Author
Contributions by role
Author 1
Talha Salman
Erciyes University, Kayseri, Turkey
Summary
Edited Journals
ICCK Contributions

Research Article | 25 June 2025
ColoSegNet: Visual Intelligence Driven Triple Attention Feature Fusion Network for Endoscopic Colorectal Cancer Segmentation
ICCK Transactions on Intelligent Systematics | Volume 2, Issue 2: 125-136, 2025 | DOI: 10.62762/TIS.2025.385365
Abstract
Accurate segmentation of colorectal cancer (CRC) from endoscopic images is crucial for computer-aided diagnosis. Visual intelligence enhances detection precision, supporting clinical decision-making. However, current segmentation methods often struggle with accurately delineating fine-grained lesion boundaries due to limited context comprehension and inadequate attention to optimal features. Additionally, the poor fusion of multi-scale semantic cues hinders performance, especially in complex endoscopic scenarios. To address these issues, we introduce ColoSegNet, a Visual Intelligence-Driven Triple Attention Feature Fusion Network designed for high-precision CRC segmentation. Our approach beg... More >

Graphical Abstract
ColoSegNet: Visual Intelligence Driven Triple Attention Feature Fusion Network for Endoscopic Colorectal Cancer Segmentation