-
CiteScore
-
Impact Factor
Volume 1, Issue 2, ICCK Journal of Image Analysis and Processing
Volume 1, Issue 2, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Journal of Image Analysis and Processing, Volume 1, Issue 2, 2025: 57-72

Open Access | Research Article | 26 June 2025
Multi Focus Image Fusion using Image Enhancement Methods
1 Center for Excellence in Information Technology, Institute of Management Sciences, Peshawar 25000, Pakistan
2 Department of Computer Science, University of Engineering and Technology Mardan, Mardan 23200, Pakistan
* Corresponding Author: Sarwar Shah Khan, [email protected]
Received: 11 April 2025, Accepted: 19 May 2025, Published: 26 June 2025  
Abstract
The challenge with multifocus images lies in different regions being in focus across various shots, resulting in some areas appearing blurry while others are sharp. This issue is prevalent in fields such as medical imaging, remote sensing, and photography, where clear and detailed images are essential. This project introduces a novel approach to multifocus image fusion by integrating the Marr--Hildreth edge detection technique with Discrete Cosine Transform (DCT), Stationary Wavelet Transform (SWT), and Discrete Wavelet Transform (DWT). The Marr--Hildreth algorithm detects edges by identifying zero-crossings in the Laplacian of a Gaussian-blurred image, effectively highlighting areas with significant intensity changes. The proposed method was evaluated across four datasets--clocks, leaves, balloons, and bottles. Performance metrics such as Peak Signal-to-Noise Ratio (PSNR), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Entropy indicated that this integrated approach significantly enhances image quality. By combining Marr--Hildreth edge detection with DCT, SWT, and DWT, the method improves image clarity and detail, offering a promising advancement in image fusion techniques. This innovative approach not only addresses multifocus image challenges but also paves the way for further developments in image fusion processes. The study suggests that enhanced image processing techniques can be applied across various fields requiring high-quality image fusion.

Graphical Abstract
Multi Focus Image Fusion using Image Enhancement Methods

Keywords
image fusion
multifocus images
discrete cosine transform
high boost filter
discrete wavelet transform
marr--hildreth edge detection

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Luhtakallio, E., Meriluoto, T., & Malafaia, C. (2024). Visual politicization and youth challenges to an unequal public sphere: Conceptual and methodological perspectives. In Handbook on youth activism (pp. 140-153). Edward Elgar Publishing.
    [CrossRef]   [Google Scholar]
  2. Zhang, X. (2021). Deep learning-based multi-focus image fusion: A survey and a comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9), 4819-4838.
    [CrossRef]   [Google Scholar]
  3. Zhou, Y., Yu, L., Zhi, C., Huang, C., Wang, S., Zhu, M., ... & Fu, S. (2022). A survey of multi-focus image fusion methods. Applied Sciences, 12(12), 6281.
    [CrossRef]   [Google Scholar]
  4. Zhou, Z., Dong, M., Xie, X., & Gao, Z. (2016). Fusion of infrared and visible images for night-vision context enhancement. Applied optics, 55(23), 6480-6490.
    [CrossRef]   [Google Scholar]
  5. Singh, S., Singh, H., Bueno, G., Deniz, O., Singh, S., Monga, H., ... & Pedraza, A. (2023). A review of image fusion: Methods, applications and performance metrics. Digital Signal Processing, 137, 104020.
    [CrossRef]   [Google Scholar]
  6. Li, H., Wu, X. J., & Kittler, J. (2018, August). Infrared and visible image fusion using a deep learning framework. In 2018 24th international conference on pattern recognition (ICPR) (pp. 2705-2710). IEEE.
    [CrossRef]   [Google Scholar]
  7. Liu, Y., Wang, L., Cheng, J., Li, C., & Chen, X. (2020). Multi-focus image fusion: A survey of the state of the art. Information Fusion, 64, 71-91.
    [CrossRef]   [Google Scholar]
  8. Begum, M., Ferdush, J., & Uddin, M. S. (2022). A Hybrid robust watermarking system based on discrete cosine transform, discrete wavelet transform, and singular value decomposition. Journal of King Saud University-Computer and Information Sciences, 34(8), 5856-5867.
    [CrossRef]   [Google Scholar]
  9. Basu, S., Singhal, S., & Singh, D. (2025). Multi-Focus Image Fusion: A Systematic Literature Review. SN Computer Science, 6(2), 150.
    [CrossRef]   [Google Scholar]
  10. Mishra, P. K., Patni, J. C., Saini, S., Kishore, J., Baloni, D., & Verma, S. (2024, March). Adaptive Gamma Correction With Unsharp Masking and Gaussian Filter for Image Contrast Enhancement. In 2024 International Conference on Automation and Computation (AUTOCOM) (pp. 439-444). IEEE.
    [CrossRef]   [Google Scholar]
  11. Liu, S., Ma, J., Yang, Y., Qiu, T., Li, H., Hu, S., & Zhang, Y. D. (2022). A multi-focus color image fusion algorithm based on low vision image reconstruction and focused feature extraction. Signal Processing: Image Communication, 100, 116533.
    [CrossRef]   [Google Scholar]
  12. Li, S., Kang, X., & Hu, J. (2013). Image fusion with guided filtering. IEEE Transactions on Image processing, 22(7), 2864-2875.
    [CrossRef]   [Google Scholar]
  13. Turgut, S. S., & Oral, M. (2022). Multi-focus image fusion based on gradient transform. arXiv preprint arXiv:2204.09777.
    [CrossRef]   [Google Scholar]
  14. Kaur, R., & Singh, S. (2023, March). Multi-focus image fusion methods: A review. In International Conference on Advanced Computing, Machine Learning, Robotics and Internet Technologies (pp. 112-125). Cham: Springer Nature Switzerland.
    [CrossRef]   [Google Scholar]
  15. Pan, X., Zhai, H., Yang, Y., Chen, L., & Li, A. (2024). Improving multi-focus image fusion through Noisy image and feature difference network. Image and Vision Computing, 142, 104891.
    [CrossRef]   [Google Scholar]
  16. You, C. S., & Yang, S. Y. (2022). A simple and effective multi-focus image fusion method based on local standard deviations enhanced by the guided filter. Displays, 72, 102146.
    [CrossRef]   [Google Scholar]
  17. Farid, M. S., Mahmood, A., & Al-Maadeed, S. A. (2019). Multi-focus image fusion using content adaptive blurring. Information fusion, 45, 96-112.
    [CrossRef]   [Google Scholar]
  18. Bhat, S., & Koundal, D. (2021). Multi-focus image fusion using neutrosophic based wavelet transform. Applied Soft Computing, 106, 107307.
    [CrossRef]   [Google Scholar]
  19. Wang, Z., Li, X., Duan, H., Zhang, X., & Wang, H. (2019). Multifocus image fusion using convolutional neural networks in the discrete wavelet transform domain. Multimedia Tools and Applications, 78, 34483-34512.
    [CrossRef]   [Google Scholar]
  20. Nejati, M., Samavi, S., & Shirani, S. (2015). Multi-focus image fusion using dictionary-based sparse representation. Information fusion, 25, 72-84.
    [CrossRef]   [Google Scholar]
  21. Tribuana, D., & Arda, A. L. (2024). Image preprocessing approaches toward better learning performance with cnn. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 8(1), 1-9.
    [CrossRef]   [Google Scholar]
  22. Shah, P., Merchant, S. N., & Desai, U. B. (2013). Multifocus and multispectral image fusion based on pixel significance using multiresolution decomposition. Signal, Image and Video Processing, 7, 95-109.
    [CrossRef]   [Google Scholar]
  23. Fu, Y., Wu, X. J., & Durrani, T. (2021). Image fusion based on generative adversarial network consistent with perception. Information Fusion, 72, 110-125.
    [CrossRef]   [Google Scholar]
  24. Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of London. Series B. Biological Sciences, 207(1167), 187-217.
    [CrossRef]   [Google Scholar]
  25. Danyal, M. M., Khan, S., Khan, R. S., Jan, S., & Rahman, N. (2024). Enhancing Multi-Modality Medical Imaging: A Novel Approach with Laplacian Filter+ Discrete Fourier Transform Pre-Processing and Stationary Wavelet Transform Fusion. J. Intell. Med. Healthc, 2, 35-53.
    [Google Scholar]
  26. Joshi, K., Kirola, M., Chaudhary, S., Diwakar, M., & Joshi, N. K. (2019, March). Multi-focus image fusion using discrete wavelet transform method. In International conference on advances in engineering science management & technology (ICAESMT)-2019, Uttaranchal University, Dehradun, India.
    [Google Scholar]
  27. Haribabu, M., Bindu, C.H.: Multi focus image fusion based on discrete wavelet transform with statistical measurements (2022).
    [Google Scholar]
  28. Alwan, I. M. (2018). Multi-Focus Image Fusion Using Discrete Cosine Harmonic Wavelet Transform. Int. J. Sci. Res., 7(1), 835-841.
    [Google Scholar]
  29. Avcı, D., Sert, E., Özyurt, F., & Avcı, E. (2024). MFIF-DWT-CNN: Multi-focus ımage fusion based on discrete wavelet transform with deep convolutional neural network. Multimedia Tools and Applications, 83(4), 10951-10968.
    [CrossRef]   [Google Scholar]
  30. Tan, L., Chen, Y., & Zhang, W. (2019, August). Multi-focus Image Fusion Method based on Wavelet Transform. In Journal of Physics: Conference Series (Vol. 1284, No. 1, p. 012068). IOP Publishing.
    [CrossRef]   [Google Scholar]
  31. Nanmaran, R., Srimathi, S., Yamuna, G., Thanigaivel, S., Vickram, A. S., Priya, A. K., ... & Muhibbullah, M. (2022). Investigating the role of image fusion in brain tumor classification models based on machine learning algorithm for personalized medicine. Computational and Mathematical Methods in Medicine, 2022(1), 7137524.
    [CrossRef]   [Google Scholar]
  32. Singh, J., Banga, V.K.: An integrated approach for image fusion using pca and dct. Journal Name (2019).
    [Google Scholar]
  33. Bhat, S., & Koundal, D. (2021). Multi-focus image fusion techniques: a survey. Artificial Intelligence Review, 54(8), 5735-5787.
    [CrossRef]   [Google Scholar]
  34. Khan, S. S., Ran, Q., Khan, M., & Ji, Z. (2019, December). Pan-sharpening framework based on laplacian sharpening with Brovey. In 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP) (pp. 1-5). IEEE.
    [CrossRef]   [Google Scholar]
  35. Rajaei, A., Abiri, E., & Helfroush, M. S. (2024). Balanced spatio-spectral feature extraction for hyperspectral and multispectral image fusion. Computers and Electrical Engineering, 118, 109391.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Danyal, M. M., Samin, O. B., Khan, S. S., & Khan, S. (2025). Multi Focus Image Fusion using Image Enhancement Methods. ICCK Journal of Image Analysis and Processing, 1(2), 57–72. https://doi.org/10.62762/JIAP.2025.772403

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 246
PDF Downloads: 115

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
ICCK Journal of Image Analysis and Processing

ICCK Journal of Image Analysis and Processing

ISSN: 3068-6679 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/