-
CiteScore
-
Impact Factor
Volume 2, Issue 2, Agricultural Science and Food Processing
Volume 2, Issue 2, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Agricultural Science and Food Processing, Volume 2, Issue 2, 2025: 89-105

Open Access | Review Article | 29 June 2025
Ultrasound as a Technique to Extract Plant Proteins: Effects, Yields and Modifications
1 College of Science, Engineering and Food Science, University College Cork, Cork, Ireland
* Corresponding Author: Yuelin Zhan, [email protected]
Received: 16 June 2025, Accepted: 28 June 2025, Published: 29 June 2025  
Abstract
Plant-based proteins have been promoted in research for various reasons. First, more people choose to live sustainably with environmental concerns. Moreover, adequate proteins are required for the new challenge in an expanding world population. Furthermore, from an industrial perspective, extracting nutrients from cheaper sources with better value in both nutrients and markets is in demand. Proteins from traditional sources such as soy and wheat, seeing potential value in other protein-rich legumes, seeds, or even leaves, have been considered as sources over the past 20 years in approximation. The extractions can be done traditionally by thermal or alkali methods, while other novel techniques, including ultrasonication, fit the need to improve extraction efficiency and better functional properties and less energy-intensive. Ultrasonic-assisted extraction (UAE), mostly applied in alkaline conditions, and aqueous extraction with variations, have improved yield and better functionality in most plants, compared to the traditional alkaline method. In practical use, multiple established methods are applied together to accomplish the best results, apart from limitations. The review aims to examine the data from these results and to provide general evidence of availability, meanwhile mentioning some definite challenges in real manufacturing environments. Regarding its better applications to manufacturers, possible guidelines in practice are presented.

Graphical Abstract
Ultrasound as a Technique to Extract Plant Proteins: Effects, Yields and Modifications

Keywords
UAE
alkaline
extraction
yield
protein
functional properties
antioxidant

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Dabbour, M., He, R., Ma, H., & Musa, A. (2018). Optimization of ultrasound assisted extraction of protein from sunflower meal and its physicochemical and functional properties. Journal of Food Process Engineering, 41(5), e12799.
    [CrossRef]   [Google Scholar]
  2. Eze, O. F., Chatzifragkou, A., & Charalampopoulos, D. (2022). Properties of protein isolates extracted by ultrasonication from soybean residue (okara). Food Chemistry, 368, 130837.
    [CrossRef]   [Google Scholar]
  3. Preece, K. E., Hooshyar, N., Krijgsman, A., Fryer, P. J., & Zuidam, N. J. (2017). Intensified soy protein extraction by ultrasound. Chemical Engineering and Processing: Process Intensification, 113, 94-101.
    [CrossRef]   [Google Scholar]
  4. Yagoub, A. A., Ma, M., & Zhou, C. (2017). Ultrasonic-assisted extraction of protein from rapeseed (Brassica napus L.) meal: Optimization of extraction conditions and structural characteristics of the protein. International Food Research Journal, 24(2), 621.
    [Google Scholar]
  5. Das, D., Panesar, P. S., & Saini, C. S. (2023). Ultrasonic extraction of soy protein isolate: Characterization and comparison with microwave and enzymatic extraction methods. Journal of Food Science, 88(7), 2758-2779.
    [CrossRef]   [Google Scholar]
  6. Li, W., Yang, H., Coldea, T. E., & Zhao, H. (2021). Modification of structural and functional characteristics of brewer's spent grain protein by ultrasound assisted extraction. Lwt, 139, 110582.
    [CrossRef]   [Google Scholar]
  7. Pilli, S., Bhunia, P., Yan, S., LeBlanc, R. J., Tyagi, R. D., & Surampalli, R. Y. (2011). Ultrasonic pretreatment of sludge: a review. Ultrasonics sonochemistry, 18(1), 1-18.
    [CrossRef]   [Google Scholar]
  8. Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: A review. Trends in Food Science & Technology, 21(7), 323-331.
    [CrossRef]   [Google Scholar]
  9. Fahmi, R., Khodaiyan, F., Pourahmad, R., & Emam-Djomeh, Z. (2011). Effect of Ultrasound Assisted Extraction upon the Protein Content and Rheological Properties of the Resultant Soymilk. Advance Journal of Food Science and Technology, 3(4), 245-249.
    [CrossRef]   [Google Scholar]
  10. Khanal, S. K., Montalbo, M., Van Leeuwen, J., Srinivasan, G., & Grewell, D. (2007). Ultrasound enhanced glucose release from corn in ethanol plants. Biotechnology and bioengineering, 98(5), 978-985.
    [CrossRef]   [Google Scholar]
  11. Mason, T. J., Paniwnyk, L., & Lorimer, J. P. (1996). The uses of ultrasound in food technology. Ultrasonics sonochemistry, 3(3), S253-S260.
    [CrossRef]   [Google Scholar]
  12. Shirsath, S. R., Sonawane, S. H., & Gogate, P. R. (2012). Intensification of extraction of natural products using ultrasonic irradiations a review of current status. Chemical Engineering and Processing: Process Intensification, 53, 10-23.
    [CrossRef]   [Google Scholar]
  13. Stathopulos, P. B., Scholz, G. A., Hwang, Y. M., Rumfeldt, J. A., Lepock, J. R., & Meiering, E. M. (2004). Sonication of proteins causes formation of aggregates that resemble amyloid. Protein science, 13(11), 3017-3027.
    [CrossRef]   [Google Scholar]
  14. Tang, D. S., Tian, Y. J., He, Y. Z., Li, L., Hu, S. Q., & Li, B. (2010). Optimisation of ultrasonic-assisted protein extraction from brewer's spent grain. Czech Journal of Food Sciences, 28(1), 9-17.
    [CrossRef]   [Google Scholar]
  15. Wang, Q., Wang, Y., Huang, M., Hayat, K., Kurtz, N. C., Wu, X., ... & Zheng, F. (2021). Ultrasound-assisted alkaline proteinase extraction enhances the yield of pecan protein and modifies its functional properties. Ultrasonics Sonochemistry, 80, 105789.
    [CrossRef]   [Google Scholar]
  16. Wen, C., Zhang, J., Zhang, H., Duan, Y., & Ma, H. (2019). Effects of divergent ultrasound pretreatment on the structure of watermelon seed protein and the antioxidant activity of its hydrolysates. Food chemistry, 299, 125165.
    [CrossRef]   [Google Scholar]
  17. Zhao, Y., Wen, C., Feng, Y., Zhang, J., He, Y., Duan, Y., ... & Ma, H. (2021). Effects of ultrasound-assisted extraction on the structural, functional and antioxidant properties of Dolichos lablab L. Protein. Process Biochemistry, 101, 274-284.
    [CrossRef]   [Google Scholar]
  18. Zou, J., Nguyen, N., Biers, M., & Sun, G. (2019). Conformational changes of soy proteins under high-intensity ultrasound and high-speed shearing treatments. ACS Sustainable Chemistry & Engineering, 7(9), 8117-8125.
    [CrossRef]   [Google Scholar]
  19. Lafarga, T., Álvarez, C., Bobo, G., & Aguiló-Aguayo, I. (2018). Characterization of functional properties of proteins from Ganxet beans (Phaseolus vulgaris L. var. Ganxet) isolated using an ultrasound-assisted methodology. Lwt, 98, 106-112.
    [CrossRef]   [Google Scholar]
  20. Shen, L., Wang, X., Wang, Z., Wu, Y., & Chen, J. (2008). Studies on tea protein extraction using alkaline and enzyme methods. Food Chemistry, 107, 929-938.
    [CrossRef]   [Google Scholar]
  21. Görgüç, A., Bircan, C., & Yılmaz, F. M. (2019). Sesame bran as an unexploited by-product: Effect of enzyme and ultrasound-assisted extraction on the recovery of protein and antioxidant compounds. Food Chemistry, 283, 637-645.
    [CrossRef]   [Google Scholar]
  22. Phongthai, S., Lim, S. T., & Rawdkuen, S. (2017). Ultrasonic-assisted extraction of rice bran protein using response surface methodology. Journal of Food Biochemistry, 41(2), e12314.
    [CrossRef]   [Google Scholar]
  23. Hadidi, M., Khaksar, F. B., Pagan, J., & Ibarz, A. (2020). Application of Ultrasound-Ultrafiltration-Assisted alkaline isoelectric precipitation (UUAAIP) technique for producing alfalfa protein isolate for human consumption: Optimization, comparison, physicochemical, and functional properties. Food Research International, 130, 108907.
    [CrossRef]   [Google Scholar]
  24. Hadidi, M., Ibarz, A., Conde, J., & Pagan, J. (2019). Optimisation of steam blanching on enzymatic activity, color and protein degradation of alfalfa (Medicago sativa) to improve some quality characteristics of its edible protein. Food chemistry, 276, 591-598.
    [CrossRef]   [Google Scholar]
  25. Statista. (2021). Global soy milk market value. Retrieved from \url{https://www.statista.com/statistics/896138/global-soy-milk-market-value
    [Google Scholar]
  26. Wang, F., Zhang, Y., Xu, L., & Ma, H. (2020). An efficient ultrasound-assisted extraction method of pea protein and its effect on protein functional properties and biological activities. Lwt, 127, 109348.
    [CrossRef]   [Google Scholar]
  27. Zhu, J., & Fu, Q. (2012). Optimization of ultrasound-assisted extraction process of perilla seed meal proteins. Food Science and Biotechnology, 21(6), 1701-1706.
    [CrossRef]   [Google Scholar]
  28. Morel, M. H., Dehlon, P., Autran, J. C., Leygue, J. P., & Bar-L'Helgouac'h, C. (2000). Effects of temperature, sonication time, and power settings on size distribution and extractability of total wheat flour proteins as determined by size-exclusion high-performance liquid chromatography. Cereal Chemistry, 77(5), 685-691.
    [CrossRef]   [Google Scholar]
  29. Chittapalo, T., & Noomhorm, A. (2009). Ultrasonic assisted alkali extraction of protein from defatted rice bran and properties of the protein concentrates. International journal of food science and technology, 44(9), 1843-1849.
    [CrossRef]   [Google Scholar]
  30. Phongthai, S., Homthawornchoo, W., & Rawdkuen, S. (2017). Preparation, properties and application of rice bran protein: A review. International Food Research Journal, 24(1), 25.
    [Google Scholar]
  31. Mussatto, S. I., Dragone, G., & Roberto, I. C. (2006). Brewers' spent grain: generation, characteristics and potential applications. Journal of cereal science, 43(1), 1-14.
    [CrossRef]   [Google Scholar]
  32. Li, W., Shu, C., Yan, S., & Shen, Q. (2010). Characteristics of sixteen mung bean cultivars and their protein isolates. International journal of food science & technology, 45(6), 1205-1211.
    [CrossRef]   [Google Scholar]
  33. Ikram, S., Huang, L., Zhang, H., Wang, J., & Yin, M. (2017). Composition and nutrient value proposition of brewers spent grain. Journal of food science, 82(10), 2232-2242.
    [CrossRef]   [Google Scholar]
  34. Wei, W., Qi, X., Wang, L., Zhang, Y., Hua, W., Li, D., ... & Zhang, X. (2011). Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC genomics, 12(1), 451.
    [CrossRef]   [Google Scholar]
  35. Bedin, S., Netto, F. M., Bragagnolo, N., & Taranto, O. P. (2020). Reduction of the process time in the achieve of rice bran protein through ultrasound-assisted extraction and microwave-assisted extraction. Separation Science and Technology, 55(2), 300-312.
    [CrossRef]   [Google Scholar]
  36. Dolatowski, Z. J., & Stasiak, D. M. (2011). 4 Ultrasonically Assisted. Enhancing extraction processes in the food industry, 123.
    [Google Scholar]
  37. Karki, B., Lamsal, B. P., Jung, S., van Leeuwen, J. H., Pometto III, A. L., Grewell, D., & Khanal, S. K. (2010). Enhancing protein and sugar release from defatted soy flakes using ultrasound technology. Journal of Food Engineering, 96(2), 270-278.
    [CrossRef]   [Google Scholar]
  38. Roselló-Soto, E., Barba, F. J., Parniakov, O., Galanakis, C. M., Lebovka, N., Grimi, N., & Vorobiev, E. (2015). High voltage electrical discharges, pulsed electric field, and ultrasound assisted extraction of protein and phenolic compounds from olive kernel. Food and Bioprocess Technology, 8(4), 885-894.
    [CrossRef]   [Google Scholar]
  39. Virot, M., Tomao, V., Le Bourvellec, C., Renard, C. M., & Chemat, F. (2010). Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction. Ultrasonics sonochemistry, 17(6), 1066-1074.
    [CrossRef]   [Google Scholar]
  40. Phillips, G. O., & Williams, P. A. (1995). Interaction of Hydrocolloids in Food Systems. In A. G. Gaonkar (Ed.), Ingredient Interactions (pp. 131-169). Marcel Dekker.
    [Google Scholar]
  41. Lizarazo, C. I., Lampi, A. M., Liu, J., Sontag-Strohm, T., Piironen, V., & Stoddard, F. L. (2015). Nutritive quality and protein production from grain legumes in a boreal climate. Journal of the Science of Food and Agriculture, 95(10), 2053-2064.
    [CrossRef]   [Google Scholar]
  42. Rivera, A., Roselló, S., & Casañas, F. (2015). Seed curvature as a useful marker to transfer morphologic, agronomic, chemical and sensory traits from Ganxet common bean (Phaseolus vulgaris L.). Scientia Horticulturae, 197, 476-482.
    [CrossRef]   [Google Scholar]
  43. Ragab, D. M., Babiker, E. E., & Eltinay, A. H. (2004). Fractionation, solubility and functional properties of cowpea (Vigna unguiculata) proteins as affected by pH and/or salt concentration. Food Chemistry, 84(2), 207-212.
    [CrossRef]   [Google Scholar]
  44. Seena, S., & Sridhar, K. R. (2005). Physicochemical, functional and cooking properties of under explored legumes, Canavalia of the southwest coast of India. Food Research International, 38(7), 803-814.
    [CrossRef]   [Google Scholar]
  45. Kumar, K. S., Ganesan, K., Selvaraj, K., & Rao, P. S. (2014). Studies on the functional properties of protein concentrate of Kappaphycus alvarezii (Doty) Doty-An edible seaweed. Food chemistry, 153, 353-360.
    [CrossRef]   [Google Scholar]
  46. Kaur, M., & Singh, N. (2007). Characterization of protein isolates from different Indian chickpea (Cicer arietinum L.) cultivars. Food chemistry, 102(1), 366-374.
    [CrossRef]   [Google Scholar]
  47. Shevkani, K., & Singh, N. (2015). Relationship between protein characteristics and film-forming properties of kidney bean, field pea and amaranth protein isolates. International Journal of Food Science & Technology, 50(4), 1033-1043.
    [CrossRef]   [Google Scholar]
  48. Krupa-Kozak, U., Bączek, N., & Rosell, C. M. (2013). Application of dairy proteins as technological and nutritional improvers of calcium-supplemented gluten-free bread. Nutrients, 5(11), 4503-4520.
    [CrossRef]   [Google Scholar]
  49. Wani, I. A., Sogi, D. S., Shivhare, U. S., & Gill, B. S. (2015). Physico-chemical and functional properties of native and hydrolyzed kidney bean (Phaseolus vulgaris L.) protein isolates. Food research international, 76, 11-18.
    [CrossRef]   [Google Scholar]
  50. Hadnađev, M., Dapčević-Hadnađev, T., Lazaridou, A., Moschakis, T., Michaelidou, A. M., Popović, S., & Biliaderis, C. G. (2018). Hempseed meal protein isolates prepared by different isolation techniques. Part I. physicochemical properties. Food Hydrocolloids, 79, 526-533.
    [CrossRef]   [Google Scholar]
  51. Hojilla‐Evangelista, M. P., Selling, G. W., Hatfield, R., & Digman, M. (2017). Extraction, composition, and functional properties of dried alfalfa (Medicago sativa L.) leaf protein. Journal of the Science of Food and Agriculture, 97(3), 882-888.
    [CrossRef]   [Google Scholar]
  52. Houde, M., Khodaei, N., Benkerroum, N., & Karboune, S. (2018). Barley protein concentrates: Extraction, structural and functional properties. Food chemistry, 254, 367-376.
    [CrossRef]   [Google Scholar]
  53. Kadam, S. U., Tiwari, B. K., Álvarez, C., & O'Donnell, C. P. (2015). Ultrasound applications for the extraction, identification and delivery of food proteins and bioactive peptides. Trends in Food Science & Technology, 46(1), 60-67.
    [CrossRef]   [Google Scholar]
  54. Malik, M. A., & Saini, C. S. (2017). Polyphenol removal from sunflower seed and kernel: Effect on functional and rheological properties of protein isolates. Food Hydrocolloids, 63, 705-715.
    [CrossRef]   [Google Scholar]
  55. Malik, M. A., & Saini, C. S. (2017). Gamma irradiation of alkali extracted protein isolate from dephenolized sunflower meal. Lwt, 84, 204-211.
    [CrossRef]   [Google Scholar]
  56. Suliman, M. A., El Tinay, A. H., Abd Elmoneim, O. E., Babiker, E. E., & Elkhalil, E. A. (2006). Solubility as influenced by pH and NaCl concentaration and functional properties of lentil proteins isolate. Pakistan Journal of Nutrition, 5(6), 589-593.
    [CrossRef]   [Google Scholar]
  57. Ulloa, J. A., Rosas-Ulloa, P., & Ulloa-Rangel, B. E. (2011). Physicochemical and functional properties of a protein isolate produced from safflower (Carthamus tinctorius L.) meal by ultrafiltration. Journal of the Science of Food and Agriculture, 91(3), 572-577.
    [CrossRef]   [Google Scholar]
  58. Ulloa, J. A., Villalobos Barbosa, M. C., Resendiz Vazquez, J. A., Rosas Ulloa, P., Ramirez Ramirez, J. C., Silva Carrillo, Y., & Gonzalez Torres, L. (2017). Production, physico-chemical and functional characterization of a protein isolate from jackfruit (Artocarpus heterophyllus) seeds. CyTA-Journal of Food, 15(4), 497-507.
    [CrossRef]   [Google Scholar]
  59. Ahmadifard, N., Murueta, J. H. C., Abedian-Kenari, A., Motamedzadegan, A., & Jamali, H. (2016). Comparison the effect of three commercial enzymes for enzymatic hydrolysis of two substrates (rice bran protein concentrate and soy-been protein) with SDS-PAGE. Journal of Food Science and Technology, 53(2), 1279-1284.
    [CrossRef]   [Google Scholar]
  60. Benelhadj, S., Gharsallaoui, A., Degraeve, P., Attia, H., & Ghorbel, D. (2016). Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chemistry, 194, 1056-1063.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Zhan, Y. (2025). Ultrasound as a Technique to Extract Plant Proteins: Effects, Yields and Modifications. Agricultural Science and Food Processing, 2(2), 89–105. https://doi.org/10.62762/ASFP.2025.102130

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 31
PDF Downloads: 6

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Agricultural Science and Food Processing

Agricultural Science and Food Processing

ISSN: 3066-1579 (Online) | ISSN: 3066-1560 (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/