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Abstract

Wireless Sensor Networks (WSNs) have emerged
as a fundamental technology in modern digital
ecosystems, enabling real-time data acquisition
and communication. Their integration with the
metaverse enhances immersive experiences by
providing real-time environmental data, motion
tracking, and networked interactions. However,
the fusion of WSNs with the metaverse introduces
significant security challenges, including network
vulnerabilities, data privacy concerns, latency
issues, and scalability constraints, which hinder
seamless operation. To address these challenges,
Artificial Intelligence (AI), Machine Learning
(ML), and Deep Learning (DL) techniques have
been leveraged to enhance network security,
optimize resource management, and improve data
processing efficiency. Al-driven models facilitate
anomaly detection, predictive maintenance, and
real-time decision-making, making WSN-based
metaverse environments more resilient and
adaptive. A hybrid DL and ML model is proposed,
integrating Convolutional Neural Networks
(CNNs) and Bidirectional Long Short-Term
Memory (Bi-LSTM) for feature extraction, followed

Submitted: 28 February 2025
Accepted: 26 May 2025
Published: 27 June 2025

Vol. 1, No. 1, 2025.
4.10.62762/TWN.2025.750033

*Corresponding author:

Shalli Rani
shallir79@gmail.com

32

by XGBoost for classification. The model achieves
99.64% accuracy, 96.39% balanced accuracy, 99.65%
precision, 99.64% recall, and 99.73% ROC-AUC
score, outperforming existing approaches. The
results demonstrate its effectiveness in detecting
security threats within WSN-based metaverse
environments while ensuring computational
efficiency and real-time attack detection.

Keywords: wireless network, 5G, Al network

virtualization, 6G.

1 Introduction

The metaverse is a rapidly evolving digital ecosystem
that integrates virtual and augmented environments
to create immersive, interactive experiences. It is
a collective digital space where users can interact
with each other and digital elements in real-time
[1]. This digital universe is driven by cutting-edge
technologies, including Al and Extended Reality
(XR), encompassing Augmented Reality (AR), Virtual
Reality (VR), and Mixed Reality (MR). The metaverse
offers applications in various sectors such as gaming,
education, healthcare, and industrial simulations,
making it a transformative force in modern digital
interactions [2]. AR enhances the real-world
environment by overlaying digital elements such
as graphics, sounds, and haptic feedback. This
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technology enables users to experience an enriched
perception of their surroundings, commonly applied
in fields such as retail, education, and navigation
[3]. Unlike VR, AR does not replace the physical
environment but rather integrates digital elements into
it, facilitating a seamless blend of the real and virtual
worlds.

VR and MR are two other key components of
immersive technology. VR creates a fully digital
environment, isolating users from the real world
and immersing them in a computer-generated setting
through specialized hardware like head-mounted
displays (HMDs) [4]. On the other hand, MR
combines elements of both AR and VR, allowing digital
objects to interact with the physical world in real time.
MR is extensively used in training simulations, remote
collaboration, and industrial applications, making it
a crucial component of metaverse development [5].
Wireless Sensor Networks (WSN) play a critical role
in bridging the physical and digital worlds within
the metaverse. A WSN consists of distributed sensor
nodes that monitor and transmit environmental data,
facilitating real-time interactions between users and
the metaverse infrastructure [6]. These networks are
widely implemented in smart cities, healthcare, and
industrial automation, ensuring seamless data flow
and intelligent decision-making in a metaverse-driven
ecosystem. In the metaverse, WSNs provide essential
functionalities such as environmental monitoring,
motion tracking, and networked communication,
enabling users to engage more effectively with the
digital space [7].

Despite its potential, integrating WSN into the
metaverse presents several challenges, including
network latency, security vulnerabilities, energy
constraints, and scalability issues [8]. The sheer
volume of data generated by sensor nodes requires
robust computational frameworks to process and
analyze real-time information efficiently [8]. Al,
ML, and DL are revolutionizing this field by
enhancing network security, optimizing energy
consumption, and improving data processing
capabilities. Advanced Al-driven models facilitate
anomaly detection, predictive maintenance, and
intelligent decision-making, allowing WSN-based
metaverse environments to overcome existing
limitations and provide a seamless user experience
[9]. These innovations continue to shape the evolution
of WSNs, ensuring their effective integration into
the metaverse while addressing the complexities
associated with large-scale immersive environments.

2 Literature Review

The literature review explores existing research on
WSN security in the metaverse, challenges in cyber
threat detection, and advancements in Al-driven
models, highlighting gaps that the proposed hybrid
approach aims to address. Truong et al. [10]
introduced MetaCIDS, a collaborative intrusion
detection system that uses blockchain and federated
learning to protect the metaverse. It can identify
zero-day attacks that are resistant to poisoning and
SPoF. According to performance evaluation, the
accuracy scores of multiclass and anomaly detection
ranges from 96% to 99% in four datasets. Wang
et al. [11] looks at the metaverse’s architecture,
enabling technologies, and challenges of safely
interfacing with data. It introduces Integrated
Sensing, Communication, and Computing (SCC)
to overcome resource limitations and discusses
SCC-based solutions, significant findings, and future
research directions.

Salmi et al. [12] suggests using lightweight, DL-based
IDS for detection of DoS assaults in WSNs. On the
WSN-DS dataset, CNN outperformed DNN, CNN,
RNN, and CNN+RNN in terms of accuracy (98.79%).
Feature selection for optimization is part of future
work. Saleh et al. [13] presents SG-IDS, a ML-based
IDS for WSNs using GNB and Stochastic Gradient
Descent (SGD) algorithms. It achieved 98% accuracy,
96% recall, and 97% F1-score on WSN-DS, with strong
IoMT dataset performance. Feature selection enhances
efficiency and reduces overfitting.

Moundounga et al. [14] proposes a stochastic
ML-based attack detection system for WSNs using
HMMs and GMMs. It achieved 94.55% accuracy,
with cross-validation scores ranging from 96% to
98%, demonstrating superior performance in detecting
malicious activities and routing errors. Lai et
al. [15] proposes an online-learning-based DoS
attack detection model for WSNs, integrating feature
selection and a noise-tolerant classifier. It achieved
97.16% accuracy, outperforming traditional algorithms.
Future work aims to address external factors affecting
detection performance.

Moudoud et al. [16] presents MAF-DRL, a framework
combining Multi-Agent Federated Learning and Deep
Reinforcement Learning to secure WSNs against
emerging threats. It achieved 99% accuracy, enhancing
attack detection, privacy, and energy efficiency
while improving resilience against adversarial attacks.
Panda et al. [17] proposes the ADSVM protocol
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for detecting blackhole attacks in IoT networks using
SVM. It achieved 84.37% accuracy through eightfold
cross-validation on a newly created Iol dataset,
improving attack prediction in both static and mobile
WSN scenarios.

3 Preliminaries

WSNs have become a critical component in modern
digital ecosystems, including the metaverse. The
integration of WSNs with metaverse environments
enables real-time data acquisition, immersive
interactivity, and enhanced wuser experiences.
However, this integration comes with various
challenges, including security threats, latency issues,
and network reliability concerns. In this section, we
explore the implementation of WSNs in the metaverse,
the challenges faced, and how ML and DL techniques
are leveraged to mitigate these challenges.

3.1 Implementation of WSN in the Metaverse

The integration of WSNs into the metaverse is a
multi-faceted process that involves real-time data
sensing, transmission, and processing to create
interactive and immersive experiences [20]. WSNs
plays an important part in the metaverse by enabling
real-time data acquisition through sensors that
monitor environmental conditions and transmit data
for visualization [18]. To enhance efficiency, edge
and fog computing process data at local nodes
before sending it to the cloud, reducing latency and
bandwidth usage. Seamless connectivity is ensured
by wireless communication protocols like ZigBee,
LoRa, and 5G, facilitating fast and reliable data
transfer. Al-driven context awareness further enhances
decision-making by analyzing sensor data for anomaly
detection, predictive maintenance, and adaptive
responses [19]. To ensure security, cryptographic
techniques and blockchain frameworks safeguard data
against cyber threats, making WSNs a secure and
efficient backbone for metaverse applications.

3.2 Challenges Faced in WSN-based Metaverse

Despite the potential benefits, integrating WSNs
into the metaverse introduces several challenges.
Scalability is a major concern, as managing
numerous sensor nodes while maintaining seamless
communication is complex [21]. Energy efficiency is
also critical since sensor nodes have limited battery
life, requiring optimized power usage. Data security
and privacy must be ensured to protect confidentiality
and integrity in an interconnected environment
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[22]. Additionally, minimizing latency is essential
for real-time processing to enhance immersive
experiences and decision-making. Lastly, network
congestion due to high data traffic can lead to packet
loss and reduced Quality of Service (QoS), affecting
overall system performance [23].

3.3 Leveraging Machine Learning and Deep
Learning for WSN-based Metaverse

To address the aforementioned challenges, ML and
DL techniques have been employed to enhance the
efficiency, security, and intelligence of WSN-based
metaverse environments. Below, three prominent
models such as XGBoost, CNN, and Bi-LSTM are
discussed, along with their mathematical formulations,
as they are being implemented for this study.

3.4 WSN Layer (Physical Environment)
3.4.1 XGBoost

XGBoost is an ensemble model that improves
prediction accuracy by minimizing loss using gradient
descent techniques. The model optimizes the objective
function as shown in Eq 1:

K

Obj = > Llyi, i) + Y _ Qfe)

=1 k=1

(1)

where L(y;,9;) and Q(f;) are the loss function and
the regularization term that prevents overfitting
respectively. The predictions are computed iteratively,
refining weak learners to enhance model performance.

3.4.2 Convolutional Neural Network (CNN)

CNNs are widely used in image and time-series data
processing due to their feature extraction capabilities.
The key operation in CNNs is the convolution,
calculated as Eq 2:

M—
Zij=)

1
m=0

N-1
Z Xi+m,j+nWm,n + b (2)
n=0

where X , W, b, and Z are the input matrix, kernel
weights, bias and the output feature map respectively.
CNNs use pooling layers to reduce dimensionality and
fully connected layers to make predictions.

3.4.3 Bidirectional Long Short-Term Memory

Bi-LSTM enhances sequence modeling by processing
information in both forward and backward directions.
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Figure 1. WSN enabled Metaverse architecture.

The LSTM cell is mathematically calculated as Eq 3:

Je=0W;y - [hi—1, 3] + bg),
iy = o(W; - [he—1,2¢] + bi),

Cy = tanh(We - [hy—1, ] + be),
Cy = frx Cyoy +ip + C,

or = o(Ws - [he—1,x¢] + bo),

hy = oy * tanh(CYy)

(3)

where f;, i, o are forget, input, and output
gates respectively, controlling information flow.
Bi-LSTMs process sequences bidirectionally, capturing
dependencies effectively for time-series applications.

WSNs play a crucial role in metaverse environments,
but their integration presents several challenges.
The adoption of ML and DL techniques, including
XGBoost, CNN, and Bi-LSTM, provides effective
solutions for scalability, security, and real-time
processing. The next sections will explore the
experimental setup and evaluation of these models
in WSN-based metaverse applications [24].

4 Metaverse Architecture

The metaverse is built upon a multi-layered
architecture that integrates physical and digital
environments to create immersive and interactive
experiences. This architecture consists of several key
layers, each playing a crucial role in ensuring seamless
operation, data processing, and user interaction.
Figure 1 illustrates the multi-layered architecture of
metaverse.

The WSN layer forms the foundation of the
metaverse by collecting real-world data through
distributed sensor networks. These sensors monitor
environmental parameters such as temperature,
humidity, motion, and location. This layer ensures a
continuous flow of real-time data, allowing digital
twin systems to mirror physical environments
accurately.

4.1 Edge/Fog Computing Layer

This layer processes data closer to the source by
using edge and fog computing techniques. It reduces
latency and bandwidth usage by filtering, aggregating,
and preprocessing sensor data before sending it to
the cloud. This enables faster decision-making and
enhances real-time interactivity within the metaverse.

4.2 Cloud and AI Processing Layer

The cloud layer performs high-level data analytics,
storage, and Al-driven decision-making. Machine
learning models analyze large volumes of WSN data,
detecting patterns and anomalies while ensuring
scalability and reliability. ~AI algorithms help in
predictive maintenance, security threat detection, and
automated responses within the metaverse ecosystem.

4.3 Metaverse Twin and XR

Interface)

Layer (Digital
This final layer creates immersive experiences
through digital twins and extended reality (XR)
interfaces. The processed data from previous layers
is used to render realistic and interactive virtual
environments, enhancing user engagement. XR
technologies such as AR, VR, and MR facilitate
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seamless interactions between digital and physical
worlds, making metaverse experiences highly dynamic
and responsive.

5 Proposed Methodology

In this part, the suggested approach for attack
detection in a WSN-based metaverse environment
has been presented. The methodology leverages a
hybrid DL and ML model comprising CNN, BiLSTM,
and XGBoost to ensure accurate and efficient threat
detection. Figure 2 depicts the steps followed in order
to achieve the goal.

WSN-DS
Dataset

Data Preprocessing

e Data Cleaning (handling missing values, removing noise)
e Feature Scaling (normalization/standardization)

e Data Reshaping (for CNN & BiLSTM input
compatibility)

Feature Extraction and Selection

e CNN Feature Extraction (detect spatial dependencies)
e BiLSTM Temporal Analysis (learn sequential patterns)
e Dimensionality Reduction (eliminate redundant features)

v

Hybrid Model Implementation

e CNN + BiLSTM Feature Representation
e XGBoost Classification (predict normal vs attack

Traffic) ¢

Performance
Evaluation

Benign

Figure 2. Proposed methodology.

5.1 Data Collection

Data collection is a crucial step in training and
evaluating the proposed model. We used the WSN-DS
dataset, a benchmark dataset specifically designed
for detecting various attacks (e.g., DoS, blackhole,
grayhole) in wireless sensor networks, to train and
evaluate our hybrid model. The dataset consists
of multiple features representing network traffic
characteristics and labels corresponding to normal and
attack classes.

5.1.1 Dataset Overview

The WSN-DS dataset ! consists labeled network traffic
data that includes normal and attack instances such
as Denial-of-Service (DoS), blackhole, grayhole, and
flooding attacks. The dataset provides essential

! https:/www.kaggle.com/datasets/bassamkasasbeh1/wsnds/data

36

attributes such as packet arrival time, packet size,
transmission delays, and network connectivity metrics,
which are useful for identifying suspicious patterns in
network behavior.

The total dataset of 374661 is split into training
and testing sets using an 80:20 ratio, ensuring
that the model learns effectively while maintaining
generalizability to unseen data. The training set is
used for model learning, while the testing set is used
for evaluation.

5.2 Pre-Processing

Before data is fed into the hybrid model, preprocessing
ensures quality and consistency. First, data cleaning
is performed to handle missing or irrelevant values,
preventing inconsistencies. Next, feature scaling
is applied through standardization to normalize
numerical values, ensuring all features contribute
equally to learning. Finally, the data is reshaped to
fit the structured input format required by CNN and
BiLSTM models, optimizing it for DL processing.

5.3 Feature Selection

Feature selection enhances the performance of the
model by eliminating redundant and irrelevant
attributes, ensuring that only the most relevant
contribute to the detection of attacks. A CNN
extracts meaningful patterns from network traffic
data, capturing spatial dependencies and detecting
anomalies. Meanwhile, BILSTM analyzes sequential
dependencies, identifying attack patterns that evolve
over time. Finally, dimensionality reduction removes
unnecessary features while preserving critical
information, improving efficiency and classification
accuracy.

5.4 Attack Detection

After feature extraction and refinement, attack
detection is carried out using XGBoost, a highly
efficient and accurate classifier. The CNN and BiLSTM
models work together to generate a comprehensive
feature representation of network activity. XGBoost
then classifies traffic as normal or malicious based
on these learned features. The model’s performance
is evaluated using various key metrics ensuring a
thorough assessment of its effectiveness in real-time
scenarios.

5.4.1 Training Time

Training time is a crucial metric that evaluates the
efficiency of the model in terms of computational
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resources. It is defined as the total time taken to train
the model on the given dataset. Lower training time is
desirable for real-time applications. Figure 3 illustrates
the training time for different models.

Training Time
Proposed Hybrid | 21.5

XGBoost 45.42

Models

sirsT™ [ 57942
onN [l 277.6292

0 500 1000 1500 2000

Time in Seconds

2500 3000

Figure 3. Training time of models.

5.4.2 Testing Time

Testing time measures the time taken by the model
to make predictions on the test dataset. A lower
testing time is preferred for real-time attack detection

in WSN-based metaverse environments. Figure 4
presents the testing time of different models.
Testing Time
Proposed Hybrid 0.58

- XGBoost 1.32

e

S

= Bi-LSTM 1645

onN [ 4833
0 2 4 6 8 10 12 14 16 18

Times in Seconds

Figure 4. Testing time of models.

This hybrid approach ensures high accuracy in
detecting various network attacks while maintaining
computational efficiency, making it a robust solution

for securing WSN-based metaverse environments.

The computational efficiency of different models was

evaluated based on their training and testing times.

The CNN model required 277.63 seconds for training
and 4.48 seconds for testing. The Bi-LSTM model had
the highest computational demand, with a training
time of 2579.42 seconds and a testing time of 16.45
seconds. XGBoost demonstrated significantly faster
performance, requiring only 45.42 seconds for training

and 1.32 seconds for testing. The proposed hybrid
model outperformed all individual models in terms of
efficiency, with the lowest training time of 21.5 seconds
and the fastest testing time of 0.58 seconds.

6 Result and Analysis

In this part, the assessment and evaluation of the
proposed hybrid model’s performance. Various
evaluation metrics are used to assess the efficiency
and accuracy of the model in detecting attacks in a
WSN-based metaverse environment.

6.1 Confusion Matrix

The confusion matrix is an essential evaluation tool
that assesses the classification performance of the
model. It consists of four key components: True
Positives (TP), which represent correctly identified
attack instances; False Positives (FP), where normal
instances are mistakenly classified as attacks; True
Negatives (TN), indicating correctly identified normal
instances; and False Negatives (FN), where attack
instances are incorrectly classified as normal. The
confusion matrix helps in determining various
performance metrics such as accuracy, recall, precision
and Fl-score. Figure 5 illustrates the confusion matrix
of the proposed hybrid model.

Confusion Matrix

o - 1622 1] 39 2 0 50000

40000

30000

o~ 93 1] 2262 26 1

’ 7

<+ - 2 0 1 76 949

True Label

- 20000
- 10000

| ' | ' ' -0
0 1 2 3 4

Predicted Label

Figure 5. Confusion matrix of the proposed hybrid model.

Table 1 compares the proposed hybrid model with
other models on the basis of accuracy, balanced
accuracy, precision, recall and F1-score.

6.1.1 Accuracy
Accuracy is the rate of correctly predicted cases to the
total cases in the dataset. It is evaluated as Eq 4:
TN +TP
TN +TP+FN + FP

ACC = (4)
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Table 1. Comparison of the proposed hybrid model with other learning models

Models Accuracy (%) Balanced Accuracy (%) Precision (%) Recall (%) Fl-score (%)
CNN 98.73 92.06 98.78 98.73 98.22
Bi-LSTM 99.19 94.26 99.27 99.19 99.19
XGBoost 99.49 95.85 99.50 99.49 99.49
Proposed Hybrid 99.64 96.39 99.65 99.64 99.64

6.1.2 Precision

Precision measures the accuracy of positive class
predictions and is given by Eq 5:

TP

Precision = m

(5)

Higher precision indicates fewer false positives.

6.1.3 Recall

Recall (or Sensitivity) measures the ability of the
model to detect positive instances correctly, it is
calculated as Eq 6:

TP

Recall = W

(6)

High recall ensures that most attack instances are
correctly identified.

6.1.4 F1-Score

Fl-score is the harmonic mean of precision and recall,
balancing both metrics, it is calculated as Eq 7:

P x R

F1— =2 X
score PR

(7)

A higher F1-score indicates a better balance between
precision(P) and recall(R)a. Figure 6 illustrates the
comparison of different models based on their accuracy
and other performance metrics.

Metric Analysis

ROC-AUC

Fl-score

Recall

Precision

Balanced Accuracy

Accuracy

88 90 92 94 96 98 100 102

Proposed Hybrid XGBoost M Bi-LSTM M CNN

Figure 6. Comparison of models on the basis of
performance matrices.
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6.1.5 ROC-AUC Curve

The Receiver Operating Characteristic (ROC) curve
plots the True Positive Rate (TPR) against the False
Positive Rate (FPR).

A higher AUC value indicates better model
performance. Figure 7 illustrates the ROC curve for
the proposed hybrid model.

ROC Curve for Multi-Class Classification

0.8

02 7 —— Class 0 (AUC = 1.00)
’ Class 1 (AUC = 1.00)
2 (AUC = 1.00)
3 (AUC = 1.00)
4 (AUC = 0.99)

— class
. — class
0.0 e — Class

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 7. ROC curve of proposed hybrid model.

The ROC-AUC score, which measures the model’s
ability to distinguish between attack and normal
instances, was evaluated for different models. The
CNN model achieved an ROC-AUC of 99.47, indicating
strong classification performance. The Bi-LSTM model
improved slightly with an ROC-AUC of 99.62, showing
enhanced capability in distinguishing attack patterns.
The XGBoost model further refined this performance,
achieving an ROC-AUC of 99.63, highlighting its
robustness. The proposed hybrid model achieved the
highest ROC-AUC of 99.73, demonstrating its superior
effectiveness in accurately classifying network traffic
instances.

6.1.6 Matthews Correlation Coefficient

Matthews Correlation Coefficient (MCC) is a balanced
measure that takes into account all four confusion
matrix elements. Figure 8 presents the MCC values for
different models.

MCC was evaluated for different models to assess their
overall classification performance, considering both
true and false predictions. The CNN model achieved
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Matthews Coefficient

Proposed Hybrid 0.9797

XGBoost 0.9711

Bi-LSTM 0.9538

09 091 092 093 094 095 096 097 098 099

Figure 8. Matthews correlation coefficient of models.

an MCC of 09271, indicating strong predictive
capability. The Bi-LSTM model improved upon this
with an MCC of 0.9538, reflecting better-balanced
classification performance. The XGBoost model
further enhanced the results, achieving an MCC of
0.9711, demonstrating its robustness in distinguishing
between normal and attack instances. The proposed
hybrid model attained the highest MCC of 0.9797,
highlighting its superior ability to maintain consistency
across all classification categories.

6.1.7 Log Loss

Log Loss measures the uncertainty in
probability-based classifications. Figure 9 presents the
Log Loss for various models.

Log loss
0.04 0.0366
0.035 0.0328
0.03 )

0.025 0.0218

NJ:SI

=0=CNN

0.02 —Bi-LSTM

0.015 XGBoost

0.01 === Proposed Hybrid

0.005

CNN Bi-LSTM XGBoost Proposed

Hybrid

Figure 9. Logloss of models.

The log loss values of different models were
analyzed to evaluate their predictive uncertainty and
classification performance. The CNN model achieved
a log loss of 0.0366, indicating a moderate level
of uncertainty in its probability-based predictions.
The Bi-LSTM model performed slightly better with
a log loss of 0.0328, showing improved confidence
in its classification decisions. The XGBoost model
demonstrated even lower uncertainty, achieving a
log loss of 0.0218. The proposed hybrid model
outperformed all other models, achieving the lowest

log loss of 0.0151, signifying its superior ability to
generate highly confident and accurate predictions.
The presented results confirm the effectiveness of
the proposed hybrid CNN-BiLSTM-XGBoost model,
achieving high accuracy and strong classification
performance across multiple evaluation metrics.

7 Conclusion

The integration of WSNs with the metaverse
has revolutionized real-time data acquisition,
communication, and immersive interactions.
However, this integration introduces several security
challenges, including network vulnerabilities, privacy
risks, latency issues, and scalability concerns.
Ensuring a secure and efficient WSN-based metaverse
environment requires advanced techniques capable
of detecting and mitigating cyber threats in real
time. To address these challenges, AI, ML, and DL
have been employed to enhance network security,
optimize computational efficiency, and improve
decision-making. Al-driven models enable anomaly
detection, predictive maintenance, and adaptive
security mechanisms, making WSNs more resilient
to cyber threats. By leveraging these technologies,
real-time attack detection and efficient resource
management can be achieved in large-scale metaverse
ecosystems. A hybrid DL and ML model has been
developed, integrating CNN and Bi-LSTM for feature
extraction, followed by XGBoost for classification.
The model demonstrates superior performance,
achieving 99.64% accuracy, 96.39% balanced accuracy,
99.65% precision, 99.64% recall, 99.73% ROC-AUC
score, 0.9797 MCC, and 0.0151 log loss. Additionally,
the model exhibits high computational efficiency,
with a training time of 21.5 seconds and a testing
time of 0.58 seconds, significantly outperforming
individual baseline models. These results highlight
its efficiency in detecting security threats while
maintaining low computational costs and real-time
response capability, making it a promising solution
for securing WSN-based metaverse environments.
Future research can explore federated learning
to enhance privacy-preserving attack detection
by enabling decentralized model training across
multiple WSN nodes.  Additionally, integrating
blockchain-based security frameworks can further
strengthen data integrity and authentication within
the metaverse. Advancements in edge Al can also
reduce computational overhead, enabling faster
decision-making and real-time threat mitigation.
By incorporating these emerging technologies, the
security, scalability, and adaptability of WSN-based
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metaverse environments can be further improved.
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