-
CiteScore
-
Impact Factor
Volume 1, Issue 1, ICCK Transactions on Mobile and Wireless Intelligence
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Mobile and Wireless Intelligence, Volume 1, Issue 1, 2025: 11-18

Free to Read | Research Article | 26 July 2025
Design of Ultra-Wideband (UWB) Microstrip Patch Antenna for Biomedical Telemetry Applications
1 Department of Electronics and Communication Engineering, Yıldız Technical University, 34220 Istanbul, Turkey
2 Department of Computer Science and Engineering, Comilla University, 3506 Cumilla, Bangladesh
* Corresponding Author: Salah Uddin, [email protected]
Received: 16 June 2025, Accepted: 26 June 2025, Published: 26 July 2025  
Abstract
The emergence of ultra-wideband (UWB) technology, following the FCC’s allocation of the 3.1-10.6 GHz spectrum for unlicensed use, has significantly advanced short-range wireless communication, particularly in biomedical telemetry. This paper proposes a compact UWB microstrip patch antenna (32×32×1.6 mm³) designed for biomedical applications such as brain tumor detection, cancer screening, and health monitoring. The antenna incorporates a miniaturized radiating patch with stair-step and serrated slot structures, as well as a defected ground configuration to enhance impedance bandwidth and reduce electromagnetic interference. It achieves effective operation across the 2.48-10.8 GHz range and integrates multiple band-notch features to suppress unwanted signals from WiMAX, WLAN, 5G, and satellite services. With its compact footprint, wide bandwidth, and selective rejection characteristics, the proposed antenna is well-suited for microwave medical imaging and wearable biomedical systems.

Graphical Abstract
Design of Ultra-Wideband (UWB) Microstrip Patch Antenna for Biomedical Telemetry Applications

Keywords
ultra-wideband (UWB)
microstrip patch antenna
telemetry device
biomedical application

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Federal Communications Commission. (2002). Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems. FIRST REPORT AND ORDER FCC 02-48.
    [Google Scholar]
  2. Kirtonia, P., Hosain, M. K., & Rahman, T. (2018, December). Miniaturized and differentially fed implantable antenna for biomedical telemetry applications. In 2018 10th international conference on electrical and computer engineering (ICECE) (pp. 349-352). IEEE.
    [CrossRef]   [Google Scholar]
  3. Smida, A., Iqbal, A., Alazemi, A. J., Waly, M. I., Ghayoula, R., & Kim, S. (2020). Wideband wearable antenna for biomedical telemetry applications. IEEE Access, 8, 15687-15694.
    [CrossRef]   [Google Scholar]
  4. Li, L., Yang, J., Chen, X., Zhang, X., Ma, R., & Zhang, W. (2012). Ultra-wideband differential wide-slot antenna with improved radiation patterns and gain. IEEE Transactions on Antennas and Propagation, 60(12), 6013-6018.
    [CrossRef]   [Google Scholar]
  5. Ahmed, F., Hasan, N., & Chowdhury, M. H. M. (2017, February). A compact low-profile ultra wideband antenna for biomedical applications. In 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE) (pp. 87-90). IEEE.
    [CrossRef]   [Google Scholar]
  6. Soliman, M. M., Alkaeed, M., Pervez, M. J. A., Rafi, I. A., Mahfuz, M. H., & Musa, A. (2020, September). A comb shape slot UWB antenna with controllable triple band rejection features for WiMAX/WLAN/5G/satellite applications. In 2020 IEEE Student Conference on Research and Development (SCOReD) (pp. 362-367). IEEE.
    [CrossRef]   [Google Scholar]
  7. Shakib, M. N., Moghavvemi, M., & Mahadi, W. N. L. B. W. (2016). Design of a tri-band off-body antenna for WBAN communication. IEEE Antennas and Wireless Propagation Letters, 16, 210-213.
    [CrossRef]   [Google Scholar]
  8. Mahfuz, M. H., Islam, M. R., Sakib, N., Habaebi, M. H., Raad, R., & Sakib, M. A. T. (2021, June). Design of wearable textile patch antenna using C-shape etching slot for Wi-MAX and 5G lower band applications. In 2021 8th International Conference on Computer and Communication Engineering (ICCCE) (pp. 168-172). IEEE.
    [CrossRef]   [Google Scholar]
  9. Gani, I., & Yoo, H. (2016). Multi-band antenna system for skin implant. IEEE Microwave and Wireless Components Letters, 26(4), 294-296.
    [CrossRef]   [Google Scholar]
  10. Huang, F. J., Lee, C. M., Chang, C. L., Chen, L. K., Yo, T. C., & Luo, C. H. (2011). Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication. IEEE Transactions on Antennas and Propagation, 59(7), 2646-2653.
    [CrossRef]   [Google Scholar]
  11. Das, R., & Yoo, H. (2015). Biotelemetry and wireless powering for leadless pacemaker systems. IEEE Microwave and Wireless Components Letters, 25(4), 262-264.
    [CrossRef]   [Google Scholar]
  12. Rahman, M., & Park, J. D. (2018). The smallest form factor UWB antenna with quintuple rejection bands for IoT applications utilizing RSRR and RCSRR. Sensors, 18(3), 911.
    [CrossRef]   [Google Scholar]
  13. Busnatu, Ș. S., Niculescu, A. G., Bolocan, A., Andronic, O., Pantea Stoian, A. M., Scafa-Udriște, A., ... & Jinga, V. (2022). A review of digital health and biotelemetry: modern approaches towards personalized medicine and remote health assessment. Journal of Personalized Medicine, 12(10), 1656.
    [CrossRef]   [Google Scholar]
  14. Kvedar, J., Coye, M. J., & Everett, W. (2014). Connected health: a review of technologies and strategies to improve patient care with telemedicine and telehealth. Health affairs, 33(2), 194-199.
    [CrossRef]   [Google Scholar]
  15. Belen, A., Tari, O., Mahouti, P., Belen, M. A., & Çalışkan, A. (2022). Surrogate-based design optimization of multi-band antenna. Applied Computational Electromagnetics Society Journal (ACES), 37(1), 34-40.
    [CrossRef]   [Google Scholar]
  16. Palandöken, M., Belen, A., Tari, O., Mahouti, P., Mahouti, T., & Belen, M. A. (2024). Computationally efficient design optimization of multiband antenna using deep learning-based surrogate models. International Journal of RF and Microwave Computer‐Aided Engineering, 2024(1), 5442768.
    [CrossRef]   [Google Scholar]
  17. Kelly, J. R., Hall, P. S., & Gardner, P. (2011). Band-notched UWB antenna incorporating a microstrip open-loop resonator. IEEE Transactions on Antennas and Propagation, 59(8), 3045-3048.
    [CrossRef]   [Google Scholar]
  18. Jiang, W., & Che, W. (2012). A novel UWB antenna with dual notched bands for WiMAX and WLAN applications. IEEE Antennas and Wireless Propagation Letters, 11, 293-296.
    [CrossRef]   [Google Scholar]
  19. Ma, T. G., & Tsai, J. W. (2010). Band-rejected ultrawideband planar monopole antenna with high frequency selectivity and controllable bandwidth using inductively coupled resonator pairs. IEEE Transactions on Antennas and Propagation, 58(8), 2747-2752.
    [CrossRef]   [Google Scholar]
  20. Chuang, C. T., Lin, T. J., & Chung, S. J. (2012). A band-notched UWB monopole antenna with high notch-band-edge selectivity. IEEE Transactions on Antennas and Propagation, 60(10), 4492-4499.
    [CrossRef]   [Google Scholar]
  21. Tu, Z. H., Li, W. A., & Chu, Q. X. (2014). Single-layer differential CPW-fed notch-band tapered-slot UWB antenna. IEEE Antennas and Wireless Propagation Letters, 13, 1296-1299.
    [CrossRef]   [Google Scholar]
  22. Aziz, N. A., Mohamad, N. R., Abu, M., & Othman, A. (2016). Design of ultra-wideband (UWB) implantable antenna for biomedical telemetry. ARPN Journal of Engineering and Applied Sciences, 11(5), 3249-3252.
    [Google Scholar]
  23. Rao, P. K., & Mishra, R. (2019). Ultra-wide-band flexible antenna for breast cancer detection. 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), 1-4.
    [CrossRef]   [Google Scholar]
  24. Bashir, Z., Zahid, M., Abbas, N., Yousaf, M., Shoaib, S., Asghar, M. A., & Amin, Y. (2019). A miniaturized wide band implantable antenna for biomedical application. 2019 UK/China Emerging Technologies (UCET), 1-4.
    [CrossRef]   [Google Scholar]
  25. Tiwari, B., Gupta, S. H., & Balyan, V. (2022). Comparative exploration of diverse substrate materials on performance of ultra wide band antenna design for on body WBAN applications. Wireless Personal Communications, 124(4), 3661-3684.
    [CrossRef]   [Google Scholar]
  26. Rajkamal, K., & Immadi, G. (2018). Design and analysis of different substrate materials for UWB antenna used for biomedical applications. Journal of Theoretical and Applied Information Technology, 96(7).
    [Google Scholar]
  27. Kiourti, A., & Nikita, K. S. (2012). Miniature scalp-implantable antennas for telemetry in the MICS and ISM bands: Design, safety considerations and link budget analysis. IEEE Transactions on Antennas and Propagation, 60(8), 3568-3575.
    [CrossRef]   [Google Scholar]
  28. Mahmood, S. N., Ishak, A. J., Ismail, A., Soh, A. C., Zakaria, Z., & Alani, S. (2020). ON-OFF body ultra-wideband (UWB) antenna for wireless body area networks (WBAN): A review. IEEE Access, 8, 150844-150863.
    [CrossRef]   [Google Scholar]
  29. Olatinwo, D. D., Abu-Mahfouz, A., & Hancke, G. (2019). A survey on LPWAN technologies in WBAN for remote health-care monitoring. Sensors, 19(23), 5268.
    [CrossRef]   [Google Scholar]
  30. Taleb, H., Nasser, A., Andrieux, G., Charara, N., & Motta Cruz, E. (2021). Wireless technologies, medical applications and future challenges in WBAN: A survey. Wireless Networks, 27(8), 5271-5295.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Uddin, S., Mohibullah, M., & Hasan, M. (2025). Design of Ultra-Wideband (UWB) Microstrip Patch Antenna for Biomedical Telemetry Applications. ICCK Transactions on Mobile and Wireless Intelligence, 1(1), 11–18. https://doi.org/10.62762/TMWI.2025.250467

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 42
PDF Downloads: 21

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
Institute of Central Computation and Knowledge (ICCK) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ICCK Transactions on Mobile and Wireless Intelligence

ICCK Transactions on Mobile and Wireless Intelligence

ISSN: request pending (Online) | ISSN: request pending (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/