-
CiteScore
-
Impact Factor
Volume 1, Issue 1, ICCK Transactions on Advanced Functional Materials and Processing
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Advanced Functional Materials and Processing, Volume 1, Issue 1, 2025: 11-17

Open Access | Research Article | 29 June 2025
Role of Piper betle extract in the Precipitation of ZnO Nanoparticles for improved Photocatalytic Efficiency
1 Research and Incubation Centre, Rayat Bahra University, Mohali 140103, Punjab, India
2 Regional Institute of Education (NCERT), Ajmer 305004, Rajasthan, India
* Corresponding Author: Jyoti Gaur, [email protected]
Received: 07 June 2025, Accepted: 28 June 2025, Published: 29 June 2025  
Abstract
The present study delves into an eco-friendly and scalable method for creating zinc oxide (ZnO) nanoparticles using extract from Piper betle leaves. By harnessing the natural bio-reductive and capping abilities of the phytochemicals found in P. betle, the ZnO nanoparticles formed a hexagonal wurtzite structure, with an average crystallite size of about 20.3 nm, as confirmed by XRD analysis. The UV–Visible spectroscopy results showed a notable blue shift in absorption, leading to an estimated band gap of 4.10 eV, which is linked to quantum confinement effects. FTIR spectra confirmed the presence of biomolecules on the surface, while SEM imaging displayed quasi-spherical polycrystalline particles with some aggregation. To assess the photocatalytic potential, we evaluated the degradation of methylene blue (MB) dye under UV light, where the Piper betle–ZnO catalyst achieved over 90% degradation efficiency in just ~80 minutes, with a pseudo-first-order rate constant of 0.0342 min^-1. These results highlight the collaborative role of P. betle's phytoconstituents in shaping the nucleation, growth, and surface chemistry of ZnO nanoparticles, which enhances their ability to absorb light and separate charge carriers. This green approach presents a promising strategy for developing effective photocatalysts aimed at cleaning up wastewater.

Graphical Abstract
Role of Piper betle extract in the Precipitation of ZnO Nanoparticles for improved Photocatalytic Efficiency

Keywords
ZnO nanoparticles
piper betle extract
precipitation
methylene blue dye degradation

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A. G., Elsamahy, T., ... & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and environmental safety, 231, 113160.
    [CrossRef]   [Google Scholar]
  2. Arumugam, J., Thambidurai, S., Suresh, S., Selvapandiyan, M., Kandasamy, M., Pugazhenthiran, N., ... & Quero, F. (2021). Green synthesis of zinc oxide nanoparticles using Ficus carica leaf extract and their bactericidal and photocatalytic performance evaluation. Chemical Physics Letters, 783, 139040.
    [CrossRef]   [Google Scholar]
  3. Bagheri, A. R., Aramesh, N., Hasnain, M. S., Nayak, A. K., & Varma, R. S. (2023). Greener fabrication of metal nanoparticles using plant materials: A review. Chemical Physics Impact, 7, 100255.
    [CrossRef]   [Google Scholar]
  4. Biswas, P., Anand, U., Saha, S. C., Kant, N., Mishra, T., Masih, H., ... & Dey, A. (2022). Betelvine (Piper betle L.): A comprehensive insight into its ethnopharmacology, phytochemistry, and pharmacological, biomedical and therapeutic attributes. Journal of cellular and molecular medicine, 26(11), 3083-3119.
    [CrossRef]   [Google Scholar]
  5. Brus, L. E. (1984). Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. The Journal of chemical physics, 80(9), 4403-4409.
    [CrossRef]   [Google Scholar]
  6. Dutta, S., Adhikary, S., Bhattacharya, S., Roy, D., Chatterjee, S., Chakraborty, A., ... & Rajak, P. (2024). Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. Journal of Environmental Management, 353, 120103.
    [CrossRef]   [Google Scholar]
  7. Faisal, S., Jan, H., Shah, S. A., Shah, S., Khan, A., Akbar, M. T., ... & Syed, S. (2021). Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: their characterizations and biological and environmental applications. ACS omega, 6(14), 9709-9722.
    [CrossRef]   [Google Scholar]
  8. Gatou, M. A., Lagopati, N., Vagena, I. A., Gazouli, M., & Pavlatou, E. A. (2022). ZnO nanoparticles from different precursors and their photocatalytic potential for biomedical use. Nanomaterials, 13(1), 122.
    [CrossRef]   [Google Scholar]
  9. Gaur, J., Kumar, S., Pal, M., Kaur, H., Batoo, K. M., & Momoh, J. O. (2024). Current trends: Zinc oxide nanoparticles preparation via chemical and green method for the photocatalytic degradation of various organic dyes. Hybrid Advances, 5, 100128.
    [CrossRef]   [Google Scholar]
  10. Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the 'Debye-Scherrer equation'. Nature Nanotechnology, 6(9), 534-534.
    [CrossRef]   [Google Scholar]
  11. Hussein, S. A., Taha, G. M., & Moghazy, M. A. (2023). Comparative study on synthesis ZnO nanoparticles using green and chemical methods and its effect on crystallite size and optical properties. Aswan University Journal of Environmental Studies, 4(4), 205-218.
    [CrossRef]   [Google Scholar]
  12. Ilavenil, K. K., Senthilkumar, V., & Kasthuri, A. (2025). Green synthesis of metal nanoparticles from three medicinal plants: a review of environmental and health applications. Discover Catalysis, 2(1), 3.
    [CrossRef]   [Google Scholar]
  13. Jubu, P. R., Danladi, E., Ndeze, U. I., Adedokun, O., Landi Jr, S., Haider, A. J., ... & Yam, F. K. (2024). Comment about the use of unconventional Tauc plots for bandgap energy determination of semiconductors using UV–Vis spectroscopy. Results in Optics, 14, 100606.
    [CrossRef]   [Google Scholar]
  14. Hosseingholian, A., Gohari, S. D., Feirahi, F., Moammeri, F., Mesbahian, G., Moghaddam, Z. S., & Ren, Q. (2023). Recent advances in green synthesized nanoparticles: From production to application. Materials Today Sustainability, 24, 100500.
    [CrossRef]   [Google Scholar]
  15. Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A. H., Ahmad, A., ... & Khan, I. (2022). Review on methylene blue: Its properties, uses, toxicity and photodegradation. Water, 14(2), 242.
    [CrossRef]   [Google Scholar]
  16. Krishana, G. M., Shivaramakrishna, S., Sridhar, S., Khan, M. A., Kumar, J. R., Chakith, M. S., ... & Kollur, S. P. (2024). Sustainable synthesis of zinc oxide nanoparticles using Piper betle petiole leaf extract: Antibacterial, antioxidant, and cytotoxic potential. Results in Chemistry, 9, 101646.
    [CrossRef]   [Google Scholar]
  17. Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., ... & Morkoç, H. (2005). A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98(4).
    [CrossRef]   [Google Scholar]
  18. Gnanasekaran, R., Yuvaraj, D., Reddy, G. K., Shangar, S. N., Vijayakumar, V., & Iyyappan, J. (2024). Zinc oxide nanoparticles from leaf extract of Eclipta prostrata: Biosynthesis and characterization towards potential agent against film forming bacteria in metal working fluids. Environmental Chemistry and Ecotoxicology, 6, 206-215.
    [CrossRef]   [Google Scholar]
  19. Selvakumar, T., Rajaram, M., Natarajan, A., Harikrishnan, L., Alwar, K., & Rajaram, A. (2022). Highly efficient sulfur and nitrogen codoped graphene quantum dots as a metal-free green photocatalyst for photocatalysis and fluorescent ink applications. ACS omega, 7(15), 12825-12834.
    [CrossRef]   [Google Scholar]
  20. Sharma, S., Chauhan, M. S., Chauhan, S., & Kumar, S. (2025). Effect of sintering temperature on structural and photocatalytic properties of zinc oxide nanoparticles. Next Materials, 7, 100367.
    [CrossRef]   [Google Scholar]
  21. Sharma, S., Dadhwal, R., & Banerjee, R. (2025). Nanoparticle assisted phytoremediation: An eco-friendly approach for removal of heavy metals from the environment. Journal of Environmental Sciences.
    [CrossRef]   [Google Scholar]
  22. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., ... & Mohamad, D. (2015). Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Letters, 7(3), 219-242.
    [CrossRef]   [Google Scholar]
  23. Wu, Q., Siddique, M. S., Wang, H., Cui, L., Wang, H., Pan, M., & Yan, J. (2023). Visible-light-driven iron-based heterogeneous photo-Fenton catalysts for wastewater decontamination: a review of recent advances. Chemosphere, 313, 137509.
    [CrossRef]   [Google Scholar]
  24. Rahmayeni, R., Oktavia, Y., Stiadi, Y., Arief, S., & Zulhadjri, Z. (2021). Spinel ferrite of MnFe2O4 synthesized in Piper betle Linn extract media and its application as photocatalysts and antibacterial. Journal of Dispersion Science and Technology, 42(3), 465-474.
    [CrossRef]   [Google Scholar]
  25. Ying, S., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., & Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation, 26, 102336.
    [CrossRef]   [Google Scholar]
  26. Zhu, C., & Wang, X. (2025). Nanomaterial ZnO synthesis and its photocatalytic applications: A review. Nanomaterials, 15(9), 682.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Gaur, J., & Kaushal, S. (2025). Role of Piper betle extract in the Precipitation of ZnO Nanoparticles for improved Photocatalytic Efficiency. ICCK Transactions on Advanced Functional Materials and Processing, 1(1), 11–17. https://doi.org/10.62762/TAFMP.2025.164661

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 72
PDF Downloads: 26

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
ICCK Transactions on Advanced Functional Materials and Processing

ICCK Transactions on Advanced Functional Materials and Processing

ISSN: request pending (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/