
ICCK Transactions on Wireless Networks
http://dx.doi.org/10.62762/TWN.2025.484759

RESEARCH ARTICLE

Joint Design of Energy-Efficient MIMO Receiver and
Power Allocation for Spatial NOMA in Miniature
UAV-Assisted IoT Networks

Lav Soni 1,* and Ashu Taneja 1,*

1Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India

Abstract
The work presents a joint design framework
that combines an energy-efficient MIMO
receiver architecture with an optimized power
allocation strategy for spatial NOMA in miniature
UAV-assisted IoT networks. Specifically, we design
a low-power receiver using spatial modulation and
intelligent transmit antenna selection to minimize
energy usage. Simultaneously, a dynamic power
allocation scheme is developed to ensure fairness
by allowing all users to act as active data users in
different time slots. The air-to-ground channel is
modeled by considering UAV altitude, mobility,
and probabilistic line-of-sight characteristics.
Simulation results demonstrate that at a UAV
altitude of 50 meters, the proposedmethod achieves
a peak energy efficiency of approximately 7.8
bits/Joule, compared to 6.0 bits/Joule for traditional
NOMA schemes. The system alsomaintains a target
user data rate of 2 bits/s/Hz and performs optimally
at a transmit power of 20 dBm and UAV velocity
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of 5 m/s. These results highlight the effectiveness
of jointly optimizing receiver design, power
control, and UAV parameters to achieve sustainable
and high-performance communication in future
6G-enabled IoT networks.

Keywords: wireless network, 5G, AI, network
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1 Introduction
The exponential expansion of the Internet of Things
(IoT) has resulted in a substantial increase in
the number of interconnected devices, thereby
intensifying the demand for communication
networks that are both energy-efficient and reliable.
IoT networks are being widely adopted across
diverse domains such as smart cities, agriculture,
healthcare, and industrial automation, each of
which necessitates real-time data transmission under
varying communication and energy constraints [1].
A fundamental challenge in these applications is
ensuring energy-efficient communication, particularly
in scenarios where devices operate under strict
resource limitations [2]. To address these challenges,
Unmanned Aerial Vehicle (UAV)-assisted IoT
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networks have emerged as a viable solution. UAVs,
commonly known as drones, offer a flexible and
mobile communication infrastructure, capable of
providing coverage and data relaying in areas
lacking terrestrial network infrastructure or where
conventional communication methods prove
inefficient [3]. These miniature UAVs, functioning
as mobile base stations, can dynamically enhance
network coverage. However, the overall performance
of UAV-assisted IoT systems is significantly influenced
by the choice of communication technology, the
UAVs’ power requirements, and their inherent energy
constraints [4]. The integration of advanced wireless
communication techniques is crucial for enhancing the
performance of such networks [5]. One such technique
is Multiple Input Multiple Output (MIMO), which
utilizes multiple antennas at both the transmitter
and receiver ends to simultaneously transmit
multiple data streams over the same frequency
spectrum [6]. This approach enhances spectral
efficiency, data throughput, and link reliability.
However, deploying MIMO within UAV-based
systems introduces complexities, primarily due to the
increased power demands associated with managing
multiple antennas, which may exceed the limited
energy reserves of UAV platforms [7]. In parallel,
Non-Orthogonal Multiple Access (NOMA) has
gained prominence as a spectrum-efficient access
technique, particularly well-suited to scenarios with
limited bandwidth and a high density of users
[8]. Unlike traditional Orthogonal Multiple Access
(OMA) methods that assign dedicated time or
frequency resources to each user, NOMA allows
multiple users to access the same time-frequency
resources simultaneously by assigning different
power levels to their signals[9]. This superposition
coding enables more efficient utilization of the
available spectrum and is particularly advantageous
in UAV-assisted networks with numerous IoT devices
[10]. Power allocation plays a critical role in the
optimal functioning of MIMO and NOMA systems.
Effective power distribution strategies can improve
the signal-to-noise ratio (SNR), reduce interference,
and minimize energy consumption—factors that
are especially crucial in energy-constrained UAV
systems [11]. In this context, power control
strategies are not only essential for maintaining
communication reliability but also for prolonging
the operational time of UAVs, thereby improving
network sustainability [12].These strategies are
particularly vital in challenging environments, such as
high-altitude operations or urban areas with complex

signal propagation characteristics [13]. This research
advocates for the joint design of energy-efficient
MIMO receiver architectures and power allocation
schemes tailored for spatial NOMA in UAV-assisted
IoT networks [14]. By simultaneously optimizing
receiver design to reduce energy consumption and
developing intelligent power allocation strategies for
NOMA, the proposed framework aims to enhance the
overall energy and spectral efficiency of the system
[15]. Such a co-design approach is essential for
achieving scalable, sustainable, and high-performance
communication in UAV-based IoT applications [16].
Amid the growing demand for always-on connectivity
and the expanding scale of IoT deployments,
this study explores the potential of integrating
advanced technologies into a cohesive framework
that maximizes communication performance and
energy efficiency [17]. The synergistic combination
of MIMO, NOMA, and optimized power control
within UAV-assisted environments offers a promising
pathway toward overcoming the limitations of
conventional systems [18]. This work contributes
to the ongoing development of next-generation
IoT networks by providing insights into how joint
design methodologies can facilitate the practical
and sustainable deployment of UAV-enabled
communication infrastructures [19].

2 Related Work
2.1 Studies on MIMO
The author [20] investigates a large-scale MIMO
system with energy-harvesting receivers. It uses
energy beamforming to enhance long-distance power
transfer, optimizing transfer time and transmit power
to maximize energy efficiency under QoS constraints.
Numerical results confirm the effectiveness of the
proposed scheme. The study [21] presents an
EE-optimized precoder for MIMO wiretap channels
under secrecy and power constraints. A convexified
problem is solved iteratively, with extensions for
imperfect CSI. Results show improved EE over existing
methods. The author [22] proposes an energy-efficient
VLC solution for 6G using RoF to process SM-MIMO
signals, cutting MIMO DSP power use. An all-optical
PI strategy reduces channel correlation without
DAC/ADC. The design lowers cost with minimal (1.5
dB) performance loss. The author [23] presents an
analytical framework for RIS-integrated MIMO-FSO
systems, tackling turbulence, misalignment, and
attenuation. It derives closed-form metrics for
outage, BER, and energy efficiency, and optimizes
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RIS placement and diversity combining. Simulations
confirm its robustness and energy efficiency for future
optical networks.

2.2 Studies on NOMA and MIMO-NOMA
The study [24] author analyzes PAPR issues in
MIMO-NOMA systems and reviews reduction
methods like PTS, SLM, TR, and ACE. It proposes a
hybrid PTS-TR technique, whichMATLAB simulations
show outperforms existing approaches.[8] proposes
RISP-PD-NOMA and RISP-Q-NOMA systems for
RIS-assisted PD-NOMA networks, assigning fixed
RIS units to users. Closed-form metrics are derived
under Rician fading. RISP-PD-NOMA excels with
perfect SIC, while RISP-Q-NOMA performs better
under imperfect SIC. Numerical results validate
the superiority of RISP-Q-NOMA.[25] proposes
a decision tree-based signal detection method
for downlink MIMO-NOMA in 5G, enhancing
reliability and efficiency. The study [26] proposes
a GLSIC-based signal processing framework for
massive MIMO-NOMA in B5G/6G, grouping users
by distance to reduce inter-group interference. It
derives the uplink sum-rate considering channel
estimation errors and imperfect GLSIC. Results show
superior performance over user-level SIC methods.
Simulations over Rayleigh and Rician channels
show improved performance, with reduced SIC
complexity and latency. The author [26] proposes
a GLSIC-based signal processing framework for
massive MIMO-NOMA in B5G/6G, grouping users by
distance to reduce inter-group interference. It derives
the uplink sum-rate considering channel estimation
errors and imperfect GLSIC. Results show superior
performance over user-level SIC methods.The authors
[27] analyzes MIMO-NOMA integration for 5G,
highlighting its ability to boost spectral efficiency
and data rates by combining power-domain user
multiplexing (NOMA) with spatial multiplexing
(MIMO). The study evaluates system performance
in terms of SNR and achievable data rate. The
study [? ] explores MIMO-NOMA techniques to
enhance spectral efficiency and user capacity through
power-domain multiplexing. Superposition coding
is used in the uplink, and SIC in the downlink. User
pairing and cluster formation strategies based on base
station antennas are analyzed to improve performance.

2.3 Studies on UAV
The authors [28] proposes a method to improve
anti-jamming in UAV-assisted data collection under
multi-jammer attacks and imperfect CSI. The

optimization problem, covering data collection, power
control, and UAV trajectory, is solved using successive
convex approximation (SCA). Simulations show
superior performance compared to existing methods.
The study [29] addresses joint user association and
UAV location optimization to maximize data rates
in UAV-aided communications. The problem is
formulated as a MINCOP and solved with an iterative
algorithm using successive convex approximation.
The proposed method converges and outperforms
existing approaches.The study [30] presents a channel
model for UAV-enabled communication systems,
considering UAV wobble and varying effective
apertures (EA) due to pitch and yaw. It derives
expressions for ASNR, showing that wobble degrades
performance and increasing antenna elements doesn’t
improve ASNR. Neglecting EA results in significant
overestimation of ASNR. The study [31] proposes
a joint trajectory and communication scheduling
scheme for UAV-enabled wireless caching networks,
modeled as an ergodic stochastic differential game
(SDG) to optimize users’ QoE. A decentralized
solution is derived using mean-field analysis, and a
DNN is employed to learn the optimal control online.
Simulation results show superior performance over
existing methods.

3 SystemModel
In future 6G-enabled non-terrestrial networks,
unmanned aerial vehicles (UAVs) are expected
to function as aerial communication platforms,
providing line-of-sight (LoS) connectivity to ground
users. This study investigates the implementation of
spatial non-orthogonal multiple access (S-NOMA)
in UAV-assisted IoT networks to enhance energy
efficiency (EE), reduce power consumption, and
ultimately improve the endurance of UAV-based
communication systems. As depicted in Figure 1, a
diverse set of users ranging from mobile devices to
IoT nodes operate within the UAV’s coverage area.
In the considered downlink scenario, the UAV is
equipped with NT transmit antennas, although only
one antenna is active at any given time slot. Each user
terminal is equipped with NR receive antennas. By
utilizing the NOMA technique, users are grouped and
their signals are multiplexed in the power domain.
The UAV’s transmitted signal consists of two main
components: the first is transmitted directly through
the spatial domain via the selected active antenna,
while the second is formed by superimposing multiple
user signals in accordance with NOMA principles.
Even at high speeds, 200 km/h, a 2× 2 MIMO system
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Figure 1. System model illustrating the detection of MIMO
signals.

maintains a significant degree of temporal correlation
over a 50 µs period. Temporal correlation is typically
quantified using the channel coherence time.

3.1 Proposed S-NOMA
The operational framework of the proposed S-NOMA
scheme is depicted. Users within a group are labeled
as U1 to Um. A subset of each user’s bits is allocated
for determining the active transmit antenna. Given
NT transmit antennas at the UAV, the number of bits
used for transmit antenna selection (TAS) is less than
log2(NT ). The remaining bits are combined using
power-domain NOMA to form a superimposed signal,
which is then transmitted via the selected antenna.
At the receiver side, signal detection is performed
using a combination of maximum likelihood (ML)
detection and successive interference cancellation
(SIC). Through the integration of spatial diversity and
NOMA principles, the proposed S-NOMA technique
provides enhanced spectral efficiency andperformance
gains for all users in the network.

3.2 UAV Channel Model
The air-to-ground (A2G) communication channel
between a UAV and ground users exhibits distinct
characteristics compared to traditional terrestrial
channels. These variations are primarily influenced
by the UAV’s altitude and the angle of elevation
relative to the users. Both line-of-sight (LoS) and
non-line-of-sight (NLoS) components are considered
in modeling the A2G link.

The overall channel matrix can be represented as:

H =

√
K

K + 1
Ĥ +

√
1

K + 1
H̃ (1)

where Ĥ denotes the deterministic LoS component,
and H̃ captures the random NLoS variations.
Following the model in [28], the NLoS component
can be expressed as:

H̃ = R1/2HRayT
1/2 (2)

where HRay is an independent Rayleigh fading matrix.
R ∈ CNR×NR and T ∈ CNT×NT represent the
receive and transmit correlation matrices, respectively.
Their entries are defined as [R]p,q = κ

|p−q|
r and

[T]p̂,q̂ = κ
|p̂−q̂|
t , where κr and κt are spatial correlation

coefficients.

The distance between the UAV and the j-th ground
user can be calculated by projecting the UAV onto the
horizontal plane:

dj =
√
H2 + r2j (3)

where H is the UAV altitude and rj is the horizontal
distance between the user and the UAV’s projection
point on the ground. The corresponding elevation
angle is given by:

ϕj = arctan

(
H

rj

)
(4)

The probability of establishing a LoS link is modeled
as:

pLoS(ϕj) = c(ϕj − ϕ0)
d (5)

where c and d are empirical constants that depend on
the environment (e.g., urban, suburban, dense urban)
and the operating frequency (e.g., 700 MHz, 2000
MHz). ϕ0 is a reference elevation angle, typically set
to 15◦. The NLoS probability is given by:

pNLoS(ϕj) = 1− pLoS(ϕj) (6)

The path loss values for LoS and NLoS links are
modeled as:

p0LoS = aLoSe
−bLoSϕj

p0NLoS = aNLoSe
−bNLoSϕj

(7)
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where a and b are frequency- and
environment-dependent constants. Taking UAV
mobility into account, the instantaneous large-scale
path loss (in dB) is modeled as the weighted average
of LoS and NLoS components:

p̄0 = pLoS(ϕj) · p0LoS + pNLoS(ϕj) · p0NLoS (8)

This expression clearly shows that the path loss p̄0 is
influenced by several factors, including UAV altitude,
user distance, carrier frequency, and environmental
conditions. As the UAV moves or adjusts its altitude,
the path loss dynamically varies with time.

3.3 Signal Model and Problem Formulation
In this section, we elaborate on the signal model of the
proposed S-NOMA scheme. The transmitted signal
is redefined according to the earlier air-to-ground
channel model. In the traditional spatial modulation
(SM) scheme, the first log2(NT ) bits of a user are
used for transmit antenna selection (TAS), while the
remaining bits are transmitted via the selected antenna.

In the conventional scheme combining NOMA and
SM, only one user acts as the active data user (ADU)
and its bits are used to select the transmit antenna,
thereby improving its data rate significantly. To ensure
fairness among users, we propose a scheme in which
every user can serve as an ADU. The TAS bits are the
union of each user’s individual TAS bits. Thus, the
overall TAS bits in S-NOMA can be expressed as:

nt = [nt1, nt2, . . . , ntm] (9)

where nt denotes the total TAS bits, ntj are the TAS
bits of the j-th user, j ∈ {1, 2, . . . ,m}, and m is the
number of users in the coverage area.

The signal transmitted from the selected antenna is a
power-domain superimposed signal of all users:

x =

m∑
j=1

√
αjsj (10)

where αj is the power allocation coefficient for the j-th
user, and

∑m
j=1 αj ≤ 1. We assume E[s2j ] = Es for each

user.

The received signal at the j-th user is:

yj = Hjent

m∑
j=1

√
αjsj + wj (11)

where Hj ∈ CNR×NT is the channel matrix from
UAV to user j, ent is a column of the identity matrix

indicating the selected transmit antenna, and wj is
complex additive white Gaussian noise (AWGN) with
power spectral density σ20 .

In NOMA, less power is allocated to users with better
channel state information (CSI) to maintain fairness.
Assuming ‖hi,1‖ < ‖hi,2‖ < · · · < ‖hi,m‖, the m-th
user receives the least power.

Using successive interference cancellation (SIC), the
highest power signal is decoded first. For the first user,
the detection is:

(nt1, s1) = arg min
i,ŝ1
‖y1 − hi,1α1ŝ1‖2 (12)

Generally, for the j-th user:

(ntj , sj) = arg min
ij ,ŝj

∥∥∥∥∥yj −
j−1∑
k=1

hik,kαks̃k − hij,jαj ŝj

∥∥∥∥∥
2

(13)
where s̃k is the estimated signal of user k after perfect
SIC and ij represents possible antenna selections.

4 Problem Formulation
The spatial gain for the j-th user can be modeled by
themutual information (MI) between the TAS bits and
the received signal:

I(ntj ; yj) =

Aj∑
i=1

rj

∫
pr(yj |ntj) log2

(
q(ntj |yj)
pr(yj)

)
dyj

(14)
where Aj is the number of bits defined by user j, and
rj = 1/Aj , with:

Aj =

⌊
NT

2
(
m−1
m

)
log2NT

⌋
(15)

The upper bound of MI is log2(Aj), simplified as
log2(NT )/m. The posterior probability q(ntj |yj) is:

q(ntj |yj) =
pr(yj |ntj)∑Aj

i=1 ripr(yj |ntj)
(16)

The likelihood pr(yj |ntj) is:

pr(yj |ntj) =
1

πNR det(Σ)
exp

(
−y†jΣ

−1yj

)
(17)

with:
Σ = σ20I + Phi,jh

†
i,j (18)

The signal capacity of user j under NOMA is:

Cyj = log2

(
1 +

PαjEsE[‖hi,j‖2]
P
∑m

k=j+1 αkEsE[‖hi,j‖2] + σ20

)
(19)
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Thus, the total capacity of user j is:

Ryj = Cyj + I(ntj ; yj) (20)

The total system sum-rate is:

R =
m∑
j=1

Ryj (21)

The energy efficiency (EE) in bits-per-joule is:

ηEE =

∑m
j=1Ryj

Ptotal
(22)

where Ptotal = Pt + Pc + Pm, Pt =
∑m

j=1 αjP , Pc is
circuit power, and Pm is UAV hovering power. Letting
θ =

∑m
j=1 αj , the optimization problem becomes

maximizing ηEE subject to each user’s target rate
constraint.

5 Results
This section presents simulation results to validate
the proposed approach. The simulation parameters
are detailed in Table 1. Both urban and dense
urban scenarios are considered, and the air-to-ground
path loss for the UAV channel is derived based on
corresponding channel parameters. Without loss of
generality, the antenna selection index is assumed to be
fairly determined by the users. The energy efficiency
(EE) performance of the proposed S-NOMA scheme
is compared with that of conventional NOMA.

Figure 2. Proposed system design for UAV-assisted IoT
communication framework.

Figure 2 presents a comparative visual design,
likely used to emphasize structural or architectural

differences across schemes or strategies. While
specific quantitative data is not provided, such visual
representations aid in grasping high-level differences
or user interface layouts, depending on the application.
Figure 3 shows the variation of energy efficiency (EE)
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Figure 3. EE versus transmitted power with optimized θ.

with transmit power at different UAV altitudes. It can
be observed that lower altitudes (e.g., H = 20 m)
result in better EE performance compared to higher
altitudes (e.g.,H = 200 m). This indicates that energy
efficiency degrades with increasing altitude due to
increased path loss and reduced signal quality.
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Figure 4. Performance over time for UAVs at different
velocities and altitudes.

Figure 4 shows the systemperformance under different
UAV configurations, specifically varying the height
(H) and velocity (v). It can be observed that as the
UAV altitude increases from 50 m to 100 m while
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Table 1. Description of the simulation parameters.

Parameter Value Parameter Value
Frequency 2600 MHz Fading channel Rician
Height of UAV 100 m Distance of user1 15 m
Distance of user2 10 m Frequency parameter c

(Urban / Dense Urban)
0.12 / 0.1

Environment parameter
d (Urban / Dense Urban)

0.11 / 0.2 ϕ0 9.61

aLoS (Urban / Dense
Urban)

0.1 / 0.13 aNLoS (Urban / Dense
Urban)

31.2 / 31.2

bLoS (Urban / Dense
Urban)

0.03 / 0.06 bNLoS (Urban / Dense
Urban)

0.02 / 0.01

Channel coefficient κ` 0.4 Channel coefficient κr 0.6
Channel coefficient K 8 Number of transmit

antennas NT

8

Number of receive
antennas NR

4 Target rate Rmin 2 bits/s/Hz

Power spectrum density
σ20

10−6 Circuit power Pc 8 dB

Hovering power Ph 25 dB

maintaining a velocity of 10 m/s, the performance
characteristic shifts accordingly, indicating the impact
of height on the received signal or systemmetric being
measured. Furthermore, comparing velocities of 5 m/s
and 10 m/s at a fixed altitude of 50 m reveals the role
of mobility in temporal dynamics or link stability.
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wout power allocation

Figure 5. Average energy efficiency versus transmit power
for scenarios with and without power allocation.

As illustrated in Figure 5, the system employing power
allocation consistently achieves higher average energy
efficiency (EE) across all levels of transmit power
compared to the systemwithout power allocation. This
demonstrates the effectiveness of optimizing power

distribution strategies to significantly enhance the
overall energy efficiency of the network.

6 Conclusion
In this study, an advanced communication framework
was developed for miniature UAV-assisted IoT
networks to address the challenges of limited energy
resources and high user density. By integrating spatial
modulation with intelligent antenna selection and
power-domain NOMA, the system ensures efficient
spectral usage and fairness among multiple users.
Unlike traditional schemes where only one user
acts as the active data user (ADU), the proposed
model enables all users to participate actively,
thereby enhancing overall network throughput. The
air-to-ground channel was modeled with practical
considerations such as UAV altitude, mobility,
LoS/NLoS propagation, and Rician fading, allowing
accurate performance evaluation under urban and
dense urban scenarios. A detailed mathematical
model was established to derive mutual information
and signal capacity per user. Power allocation was
dynamically optimized while maintaining individual
rate constraints. Simulation results confirmed
significant improvements. At a UAV altitude of 50
meters, the proposed scheme achieved a peak energy
efficiency (EE) of 7.8 bits/Joule, outperforming
traditional NOMA methods that achieved 6.0
bits/Joule under the same conditions. The system
sustained a target user rate of 2 bits/s/Hz, even with
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UAV velocities of 5 m/s and 10 m/s, demonstrating
resilience to mobility-induced channel variations.
It was also observed that lower UAV altitudes and
moderate speeds improved both energy efficiency and
temporal link stability. Overall, this work highlights
the benefits of co-designing receiver architecture
and transmission strategies to enhance network
performance in energy-constrained aerial platforms.
The proposed solution is scalable, adaptable, and
suitable for next-generation IoT applications where
low-latency and energy-aware communication is
critical. Future research may extend this framework
by integrating learning-based real-time optimization
algorithms, cooperative multi-UAV networking, and
reconfigurable intelligent surfaces (RIS) to further
elevate performance in dynamic and heterogeneous
environments.
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