-
CiteScore
-
Impact Factor
Volume 1, Issue 1, Journal of Chemical Engineering and Renewable Fuels
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Journal of Chemical Engineering and Renewable Fuels, Volume 1, Issue 1, 2025: 3-8

Open Access | Perspective | 28 August 2025
Wastewater Upgrading to Fuels: Routes and Challenges
1 Chemical Engineering Laboratory, CCIQS UAEM-UNAM, Faculty of Chemistry, Autonomous University of the State of Mexico, Toluca 50200, Mexico
* Corresponding Author: Reyna Natividad, [email protected]
Received: 01 August 2025, Accepted: 11 August 2025, Published: 28 August 2025  
Abstract
This perspective outlines technical strategies for upgrading wastewater into fuels and value-added chemicals, emphasizing a shift toward circular economy and resource recovery through advanced processes like photocatalysis, electrolysis, and microbial technologies.

Graphical Abstract
Wastewater Upgrading to Fuels: Routes and Challenges

Keywords
renewable fuels
water-energy-carbon nexus
hydrogen
circular economy
water recovery

Data Availability Statement
Not applicable.

Funding
This work was supported by the SECIHTI Mexico under CVU 87755.

Conflicts of Interest
The author declares no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Pratap, B., Kumar, S., Nand, S., Azad, I., Bharagava, R. N., Romanholo Ferreira, L. F., & Dutta, V. (2023). Wastewater generation and treatment by various eco-friendly technologies: Possible health hazards and further reuse for environmental safety. Chemosphere, 313, 137547.
    [CrossRef]   [Google Scholar]
  2. Qadir, M., Drechsel, P., Jiménez Cisneros, B., Kim, Y., Pramanik, A., Mehta, P., & Olaniyan, O. (2020). Global and regional potential of wastewater as a water, nutrient and energy source. Natural Resources Forum, 44(1), 40–51.
    [CrossRef]   [Google Scholar]
  3. García-Orozco, V. M., Linares-Hernández, I., Natividad, R., Balderas-Hernández, P., Alanis-Ramírez, C., Barrera-Díaz, C. E., & Roa-Morales, G. (2022). Solar-photovoltaic electrocoagulation of wastewater from a chocolate manufacturing industry: Anodic material effect (aluminium, copper and zinc) and life cycle assessment. Journal of Environmental Chemical Engineering, 10(3), 107969.
    [CrossRef]   [Google Scholar]
  4. Dakal, T. C., Singh, N., Kaur, A., Dhillon, P. K., Bhatankar, J., Meena, R., Sharma, R. K., Gadi, B. R., Sahu, B. Sen, Patel, A., Singh, B., & Kumari, K. (2025). New horizons in microbial fuel cell technology: applications, challenges, and prospects. In Biotechnology for Biofuels and Bioproducts (Vol. 18, Issue 1). BioMed Central Ltd.
    [CrossRef]   [Google Scholar]
  5. Jensen, L. S., Kaul, C., Juncker, N. B., Thomsen, M. H., & Chaturvedi, T. (2022). Biohydrogen Production in Microbial Electrolysis Cells Utilizing Organic Residue Feedstock: A Review. In Energies (Vol. 15, Issue 22). MDPI.
    [CrossRef]   [Google Scholar]
  6. Li, Sibo, Zhang, Z., Liu, L., Yin, C., & Yin, Z. (2025). Iron particle-decorated biochar as a high-performance anode material for enhanced bioelectricity generation in microbial fuel cells. Renewable Energy, 255, 123850.
    [CrossRef]   [Google Scholar]
  7. Xuan, Q. V. N., Nguyen, H. D., Vo, N. X. P., & Lee, T. K. (2025). Plant-microbial fuel cells in green roofs of tropical urban regions for sustainable water treatment and energy generation. In Nature-Based Solutions for Urban Sustainability (pp. 149–173). IWA Publishing.
    [CrossRef]   [Google Scholar]
  8. Qyyum, M. A., Ismail, S., Ni, S. Q., Ihsanullah, I., Ahmad, R., Khan, A., Tawfik, A., Nizami, A. S., & Lee, M. (2022). Harvesting biohydrogen from industrial wastewater: Production potential, pilot-scale bioreactors, commercialization status, techno-economics, and policy analysis. Journal of Cleaner Production, 340, 130809.
    [CrossRef]   [Google Scholar]
  9. Sekar, S., Preethi, V., Saravanan, S., Kim, D. Y., & Lee, S. (2022). Excellent photocatalytic performances of Co3O4–AC nanocomposites for H2 production via wastewater splitting. Chemosphere, 286, 131823.
    [CrossRef]   [Google Scholar]
  10. Arias-Sanchez, A. N., Flores, K., Fu, H., Betoni, T., Westerhoff, P., & Garcia-Segura, S. (2025). Perspectives of electrochemical and photocatalytic technologies for the water-energy nexus potential of water splitting of brines. Energy and Climate Change, 6, 100176.
    [CrossRef]   [Google Scholar]
  11. Raja, M. A., & Preethi, V. (2020). Performance of Square and Trapezoidal photoreactors for solar hydrogen recovery from various industrial sulphide wastewater using CNT/Ce3+ doped TiO2. International Journal of Hydrogen Energy, 45(13), 7616-7626.
    [CrossRef]   [Google Scholar]
  12. Gargari, L. S., Joda, F., Ameri, M., & Nami, H. (2024). Optimization and exergoeconomic analyses of water-energy-carbon nexus in steel production: Integrating solar-biogas energy, wastewater treatment, and carbon capture. International Journal of Hydrogen Energy, 86, 275-292.
    [CrossRef]   [Google Scholar]
  13. Gowd, S. C., Barathi, S., Lee, J., & Rajendran, K. (2025). Sustainability performance of microalgae as a negative emission technology for wastewater treatment. Journal of Water Process Engineering, 71, 107393.
    [CrossRef]   [Google Scholar]
  14. Du, M., Sun, T., Guo, X., Han, M., Zhang, Y., Chen, W., Han, M., Ma, J., Yuan, W., Zhou, C., Nicolosi, V., Shang, J., Zhang, N., & Qiu, B. (2025). Efficient co-production of ammonia and formic acid from nitrate and polyester via paired electrolysis. Materials Horizons, 12(11), 3743–3751.
    [CrossRef]   [Google Scholar]
  15. Pinaud, B. A., Benck, J. D., Seitz, L. C., Forman, A. J., Chen, Z., Deutsch, T. G., James, B. D., Baum, K. N., Baum, G. N., Ardo, S., Wang, H., Miller, E., & Jaramillo, T. F. (2013). Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy and Environmental Science, 6(7), 1983–2002.
    [CrossRef]   [Google Scholar]
  16. Su, J., Sun, N., Zhao, Y., Jiang, C., Luo, Z., Wang, L., & Zhao, Q. (2025). Exploring novel strategies and integrated systems for photothermal catalytic hydrogen production. Chemical Engineering Journal, 162794.
    [CrossRef]   [Google Scholar]
  17. Li, Shijie, Liu, H., Chen, G., Wu, L. Z., & Zhang, T. (2025). Paired Chemical Upgrading in Photoelectrochemical Cells. In JACS Au (Vol. 5, Issue 5, pp. 2061–2075). American Chemical Society.
    [CrossRef]   [Google Scholar]
  18. Su, Z., Dai, Z., Zhou, C., Li, L., Zhou, T., Man, Z., ... & Zhou, B. (2025). Photoelectrocatalytic conversion for wastewater to high-value chemicals and energy. Applied Catalysis B: Environment and Energy, 375, 125419.
    [CrossRef]   [Google Scholar]
  19. Zhou, C., Li, J., Wang, J., Xie, C., Zhang, Y., Li, L., ... & Zhou, B. (2023). Efficient H2 production and TN removal for urine disposal using a novel photoelectrocatalytic system of Co3O4/BiVO4-MoNiCuOx/Cu. Applied Catalysis B: Environmental, 324, 122229.
    [CrossRef]   [Google Scholar]
  20. Bhide, A., Gupta, S., Bhabal, R., Fernandes, R., Patel, M., & Patel, N. (2026). Instigating the mixed phases of cobalt oxide in nanowires for electrolysis of urea-based water. Fuel, 404.
    [CrossRef]   [Google Scholar]
  21. Boretti, A. (2025). Advancing ammonia synthesis: Pathways toward decarbonization and sustainability. In Chemical Engineering Research and Design (Vol. 217, pp. 235–251). Institution of Chemical Engineers.
    [CrossRef]   [Google Scholar]
  22. Elbaz, A. M., Wang, S., Guiberti, T. F., & Roberts, W. L. (2022). Review on the recent advances on ammonia combustion from the fundamentals to the applications. Fuel Communications, 10, 100053.
    [CrossRef]   [Google Scholar]
  23. Moinuddin, A. A., Kotkondawar, A. V., Hippargi, G., Anshul, A., & Rayalu, S. (2024). A promising photo-thermal catalytic approach for hydrogen generation from sulphide bearing wastewater. International Journal of Hydrogen Energy, 51, 1151–1160.
    [CrossRef]   [Google Scholar]
  24. Duangkaew, P., & Phattarapattamawong, S. (2025). Reclamation of formic acid wastewater by electro-oxidation coupled with UV irradiation (UV/EO). Case Studies in Chemical and Environmental Engineering, 12, 101247.
    [CrossRef]   [Google Scholar]
  25. Mallick, A., Kim, J., & Pumera, M. (2025). Magnetically Propelled Microrobots toward Photosynthesis of Green Ammonia from Nitrates. Small, 21(14), 2407050.
    [CrossRef]   [Google Scholar]
  26. Peña, R., Romero, R., Amado-Piña, D., & Natividad, R. (2024). Cu/TiO2 Photo-catalyzed CO2 Chemical Reduction in a Multiphase Capillary Reactor. Topics in Catalysis, 67(5–8), 377–393.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Natividad, R. (2025). Wastewater Upgrading to Fuels: Routes and Challenges. Journal of Chemical Engineering and Renewable Fuels, 1(1), 3–8. https://doi.org/10.62762/JCERF.2025.342282

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 272
PDF Downloads: 69

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Journal of Chemical Engineering and Renewable Fuels

Journal of Chemical Engineering and Renewable Fuels

ISSN: pending (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/