-
CiteScore
-
Impact Factor
Volume 1, Issue 1, ICCK Transactions on Mobile and Wireless Intelligence
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Mobile and Wireless Intelligence, Volume 1, Issue 1, 2025: 19-31

Free to Read | Review Article | 28 July 2025
Computer Vision-Powered 6G Networks: Technologies, Applications, and Challenges
1 Department of Electronics and communication engineering, Yildiz Technical University, Istanbul, Turkey
* Corresponding Authors: Mohammed Anis Oukebdane, [email protected] ; A. F. M. Shahen Shah, [email protected]
Received: 24 June 2025, Accepted: 11 July 2025, Published: 28 July 2025  
Abstract
Aiming to move from conventional throughput-centric paradigms to intelligent, context-aware systems able of perception and autonomous decision-making, sixth-generation (6G) wireless networks is seeking. Driven by recent developments in deep learning and edge artificial intelligence, computer vision (CV) proves to be a key enabler for such perceptive 6G systems. This paper offers a thorough overview bringing together the scattered terrain of CV-enabled 6G technologies. It benchmarks current models against major 6G performance criteria, evaluates architectural paradigms including federated and split learning, and presents a disciplined taxonomy of use cases. This study also notes the possibility of incorporating new technologies with CV to make it more effective, such as fluid antenna system (FAS) and fluid antenna multiple access (FAMA). The study shows that CV integration improves fundamental 6G capabilities like beamforming, mobility prediction, localisation, semantic communication, and immersive control. It also reveals limits in real-time inference under URLLC constraints, data scarcity, and energy economy, though. This work presents a unified basis for advancing CV-native 6G networks by spotting open challenges and suggesting a roadmap including generative perception, collaborative intelligence, and green vision computing.

Graphical Abstract
Computer Vision-Powered 6G Networks: Technologies, Applications, and Challenges

Keywords
computer vision
6G wireless networks
FAS
edge intelligence
semantic communication
vision-aided 6G applications

Data Availability Statement
Data will be made available on request.

Funding
This study was supported by Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 124E519.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Ozpoyraz, Burak and Dogukan, Ali Tugberk and Gevez, Yarkin and Altun, Ufuk and Basar, Ertugrul. (2022). Deep Learning-Aided 6G Wireless Networks: A Comprehensive Survey of Revolutionary PHY Architectures. IEEE Open Journal of the Communications Society, 3, 1749-1809.
    [CrossRef]   [Google Scholar]
  2. Zuo, Y., Guo, J., Gao, N., Zhu, Y., Jin, S., & Li, X. (2023). A survey of blockchain and artificial intelligence for 6G wireless communications. IEEE Communications Surveys & Tutorials, 25(4), 2494-2528.
    [CrossRef]   [Google Scholar]
  3. Letaief, K. B., Shi, Y., Lu, J., & Lu, J. (2021). Edge artificial intelligence for 6G: Vision, enabling technologies, and applications. IEEE journal on selected areas in communications, 40(1), 5-36.
    [CrossRef]   [Google Scholar]
  4. Han, B., Habibi, M. A., Richerzhagen, B., Schindhelm, K., Zeiger, F., Lamberti, F., ... & Schotten, H. D. (2023). Digital twins for industry 4.0 in the 6G era. IEEE Open Journal of Vehicular Technology, 4, 820-835.
    [CrossRef]   [Google Scholar]
  5. Ahmad, I., Khan, A. R., Rais, R. N. B., Zoha, A., Imran, M. A., & Hussain, S. (2023, September). Vision-assisted beam prediction for real world 6g drone communication. In 2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (pp. 1-7). IEEE.
    [CrossRef]   [Google Scholar]
  6. Charan, G., Osman, T., & Alkhateeb, A. (2024, December). Pixel-Level GPS Localization and Denoising using Computer Vision and 6G Communication Beams. In GLOBECOM 2024-2024 IEEE Global Communications Conference (pp. 2858-2863). IEEE.
    [CrossRef]   [Google Scholar]
  7. Celik, A., & Eltawil, A. M. (2024). At the dawn of generative AI era: A tutorial-cum-survey on new frontiers in 6G wireless intelligence. IEEE Open Journal of the Communications Society, 5, 2433-2489.
    [CrossRef]   [Google Scholar]
  8. Kim, S., Ahn, Y., & Shim, B. (2024, June). Computer vision-aided beamforming for 6G wireless communications: Dataset and training perspective. In ICC 2024-IEEE International Conference on Communications (pp. 672-677). IEEE.
    [CrossRef]   [Google Scholar]
  9. Siddiqui, M. U. A., Abumarshoud, H., Bariah, L., Muhaidat, S., Imran, M. A., & Mohjazi, L. (2023). URLLC in beyond 5G and 6G networks: An interference management perspective. IEEE Access, 11, 54639-54663.
    [CrossRef]   [Google Scholar]
  10. Trevlakis, Stylianos E. and Pappas, Nikolaos and Boulogeorgos, Alexandros-Apostolos A.. (2024). Toward Natively Intelligent Semantic Communications and Networking. IEEE Open Journal of the Communications Society, 5, 1486-1503.
    [CrossRef]   [Google Scholar]
  11. Kaigom, E. G. (2023). Metarobotics for industry and society: Vision, technologies, and opportunities. IEEE Transactions on Industrial Informatics, 20(4), 5725-5736.
    [CrossRef]   [Google Scholar]
  12. Sandeepa, C., Zeydan, E., Samarasinghe, T., & Liyanage, M. (2024). Federated Learning for 6G Networks: Navigating Privacy Benefits and Challenges. IEEE Open Journal of the Communications Society, 6, 90-129.
    [CrossRef]   [Google Scholar]
  13. Shah, A. S., Ali Karabulut, M. A., Cinar, E., & Rabie, K. M. (2024). A survey on fluid antenna multiple access for 6G: A new multiple access technology that provides great diversity in a small space. IEEE Access, 12, 88410-88425.
    [CrossRef]   [Google Scholar]
  14. Wong, K. K., New, W. K., Hao, X., Tong, K. F., & Chae, C. B. (2023). Fluid antenna system—part I: Preliminaries. IEEE Communications Letters, 27(8), 1919-1923.
    [CrossRef]   [Google Scholar]
  15. Wong, K. K., Tong, K. F., & Chae, C. B. (2023). Fluid antenna system—Part II: Research opportunities. IEEE Communications Letters, 27(8), 1924-1928.
    [CrossRef]   [Google Scholar]
  16. Ahn, Y., Kim, J., Kim, S., Kim, S., & Shim, B. (2024). Sensing and computer vision-aided mobility management for 6G millimeter and terahertz communication systems. IEEE Transactions on Communications, 72(10), 6044-6058.
    [CrossRef]   [Google Scholar]
  17. Wang, C. X., You, X., Gao, X., Zhu, X., Li, Z., Zhang, C., ... & Hanzo, L. (2023). On the road to 6G: Visions, requirements, key technologies, and testbeds. IEEE Communications Surveys & Tutorials, 25(2), 905-974.
    [CrossRef]   [Google Scholar]
  18. Charan, G., Alrabeiah, M., & Alkhateeb, A. (2021, June). Vision-aided dynamic blockage prediction for 6G wireless communication networks. In 2021 IEEE International Conference on Communications Workshops (ICC Workshops) (pp. 1-6). IEEE.
    [CrossRef]   [Google Scholar]
  19. Liu, Y. J., Du, H., Xu, X., Zhang, R., Feng, G., Cao, B., ... & Tafazolli, R. (2025). A Survey of Integrating Generative Artificial Intelligence and 6G Mobile Services: Architectures, Solutions, Technologies and Outlooks. IEEE Transactions on Cognitive Communications and Networking, 11(3), 1334-1356.
    [CrossRef]   [Google Scholar]
  20. Hosseinzadeh, M., Hemmati, A., & Rahmani, A. M. (2022). 6G-Enabled Internet of Things: Vision, Techniques, and Open Issues. CMES-Computer Modeling in Engineering and Sciences, 133(3), 509-556. http://www.techscience.com/CMES/v133n3/49213
    [Google Scholar]
  21. Zawish, M., Dharejo, F. A., Khowaja, S. A., Raza, S., Davy, S., Dev, K., & Bellavista, P. (2024). AI and 6G into the metaverse: Fundamentals, challenges and future research trends. IEEE Open Journal of the Communications Society, 5, 730-778.
    [CrossRef]   [Google Scholar]
  22. Alkhateeb, A., Jiang, S., & Charan, G. (2023). Real-time digital twins: Vision and research directions for 6G and beyond. IEEE communications magazine, 61(11), 128-134.
    [CrossRef]   [Google Scholar]
  23. Kamruzzaman, M. M., & Alruwaili, O. (2022). AI-based computer vision using deep learning in 6G wireless networks. Computers and Electrical Engineering, 102, 108233.
    [CrossRef]   [Google Scholar]
  24. Jiang, S., & Alkhateeb, A. (2022, December). Computer vision aided beam tracking in a real-world millimeter wave deployment. In 2022 IEEE Globecom Workshops (GC Wkshps) (pp. 142-147). IEEE.
    [CrossRef]   [Google Scholar]
  25. Ahn, Y., Kim, J., Kim, S., & Shim, B. (2023, December). Computer vision-aided proactive mobility management for 6G terahertz communications. In GLOBECOM 2023-2023 IEEE Global Communications Conference (pp. 1513-1518). IEEE.
    [CrossRef]   [Google Scholar]
  26. Charan, G., Alrabeiah, M., & Alkhateeb, A. (2021). Vision-aided 6G wireless communications: Blockage prediction and proactive handoff. IEEE Transactions on Vehicular Technology, 70(10), 10193-10208.
    [CrossRef]   [Google Scholar]
  27. Ahn, Y., Kim, J., Kim, S., Shim, K., Kim, J., Kim, S., & Shim, B. (2022). Toward intelligent millimeter and terahertz communication for 6G: Computer vision-aided beamforming. IEEE Wireless Communications, 30(5), 179-186.
    [CrossRef]   [Google Scholar]
  28. Paolini, E., Valcarenghi, L., Maggiani, L., & Andriolli, N. (2024). Real-time network packet classification exploiting computer vision architectures. IEEE Open Journal of the Communications Society, 5, 1155-1166.
    [CrossRef]   [Google Scholar]
  29. Kim, S., Moon, J., Kim, J., Ahn, Y., Kim, D., Kim, S., ... & Shim, B. (2024). Role of sensing and computer vision in 6G wireless communications. IEEE Wireless Communications, 31(5), 264-271.
    [CrossRef]   [Google Scholar]
  30. Merluzzi, M., Borsos, T., Rajatheva, N., Benczúr, A. A., Farhadi, H., Yassine, T., ... & Uusitalo, M. A. (2023). The hexa-x project vision on artificial intelligence and machine learning-driven communication and computation co-design for 6g. IEEE Access, 11, 65620-65648.
    [CrossRef]   [Google Scholar]
  31. Kim, S., Moon, J., Wu, J., Shim, B., & Win, M. Z. (2024). Vision-aided positioning and beam focusing for 6G terahertz communications. IEEE Journal on Selected Areas in Communications, 42(9), 2503-2519.
    [CrossRef]   [Google Scholar]
  32. Vaca-Rubio, C. J., Ramirez-Espinosa, P., Kansanen, K., Tan, Z. H., & De Carvalho, E. (2023, June). Radio sensing with large intelligent surface for 6G. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1-5). IEEE.
    [CrossRef]   [Google Scholar]
  33. Sheraz, M., Chuah, T. C., Lee, Y. L., Alam, M. M., Al-Habashna, A. A., & Han, Z. (2024). A comprehensive survey on revolutionizing connectivity through artificial intelligence-enabled digital twin network in 6G. IEEE Access, 12, 49184-49215.
    [CrossRef]   [Google Scholar]
  34. De Alwis, C., Kalla, A., Pham, Q. V., Kumar, P., Dev, K., Hwang, W. J., & Liyanage, M. (2021). Survey on 6G frontiers: Trends, applications, requirements, technologies and future research. IEEE Open Journal of the Communications Society, 2, 836-886.
    [CrossRef]   [Google Scholar]
  35. Quy, V. K., Chehri, A., Quy, N. M., Han, N. D., & Ban, N. T. (2023). Innovative trends in the 6G era: A comprehensive survey of architecture, applications, technologies, and challenges. IEEE Access, 11, 39824-39844.
    [CrossRef]   [Google Scholar]
  36. Porambage, P., Gür, G., Osorio, D. P. M., Liyanage, M., Gurtov, A., & Ylianttila, M. (2021). The roadmap to 6G security and privacy. IEEE Open Journal of the Communications Society, 2, 1094-1122.
    [CrossRef]   [Google Scholar]
  37. Ghouali, S., Attaouia, B., Adardour, H. E., Seghir, M., Dinar, A. E., & Hussein, E. K. TeraChip: Performance and Evaluation of Different Configurations Possible for Achieving Terabit Networking Chip. Advances in Communication Technology, Computing and Engineering, 455-464.
    [Google Scholar]
  38. Shah, A. S. (2022, January). A survey from 1G to 5G including the advent of 6G: Architectures, multiple access techniques, and emerging technologies. In 2022 IEEE 12th annual computing and communication workshop and conference (CCWC) (pp. 1117-1123). IEEE.
    [CrossRef]   [Google Scholar]
  39. Yang, B., Cao, X., Xiong, K., Yuen, C., Guan, Y. L., Leng, S., ... & Han, Z. (2021). Edge intelligence for autonomous driving in 6G wireless system: Design challenges and solutions. IEEE Wireless Communications, 28(2), 40-47.
    [CrossRef]   [Google Scholar]
  40. Oukebdane, M. A., Shah, A. S., Azad, A. K., Ekoru, J., & Madahana, M. (2025). Unraveling the nexus of ML and 6G: Challenges, Opportunities, and Future Directions. IEEE Access, 13, 114934-114958.
    [CrossRef]   [Google Scholar]
  41. Tataria, H., Shafi, M., Molisch, A. F., Dohler, M., Sjöland, H., & Tufvesson, F. (2021). 6G wireless systems: Vision, requirements, challenges, insights, and opportunities. Proceedings of the IEEE, 109(7), 1166-1199.
    [CrossRef]   [Google Scholar]
  42. Ji, B., Wang, Y., Song, K., Li, C., Wen, H., Menon, V. G., & Mumtaz, S. (2021). A survey of computational intelligence for 6G: Key technologies, applications and trends. IEEE Transactions on Industrial Informatics, 17(10), 7145-7154.
    [CrossRef]   [Google Scholar]
  43. Jiao, L., Shao, Y., Sun, L., Liu, F., Yang, S., Ma, W., ... & Guo, Y. (2024). Advanced deep learning models for 6G: Overview, opportunities, and challenges. IEEE Access, 12, 133245-133314.
    [CrossRef]   [Google Scholar]
  44. Qiao, L., Li, Y., Chen, D., Serikawa, S., Guizani, M., & Lv, Z. (2021). A survey on 5G/6G, AI, and Robotics. Computers and Electrical Engineering, 95, 107372.
    [CrossRef]   [Google Scholar]
  45. Wen, D., Zhou, Y., Li, X., Shi, Y., Huang, K., & Letaief, K. B. (2024). A survey on integrated sensing, communication, and computation. IEEE Communications Surveys & Tutorials.
    [CrossRef]   [Google Scholar]
  46. Wu, S., Chen, N., Xiao, A., Zhang, P., Jiang, C., & Zhang, W. (2024). Ai-empowered virtual network embedding: a comprehensive survey. IEEE Communications Surveys & Tutorials, 27(2), 1395-1426.
    [CrossRef]   [Google Scholar]
  47. Khan, L. U., Saad, W., Niyato, D., Han, Z., & Hong, C. S. (2022). Digital-twin-enabled 6G: Vision, architectural trends, and future directions. IEEE Communications Magazine, 60(1), 74-80.
    [CrossRef]   [Google Scholar]
  48. Shahzadi, S., Iqbal, M., & Chaudhry, N. R. (2021). 6G vision: Toward future collaborative cognitive communication (3C) systems. IEEE Communications Standards Magazine, 5(2), 60-67.
    [CrossRef]   [Google Scholar]
  49. Uusitalo, M. A., Rugeland, P., Boldi, M. R., Strinati, E. C., Demestichas, P., Ericson, M., ... & Zou, Y. (2021). 6G vision, value, use cases and technologies from European 6G flagship project Hexa-X. IEEE Access, 9, 160004-160020.
    [CrossRef]   [Google Scholar]
  50. Gupta, R., Reebadiya, D., & Tanwar, S. (2021). 6G-enabled edge intelligence for ultra-reliable low latency applications: Vision and mission. Computer Standards & Interfaces, 77, 103521.
    [CrossRef]   [Google Scholar]
  51. Zhang, M., Shen, L., Ma, X., & Liu, J. (2023). Toward 6G-enabled mobile vision analytics for immersive extended reality. IEEE Wireless Communications, 30(3), 132-138.
    [CrossRef]   [Google Scholar]
  52. Hong, E. K., Lee, I., Shim, B., Ko, Y. C., Kim, S. H., Pack, S., ... & Jung, H. (2022). 6G R&D vision: Requirements and candidate technologies. Journal of Communications and Networks, 24(2), 232-245.
    [CrossRef]   [Google Scholar]
  53. Tlebaldiyeva, L., Arzykulov, S., Rabie, K. M., Li, X., & Nauryzbayev, G. (2023, May). Outage performance of fluid antenna system (FAS)-aided terahertz communication networks. In ICC 2023-IEEE International Conference on Communications (pp. 1922-1927). IEEE.
    [CrossRef]   [Google Scholar]
  54. Shen, Y., Tong, K. F., & Wong, K. K. (2022, September). Radiation pattern diversified double-fluid-channel surface-wave antenna for mobile communications. In 2022 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC) (pp. 085-088). IEEE.
    [CrossRef]   [Google Scholar]
  55. Ren, J., Zhou, Z., Wei, Z. H., Ren, H. M., Chen, Z., Liu, Y., & Yin, Y. Z. (2020). Radiation pattern and polarization reconfigurable antenna using dielectric liquid. IEEE Transactions on Antennas and Propagation, 68(12), 8174-8179.
    [CrossRef]   [Google Scholar]
  56. Shen, Y., Tong, K. F., & Wong, K. K. (2022, September). Radiation pattern diversified single-fluid-channel surface-wave antenna for mobile communications. In 2022 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC) (pp. 049-051). IEEE.
    [CrossRef]   [Google Scholar]
  57. Shen, Y., Tong, K. F., & Wong, K. K. (2021, August). Reconfigurable surface wave fluid antenna for spatial MIMO applications. In 2021 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC) (pp. 150-152). IEEE.
    [CrossRef]   [Google Scholar]
  58. Wang, H., Shen, Y., Tong, K. F., & Wong, K. K. (2022, November). Continuous electrowetting surface-wave fluid antenna for mobile communications. In TENCON 2022-2022 IEEE Region 10 Conference (TENCON) (pp. 1-3). IEEE.
    [CrossRef]   [Google Scholar]
  59. Ahammed, T. B., Patgiri, R., & Nayak, S. (2023). A vision on the artificial intelligence for 6G communication. Ict Express, 9(2), 197-210.
    [CrossRef]   [Google Scholar]
  60. Hakeem, S. A. A., Hussein, H. H., & Kim, H. (2022). Vision and research directions of 6G technologies and applications. Journal of King Saud University-Computer and Information Sciences, 34(6), 2419-2442.
    [CrossRef]   [Google Scholar]
  61. Chen, C., Zhang, H., Hou, J., Zhang, Y., Zhang, H., Dai, J., ... & Wang, C. (2023). Deep learning in the ubiquitous human–computer interactive 6G era: Applications, principles and prospects. Biomimetics, 8(4), 343.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Oukebdane, M. A., & Shah, A. F. M. S. (2025). Computer Vision-Powered 6G Networks: Technologies, Applications, and Challenges. ICCK Transactions on Mobile and Wireless Intelligence, 1(1), 19–31. https://doi.org/10.62762/TMWI.2025.159776

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 44
PDF Downloads: 42

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
Institute of Central Computation and Knowledge (ICCK) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ICCK Transactions on Mobile and Wireless Intelligence

ICCK Transactions on Mobile and Wireless Intelligence

ISSN: request pending (Online) | ISSN: request pending (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/