computation: Meta-learning

allows the model to learn an optimal initialization
so that IoT devices can fine-tune their local models
with fewer updates. This decreases the number
of training epochs needed, reducing CPU and
memory usage.

• Minimizing Model Complexity: Because
DP-FedMeta takes advantage of shared
knowledge among devices, each IoT node
has less training data and fewer computational
resources needed in order to exhibit good
performance.

• Maximizing Energy Efficiency: By limiting
the requirement of extensive local training,
DP-FedMeta enables IoT devices to save battery
power, which is essential in wearables, medical
sensors, and smart home gadgets.

Reduction of Local Training and Communication
Overhead

• Frequent model updates and central server
communication in regular federated learning
generate high bandwidth and latency, which
is detrimental for IoT networks. DP-FedMeta
addresses this by:

• Less Communication Rounds: As meta-learning
achieves faster convergence, the IoT devices need
to communicate less with the central server,
resulting in less network congestion.

• Compressed Model Updates: Local Differential
Privacy (LDP) and secure aggregation together

guarantee that only required information is
exchanged, minimizing transmitted data size.

Adaptive Participation: DP-FedMeta provides selective
participation for devices that have low power or
unreliable connections, avoiding waste of resources.

Real-World Impact ForMedical IoT, like implantable
devices and smart health monitors, DP-FedMeta
guarantees that key models are efficiently updated
without burdening low-power devices. In the same
way, in industrial IoT and smart homes, it facilitates
smooth federated learning while maintaining both
device longevity and privacy.
By reducing local computation and communication,
DP-FedMeta makes privacy-preserving federated
learning feasible for actual IoT applications without
sacrificing efficiency or security, or accuracy.

Facilitation of Personalized Healthcare through
DP-FedMeta DP-FedMeta is an important enabler
in personalized healthcare through the facilitation of
patient-customized medical models with stringent
privacy assurances. Through the integration of
federated meta-learning and differential privacy,
DP-FedMeta provides a means for healthcare
organizations and Internet-of-Things-based medical
devices to train models over sensitive patient
information without revealing individual records.

3.1.4 Enablement of Personalized Healthcare
Development of Personalized Medical Models
Classic machine learning algorithms in healthcare
tend to use centralized data aggregation, which
compromises privacy and restricts individualization.
DP-FedMeta is able to bridge this gap by:
• Training from Scattered Patient Data: Clinics,

hospitals, and wearable sensors can jointly train
models without exchanging raw information,
maintaining confidentiality of the patients.

• Meta-learning component allows the model to
adapt quickly to the specific patient data with
minimal fine-tuning so that the predictions and
recommendations are highly personalized.

• Differential privacy mechanisms ensure that even
though personalized models learn from multiple
patients, no individual data is exposed, thereby
suiting it for HIPAA-compliant applications.

Advantages in Patient-Specific Treatment and
Monitoring DP-FedMeta improves live patient
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monitoring and accurate treatment through various
means:

• Personalized Disease Forecasting: A diabetic
patient’s glucosewearable can calibrate amodel to
forecast blood sugar levels according to individual
eating and activity patterns, facilitating better
control.

• Customized Medication Advice: Personalized
models can recommend ideal dosages for a drug
based on one’s genetic makeup, lifestyle, and
medical history, enhancing treatment efficacy.

• Early Health Anomalies Detection: IoT devices
like ECG monitors or smartwatches can pick
up unusual heartbeats or early signs of stroke,
learning a person’s baseline measurements while
maintaining privacy.

By facilitating privacy-preserving personalization,
DP-FedMeta changes the face of digital healthcare
forever, so that patients are provided with
personalized treatments while their sensitive
medical information is protected. This innovation
opens up avenues for safer, smarter, and more potent
healthcare solutions in the age of medicine by AI.

3.1.5 System Robustness
System robustness is the capacity of a system to
provide stable performance in spite of hardware failure
and data format variation. A robust system guarantees
minimum downtime, effective error recovery, and
fault-free data integration, which is vital to preserve
performance and accuracy in dynamic conditions.

Handling Device Failures Hardware and software
failures, e.g., server crashes, network outages,
or hardware faults, significantly affect system
performance. To avoid these risks, fault-tolerant
systems use redundancy techniques such as backup
servers, failover policies, and distributed computation
models. Cloud solutions provide a greater fault
tolerance in that workloads are dynamically
redistributed on a pool of servers, eliminating
single points of failure.

Besides redundancy, predictive maintenance and
real-time monitoring methods aid in the identification
of possible failures before they happen. Error-handling
methods, including rollback and recovery procedures,
ensure that systems are able to rapidly recover
previous stable states, preserving limited data loss and
service interruptions.

Handling Data Heterogeneity New systems have
to handle heterogeneous data formats from multiple
sources, such as structured, semi-structured, and
unstructured data. Data encoding, schema, and
quality differences create integration and consistency
issues. To solve this, resilient systems use scalable
data processing architectures, middleware technology,
and interoperability standards that normalize
communication between disparate components.

Sophisticated data fusion and machine learning
methods improve system resilience by detecting
inconsistencies, normalizing formats, and validating
data accuracy. Adaptive processing algorithms may
adapt dynamically to new data types, allowing for
efficient processing of changing datasets.

By efficiently managing device failures as well as
data heterogeneity, a system increases its resilience,
guaranteeing continuous operation, high data integrity,
and consistent performance under varying conditions.

4 Implementation Considerations
4.1 Noise Calibration and Management of Privacy

Budget
4.1.1 Challenges in Calibrating Noise for LDP
Local Differential Privacy (LDP) preserves privacy by
introducing noise to individual data points prior to
transmission. But calibrating this noise to the right
level is a key challenge. If the noise is too high, accuracy
in aggregated results is lost, and unreliable insights are
generated. If the noise is too low, privacy protection is
lost, and there is a higher risk of sensitive information
being inferred.

A Hamiltonian noise correction challenge is balancing
utility and privacy. The level of noise varies
with the privacy parameter (ε) so that smaller
values assure greater privacy while compromising
on data quality. Various types of data noise
(categorical, numerical, or high-dimensional data) call
for customized noise mechanisms, including Laplace,
Gaussian, or randomized response methods, all with
differing trade-offs.

Another problem is maintaining fairness and
consistency across heterogeneous datasets. Certain
data distributions are more vulnerable to noise
distortion than others. Dynamic noise adaptation
methods, which adapt noise levels according to data
sensitivity and distribution, reduce the problem but
introduce complexity in implementation [12].
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4.1.2 Significance of Controlling the Privacy Budget
The privacy budget (ε) determines the amount of
information that can be disclosed while ensuring
differential privacy. Every query or data collection
draws on a share of this budget, and too many queries
can drain it, resulting in privacy violations.
Good management of the privacy budget is important
to ensure long-term data privacy. This can be achieved
through the implementation of privacy-preserving
mechanisms such as privacy composition rules and
budget allocation techniques. These mechanisms
prevent aggregated exposure of sensitive information
through successive interactions with the data.
An effectively managed privacy budget allows
organizations to balance usability and privacy,
keeping data valuable for analysis while protecting
confidentiality of individuals. Proper budget
allocation prolongs the duration of data usability
without causing privacy degradation over time.

4.2 Meta-Learning Algorithm Selection and
Optimization

4.2.1 Considerations to Account for When Selecting a
Meta-Learning Algorithm

Meta-learning, or "learning to learn," strives to enhance
the capacity of a model to learn new tasks swiftly. The
choice of appropriatemeta-learning algorithm is based
on a variety of important considerations [11]:
• Task Distribution – The variability and structure

of tasks determine algorithm selection. When
tasks have similar structures, gradient-based
algorithms such as Model-Agnostic
Meta-Learning (MAML) work well. When
tasks differ greatly, memory-based methods
such as Recurrent Neural Networks (RNNs) or
transformer-based meta-learners might be more
appropriate.

• Data Availability – Certain meta-learning
algorithms need big labeled datasets, while
others can learn from small samples. For
low-data cases, metric-based algorithms such
as Prototypical Networks or Siamese Networks
should be used.

• Computational Complexity – Second-order
gradients are needed for gradient-based
meta-learning (e.g., MAML), which adds
computation expense. Black-box models like
memory-augmented networks might be more
efficient but lose interpretability.

• Adaptability vs. Generalization – Some
algorithms learn quickly to adapt to new
tasks (e.g., MAML), while others are geared
towards generalizing over tasks (e.g., Bayesian
Optimization-based methods). It is a function of
whether the focus is on quick learning or strong
generalization.

4.2.2 Optimization of Meta-Learning Parameters
Tuning of meta-learning algorithms means that
hyperparameters need to be optimized at both the base
and meta-level:
Meta-Learning Rate – Controls how fast the
meta-learner adapts task-specific models. There
is a need to balance so as not to overfit or have slow
convergence. Adaptive learning rate algorithms, like
Adam or Lookahead, can enhance performance.
• Number of Inner-Loop Updates – In models like

MAML, the number of gradient steps per task
influences adaptation quality. Very few steps
delay learning, whereas many result in overfitting
to individual tasks.

• Regularization and Loss Function Choice – L1/L2
regularization, dropout, or task-specific loss
functions enhance generalization on a wide
variety of tasks.

Through proper selection and tuning of a
meta-learning algorithm, models can perform
enhanced task adaptation, efficient learning, and
better performance on different data distributions.

4.3 Secure Aggregation Efficiency and Scalability
4.3.1 Computational and Communication Costs of Secure

Aggregation
Secure aggregation ensures that individual data
contributions remain private while enabling
collaborative model training. However, it introduces
computational and communication overhead,
impacting system efficiency [12].
• Computational Costs – Secure aggregation

methods, e.g., homomorphic encryption,
secret sharing, and secure multi-party
computation (MPC), involve intricate
cryptographic computations. Homomorphic
encryption provides high security but is
computationally costly because of extensive
modular exponentiation. Secret sharing
methods, e.g., Shamir’s Secret Sharing, are less
computationally costly but require extra steps
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for data reconstruction. Lightweight masking
methods, e.g., additively homomorphic noise,
strike a balance between security and efficiency.

• Communication Costs – Multiple rounds of
interaction between the participants and the
central server are needed in secure aggregation
protocols. Pairwise encryption, key exchanges,
and masked summation result in high bandwidth
overhead, especially in bandwidth-limited
environments. Compressed updates,
quantization, and differential privacy-based
noise reduction are some techniques that reduce
high communication costs without sacrificing
security.

4.3.2 Scalability in Large-Scale IoT Deployments
Scaling secure aggregation in IoT networks means
managing thousands or even millions of devices with
different connectivity and computational power.
• Hierarchical Aggregation – Intermediate nodes or

edge devices carry out partial aggregation instead
of a central server, thus lowering communication
overhead. Hierarchical models enhance efficiency
without compromising privacy guarantees.

• Selective Participation and Adaptive Sampling
– Not all devices need to participate in every
aggregation round. The adaptive sampling
method selects the most representative devices
and reduces the amount of congestion within the
network, preserving model accuracy.

• Fault Tolerance and Dropout Resilience – Devices
of IoT usually encounter connectivity problems.
Secure aggregation needs to cope with device
dropouts using redundancy mechanisms,
threshold cryptography, or delayed aggregation
strategies.

In optimization of computation, reduction of the
communication cost and scalable architectures can
make secure aggregation support large IoT networks
efficiently in terms of both privacy and efficiency.

4.4 Managing Heterogeneity in Devices and Data
Variability

4.4.1 Managing Device Variations in Computing
Resources and Data Features

Distributed learning scenarios have varying levels
of devices regarding processing capability, memory,
battery life, and network connection. These differences
influence the speed and dependability of model
training.

• Federated Learning with Adaptive Aggregation
– FedAvg-type algorithms can be extended with
weighted aggregation, where updates from
high-resource devices are assigned more weight
so that balanced learning is preserved while
contributions from low-resource devices are
included.

• Model Compression and Quantization –
Minimizing model size through methods
such as pruning, knowledge distillation, and
quantization enables low-power devices to
contribute without inordinate computational
expense.

• Asynchronous Updates – Rather than forcing all
devices to send updates at once, asynchronous
federated learning allows devices to contribute at
any time they are available, enhancing training
continuity in spite of hardware differences.

• Edge Computing and Hierarchical Training
– Partitioning some computation to edge
servers or intermediate nodes minimizes the
load on low-power devices and minimizes
communication cost.

4.4.2 Solving the Issue of Non-IID Data
• Non-Independent and Identically Distributed
(non-IID) data is problematic for federated and
distributed learning, as various devices gather
data fromdistinct environments that result in local
models with a biased nature.

• Personalized Federated Learning – Methods such
as model fine-tuning or meta-learning allow local
models to better fit into their respective data
distributions without diminishing generalization.

• Sharing Data with Privacy-Protecting Methods –
Some degree of shared data representation, like
the sharing model embeddings rather than raw
data, can assist in aligning varying distributions
without loss of privacy.

• Clustered Federated Learning – Clustering
devices with comparable data distributions
enables more effective training and prevents
dominant distributions from distorting overall
model performance.

Through these methods, systems can easily address
device heterogeneity and non-IID data in order to
provide reliable and equitable learning in varying
settings.
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4.5 Regulatory Compliance and Ethics
4.5.1 Privacy Compliance
Appropriate compliance with privacy regulations is
essential in data-intensive systems, especially in sectors
like healthcare, finance, and social networking. Some
of the vital regulations are:
• General Data Protection Regulation (GDPR) –

GDPR requires strict data protection practices
such as informed consent, right to erasure of
data, and data transparency when processing.
Organizations need to adopt data minimization,
encryption, and anonymization practices to
ensure GDPR compliance.

• Health Insurance Portability and Accountability
Act (HIPAA) – In medical uses, HIPAA
demands safe treatment of Protected Health
Information (PHI). Compliance involves applying
de-identification methods, imposing rigorous
access controls, and providing secure data
transmission to avoid unauthorized access [13].

• California Consumer Privacy Act (CCPA) – As
with GDPR, CCPA gives consumers ownership of
their personal data, obliging businesses to make
data collection practices transparent and provide
users with an opt-out on sharing data [13].

Organizations will need to adopt privacy-by-design
guidelines, undertake periodic audits, and provide
safe storage and processing of data to meet these
regulatory needs.

4.5.2 Ethical Considerations in Data Collection and Use
In addition to compliance with the law, there are
ethical concerns regarding the collection, storage, and
utilization of data.
• User Consent and Transparency – Ethical data

acquisition involves the requirement of informed
consent and explicit notification of how data shall
be utilized. Dark patterns or deceptive consent
processes betray user trust and ethical norms.

• Bias and Fairness – Machine learning algorithms
trained from biased data have the potential
to perpetuate discrimination. Having diverse
and representative data collection and applying
fairness-aware algorithms reduces bias.

• Data Ownership and Control – The users must
have control over their data, and they should be
able to alter or erase it. Decentralized methods,
like federated learning, maintain user privacy

through data storage on local devices.
By combining regulatory compliance with ethical
best practices, organizations can create trusted,
privacy-respecting systems that honor user rights and
ensure fairness.

5 Future Directions and Open Challenges
5.1 Advanced Differential Privacy Techniques
As privacy issues in medical IoT applications keep
on rising, stronger differential privacy (DP) methods
are being investigated to attain data protection and
model utility. Conventional DP methods, including
the Laplace and Gaussian mechanisms, offer strong
privacy assurances at the cost of adding substantial
noise, which compromises model performance. To
overcome these drawbacks, focused differential
privacy (CDP) and other advanced DP architectures
offer improved privacy-accuracy trade-offs [14].
CDP, an extension of standard DP, offers a stronger
privacy analysis by capping the total privacy loss
across multiple queries. This is especially helpful in
federated meta-learning applications, where frequent
model updates can cause excessive privacy budget
usage. With the use of Rényi differential privacy (RDP)
or zero-concentrated differential privacy (zCDP),
medical IoT systems can obtain stronger privacy
guarantees without compromising data utility.
Another promising approach is privacy amplification
by subsampling, which employs a random subset
of data in each training iteration, hence minimizing
the overall privacy loss. This approach is especially
relevant in federated learning since it limits the
exposure of each data point across training rounds.
Another approach is adaptive DP mechanisms that
dynamically change noise sizes based on the sensitivity
of different model parameters, hence facilitating better
privacy-utility trade-offs.
Despite all these advances, it is difficult to implement
these techniques in real medical IoT settings. One
needs to balance computational overhead, privacy
budgeting, and regulatory compliance so that security
and usability are not sacrificed. Future research needs
to tackle the integration of advanced DP techniques
with cryptography techniques like secure multiparty
computation (SMPC) and homomorphic encryption
to further strengthen privacy protection in federated
meta-learning. With these innovative DP approaches,
privacy-ensuring medical IoT systems are able to
achieve enhanced security while not degrading the
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performance of AI-driven healthcare solutions.

5.2 Edge Computing Integration
The integration of federated meta-learning and edge
computing is a promising approach to enhancing
the privacy and efficiency of medical IoT systems.
The traditional cloud-based learning paradigms are
at a disadvantage due to high latency, bandwidth
limitations, and security risks because of centralized
processing. With edge computing, computations
can be performed close to IoT devices, reducing
the utilization of centralized servers and promoting
real-time decision-making in healthcare.
One of the key advantages of edge computing
in federated meta-learning is that it reduces
communication overhead. In standard federated
learning, frequent model updates have to be
communicated from edge devices to a centralized
server, consuming power and generating network
traffic. Edge computing solves this problem by
enabling intermediate edge nodes, such as hospital
lobbies or wearable device hubs, to perform local
aggregations and then communicate optimized
updates to the global model. This hierarchical
approach significantly enhances scalability and
efficiency.
Secondly, edge computing also enhances the privacy
protection through the reduction of exposure to data.
With private healthcare data saved in local edge nodes
instead of passing to cloud servers, data breaches
are reduced. With differential privacy techniques,
alongside edge-based federatedmeta-learning, privacy
protection is strong while the accuracy of the model
is preserved. Edge devices even use techniques like
secure enclaves and trusted execution environments
(TEE) in a bid to safeguard patient data even more.
While these advantages, there are some issues that
need to be resolved in order to achieve the complete
potential of edge computing in medical IoT [15]. The
constrained processing and storage capabilities of edge
devices would restrict sophisticated meta-learning
computations. Resource management techniques
like model compression, quantization, and adaptive
learning strategies need to be employed to achieve
optimized performance. In addition, interoperability
of multiple IoT devices and common privacy policies
over distributed nodes needs to be ensured, which is
still a topic of research.
Future studies will concentrate on developing
effective yet light-weight edge-based federated

meta-learning frameworks that optimize the trade-offs
between computational efficiency, privacy, and model
effectiveness. By integrating edge computing and
sophisticated privacy-preserving methods, medical
IoT systems will be able to provide real-time, secure,
and scalable AI-based healthcare services.

5.3 Handling Complicated Medical Information
Applying differential privacy-enabled federated
meta-learning (DP-FedMeta) to high-dimensional,
long-tailed, and complex medical data, like time-series
signals, medical images, and multi-modal data, is
a demanding process. Compared with structured
tabular data, these data have a tendency towards high
dimensionality, temporal dependence, and complex
spatial relationships, making it difficult to strike
a balance between privacy protection and model
usefulness.
One of the primary difficulties in handling time-series
clinical data such as electrocardiograms (ECGs),
electroencephalograms (EEGs), and continuous
glucose monitoring (CGM) data is preserving
temporal dependencies and differential privacy.
Standard DP mechanisms such as additive noise
injection can disrupt the sequential patterns required
for effective predictions. Techniques such as recurrent
neural networks (RNNs) and transformers require
special DP techniques, e.g., noise suppression through
adaptive privacy budgets or structured noise injection,
to maintain temporal coherence in clinical predictions
[15].
Similarly, medical imaging data like MRI and CT scans
must be treated with certain DP techniques sensitive
to spatial relations. Generic DP mechanisms applied
universally over pixels can destroy image quality
and disrupt diagnostic functionality. Sophisticated
methods like differentially private generative
adversarial networks (DP-GANs) or local noise
injection to background pixels can maintain diagnostic
features without compromising privacy.
Multi-modal clinical data, with text, signals, and
images, is even more challenging due to the
heterogeneity of the data. DP across multiple data
types while maintaining inter-modal relationships
requires new solutions, such as modality-specific
privacy budgets and hierarchical DP mechanisms.
Additionally, combining DP with federated
meta-learning across medical data of intricate
structures calls for effective privacy budget control
in order to avoid unnecessary noise aggregation.
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Methods such as per-layer DP calibration for deep
networks and privacy amplification via subsampling
can help alleviate privacy-utility trade-offs.

Optimization of DP techniques for multi-modal
data, imaging, and medical time-series is the future.
Hybrid techniques combining DP with cryptographic
techniques such as homomorphic encryption and
SMPC could further offer improved privacy with the
integrity of medical AI models.

5.4 Blockchain Integration to Enable Auditability
The integration of blockchain with differential
privacy-federated meta-learning (DP-FedMeta)
is an efficient way of realizing auditability, data
integrity, and secure provenance for medical
IoT [16]. Since federated meta-learning involves
numerous decentralized devices and organizations
exchanging model updates, it must offer an open and
tamper-evident record of interactions for regulatory
conformance and trust.

Blockchain offers an immutable, decentralized ledger
that can be used to securely record all model updates,
privacy budgets, and data access requests. Through
the use of smart contracts, blockchain enforces policy
automatically, whereby only the requested parties
can access certain data while ensuring strict privacy
controls. This is especially useful in privacy-preserving
health applications, where regulatory compliance like
HIPAA and GDPR need to be ensured.

One of the key advantages of blockchain in
DP-FedMeta is that it can generate secure audit
trails. All transactions, including model updates,
privacy budget allocations, and access permissions,
are recorded as cryptographically signed blocks.
This prevents unauthorized modifications and
allows regulators and healthcare providers to verify
compliance without gaining access to sensitive patient
data. Blockchain-based timestamping also makes all
interactions traceable, improving accountability in
federated learning pipelines.

Blockchain also aids data provenance by tracing source
and changes to clinical data. This aids model reliability
by allowing clinicians and researchers to confirm
whether training data has been tampered with, altered,
or used in accordance with mutually agreed privacy
protocols. Zero-knowledge proofs (ZKPs) are also
one of the methods that can aid privacy by allowing
verification without exposing underlying sensitive
information [15].

Although it has its benefits, integrating blockchain
with medical IoT is challenging, such as scalability,
energy efficiency, and latency. Light blockchain
structures, such as permissioned blockchains
and layer-2 scaling solutions, will be the future
direction of research in order to support efficient and
privacy-preserving federatedmeta-learning inmedical
applications. Blockchain integration with advanced
DP algorithms will facilitate strong privacy protection
and clear auditability in AI-driven healthcare systems.

5.5 Real-World Deployment and Evaluation
Real-world deployment in healthcare IoT systems
is necessary to study its usability, security, and
efficacy. While theoretical models and simulation
provide a sense of privacy-utility trade-offs, real-world
evaluation needs to be performed to study system
performance under real-world limitations, e.g.,
network variability, device heterogeneity, and
integration with clinical workflow.
One of the greatest challenges of using DP-FedMeta
in a clinical setting is following healthcare regulations
such as HIPAA, GDPR, and local privacy laws. Care
must be taken to make sure differential privacy
mechanisms can effectively protect patient data
while being compliant with evolving regulatory
ecosystems through appropriate privacy budgeting
and transparent privacy-preserving computations.
Interpretability of federated meta-learning models
is also crucial to clinical setting adoption since
medical practitioners must be sure of AI-derived
insights in order to inform well-informed medical
decisions. Another major challenge is heterogeneity
of hospital infrastructures and medical IoT devices.
Many medical devices are used in different medical
environments with heterogeneous data formats,
heterogeneous communication protocols, and different
computational capabilities to process data. This makes
the federated learning process difficult to standardize
and seamless interoperability. Edge devices can be
resource-constrained and lack sufficient capabilities
to execute sophisticated meta-learning computations
to provide differential privacy, and this implies some
techniques such as model compression and adaptive
learning are needed for lightweight optimizations.

6 Conclusion
Differential privacy-enabled federated meta-learning
(DP-FedMeta) is a pioneering framework for
privacy-protecting medical IoT applications, which
achieves both data utility and robust privacy assurance.
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Through the integration of differential privacy (DP)
with federated meta-learning, DP-FedMeta enables
collaborative machine learning model training from
decentralized medical IoT devices while keeping
sensitive patient information safe and confidential.
This solution helps evade data risks in centralized
storage and transmission, which makes it an attractive
choice for AI-based healthcare applications. One
of the major contributions of DP-FedMeta is that
it can improve both model flexibility and privacy
safeguarding in dynamic medical settings. Federated
meta-learning supports effective knowledge transfer
among scattered medical institutions, enabling quick
model updates with lower communication expenses.
At the same time, differential privacy mechanisms
guarantee that individual patient information
cannot be derived, which helps to resolve serious
privacy issues in healthcare. The combination of
edge computing and blockchain further enhances
security, scalability, and auditability, opening the
door to secure and transparent medical AI systems.
Despite its advantages, the successful deployment
of DP-FedMeta in real-world clinical settings
requires overcoming several challenges. Regulatory
compliance, interoperability between heterogeneous
medical IoT devices, and computational constraints on
edge devices must be addressed to ensure seamless
adoption. Additionally, privacy-preserving techniques
must be optimized to maintain model performance
while preventing adversarial attacks and privacy
breaches. Future research should focus on refining
DP mechanisms, improving edge-based federated
learning efficiency, and integrating blockchain for
secure audit trails.

In summary, DP-FedMeta can transform
privacy-preserving AI in healthcare by facilitating
secure, decentralized, and smart medical IoT
applications. Overcoming implementation challenges
and further research in this area will be important
to unlock the full potential of DP-FedMeta in
actual healthcare settings, ultimately resulting in
better patient outcomes and enhanced data privacy
protection.
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