-
CiteScore
-
Impact Factor
Volume 1, Issue 1, ICCK Transactions on Wireless Networks
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Wireless Networks, Volume 1, Issue 1, 2025: 42-50

Open Access | Research Article | 30 June 2025
Joint Design of Energy-Efficient MIMO Receiver and Power Allocation for Spatial NOMA in Miniature UAV-Assisted IoT Networks
1 Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
* Corresponding Authors: Lav Soni, [email protected] ; Ashu Taneja, [email protected]
Received: 16 June 2025, Accepted: 28 June 2025, Published: 30 June 2025  
Abstract
The work presents a joint design framework that combines an energy-efficient MIMO receiver architecture with an optimized power allocation strategy for spatial NOMA in miniature UAV-assisted IoT networks. Specifically, we design a low-power receiver using spatial modulation and intelligent transmit antenna selection to minimize energy usage. Simultaneously, a dynamic power allocation scheme is developed to ensure fairness by allowing all users to act as active data users in different time slots. The air-to-ground channel is modeled by considering UAV altitude, mobility, and probabilistic line-of-sight characteristics. Simulation results demonstrate that at a UAV altitude of 50 meters, the proposed method achieves a peak energy efficiency of approximately 7.8 bits/Joule, compared to 6.0 bits/Joule for traditional NOMA schemes. The system also maintains a target user data rate of 2 bits/s/Hz and performs optimally at a transmit power of 20 dBm and UAV velocity of 5 m/s. These results highlight the effectiveness of jointly optimizing receiver design, power control, and UAV parameters to achieve sustainable and high-performance communication in future 6G-enabled IoT networks.

Graphical Abstract
Joint Design of Energy-Efficient MIMO Receiver and Power Allocation for Spatial NOMA in Miniature UAV-Assisted IoT Networks

Keywords
wireless network
5G
AI
network virtualization
6G

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Fayad, A., Cinkler, T., & Rak, J. (2024). Toward 6G optical fronthaul: A survey on enabling technologies and research perspectives. IEEE Communications Surveys & Tutorials, 27(1), 629-666.
    [CrossRef]   [Google Scholar]
  2. Jiang, D., Wang, Z., Liu, X., Xu, Q., Zou, T., Zhang, R., ... & Zhang, P. (2024). Towards Synthetic Network Traffic Generating in NTN-Enabled IoT: A Generative AI. IEEE Internet of Things Journal, 12(2), 2174-2187.
    [CrossRef]   [Google Scholar]
  3. Shafique, A., Cheng, B., Zhao, B., Alwakid, G. N., & Haq, M. I. U. (2025). Optimized Autonomous Computing with Trusted Resilient Data Management for IoT Emerging Networks. IEEE Sensors Journal, 25(11), 20778-20785.
    [CrossRef]   [Google Scholar]
  4. Barick, S., & Singhal, C. (2025). UAV-assisted MEC architecture for collaborative task offloading in urban IoT environment. IEEE Transactions on Network and Service Management, 22(1), 732-743.
    [CrossRef]   [Google Scholar]
  5. Taneja, A., & Rani, S. (2025). Intelligent resource utilisation in UAV assisted consumer IoT using DFA-IRS. IEEE Transactions on Consumer Electronics.
    [CrossRef]   [Google Scholar]
  6. Wei, Y., Lu, Y., Zhao, P., Leng, S., & Yang, K. (2024). Minimizing age of information in UAV-assisted data collection with limited charging facilities. IEEE Wireless Communications Letters, 13(5), 1463-1467.
    [CrossRef]   [Google Scholar]
  7. Sharma, R., & Villányi, B. (2024). An Efficient and Dependable UAV-Assisted Code Dissemination in 5G-Enabled Industrial IoT. IEEE Open Journal of the Communications Society, 5, 1525-1536.
    [CrossRef]   [Google Scholar]
  8. Chauhan, A., Ghosh, S., & Jaiswal, A. (2022). RIS partition-assisted non-orthogonal multiple access (NOMA) and quadrature-NOMA with imperfect SIC. IEEE Transactions on Wireless Communications, 22(7), 4371-4386.
    [CrossRef]   [Google Scholar]
  9. Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. K. (2017). A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE Journal on Selected Areas in Communications, 35(10), 2181-2195.
    [CrossRef]   [Google Scholar]
  10. Yin, Z., Cheng, N., Song, Y., Hui, Y., Li, Y., Luan, T. H., & Yu, S. (2023). UAV-assisted secure uplink communications in satellite-supported IoT: Secrecy fairness approach. IEEE Internet of Things Journal, 11(4), 6904-6915.
    [CrossRef]   [Google Scholar]
  11. Tang, J., Nie, J., Zhang, Y., Xiong, Z., Jiang, W., & Guizani, M. (2023). Multi-UAV-assisted federated learning for energy-aware distributed edge training. IEEE Transactions on Network and Service Management, 21(1), 280-294.
    [CrossRef]   [Google Scholar]
  12. Geißler, S., Lutu, A., Wamser, F., Favale, T., Vomhoff, V., Krolikowski, M., ... & Hoßfeld, T. (2024). Untangling IoT global connectivity: the importance of mobile signaling traffic. IEEE Transactions on Network and Service Management, 21(4), 4435-4449.
    [CrossRef]   [Google Scholar]
  13. Pandey, G. K., Gurjar, D. S., Yadav, S., Jiang, Y., & Yuen, C. (2025). UAV-assisted communications with RF energy harvesting: A comprehensive survey. IEEE Communications Surveys & Tutorials, 27(2), 782-838.
    [CrossRef]   [Google Scholar]
  14. Lohan, P., Kantarci, B., Ferrag, M. A., Tihanyi, N., & Shi, Y. (2024). From 5G to 6G networks, a survey on AI-Based jamming and interference detection and mitigation. IEEE Open Journal of the Communications Society, 5, 3920-3974.
    [CrossRef]   [Google Scholar]
  15. Pereira, F. M., de Araujo Farhat, J., Rebelatto, J. L., Brante, G., & Souza, R. D. (2024). Reinforcement Learning-Aided NOMA Random Access: An AoI-Based Timeliness Perspective. IEEE Internet of Things Journal, 12(5), 6058-6061.
    [CrossRef]   [Google Scholar]
  16. Pandey, G. K., Gurjar, D. S., Yadav, S., Krstic, D., & Jiang, Y. (2025). Secrecy Analysis and Optimization of UAV-Assisted IoT Networks With RF-EH and Imperfect Hardware. IEEE Internet of Things Journal, 12(7), 8049-8063.
    [CrossRef]   [Google Scholar]
  17. Yan, H., Li, H., Xu, X., & Bilal, M. (2023). UAV-enhanced service caching for IoT systems in extreme environments. IEEE Internet of Things Journal, 11(16), 26741-26750.
    [CrossRef]   [Google Scholar]
  18. Sasaki, N., Saito, S., Suganuma, H., & Maehara, F. (2025). Flexible and efficient resource allocation method based on the number of transmit antennas in hybrid multiple access scheme using NOMA and OMA. IEICE Communications Express, 14(4), 135-138.
    [CrossRef]   [Google Scholar]
  19. Zhang, H., Liu, W., Zhang, Q., Zhang, L., Liu, B., & Xu, H. X. (2025). Joint Power, Bandwidth, and Subchannel Allocation in a UAV-Assisted DFRC Network. IEEE Internet of Things Journal, 12(9), 11633-11651.
    [CrossRef]   [Google Scholar]
  20. Chen, X., Wang, X., & Chen, X. (2013). Energy-efficient optimization for wireless information and power transfer in large-scale MIMO systems employing energy beamforming. IEEE Wireless Communications Letters, 2(6), 667-670.
    [CrossRef]   [Google Scholar]
  21. Zhang, H., Huang, Y., Li, S., & Yang, L. (2014). Energy-efficient precoder design for MIMO wiretap channels. IEEE Communications Letters, 18(9), 1559-1562.
    [CrossRef]   [Google Scholar]
  22. Li, Y., Cao, X., Tang, J., Shi, Y., & Xie, Q. (2024). Energy-Efficient Optical-Aided VLC-MIMO System with Centralised Optimal PI Strategy. Journal of Lightwave Technology, 43(7), 3059-3069.
    [CrossRef]   [Google Scholar]
  23. Shakir, W. M., & Charafeddine, J. (2025). Empowering MIMO-FSO Systems: RIS Technology for Enhanced Performance in Challenging Conditions. IEEE Open Journal of the Communications Society, 6, 2616-2641.
    [CrossRef]   [Google Scholar]
  24. Reethi, P. M., & Sundru, A. (2024, March). Reduction Technique in NOMA and MIMO-NOMA Systems. In 2024 10th International Conference on Advanced Computing and Communication Systems (ICACCS) (Vol. 1, pp. 1910-1915). IEEE.
    [CrossRef]   [Google Scholar]
  25. Panda, B., Senanayake, D. D., & Singh, P. (2024, May). A Machine Learning Approach with Decision Tree-based Signal Detection for MIMO-NOMA Systems. In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-6). IEEE.
    [CrossRef]   [Google Scholar]
  26. He, X., Huang, Z., Wang, H., & Song, R. (2023). Sum rate analysis for massive MIMO-NOMA uplink system with group-level successive interference cancellation. IEEE Wireless Communications Letters, 12(7), 1194-1198.
    [CrossRef]   [Google Scholar]
  27. Dadi, M. B., & Rehaimi, B. C. (2023, November). Performance of downlink MIMO-NOMA system in 5G Networks. In 2023 IEEE International Workshop on Mechatronic Systems Supervision (IW_MSS) (pp. 1-4). IEEE.
    [CrossRef]   [Google Scholar]
  28. Bian, Y., Hu, J., Zhang, P., Wang, S., Wang, Y., Cong, J., & Fu, C. (2024). Joint Trajectory Control, Power Control and Collection Schedule in UAV-assisted Anti-jamming Wireless Data Collection With Imperfect CSI. IEEE Communications Letters, 28(12), 2839-2843.
    [CrossRef]   [Google Scholar]
  29. Xi, X., Cao, X., Yang, P., Chen, J., Quek, T., & Wu, D. (2019). Joint user association and UAV location optimization for UAV-aided communications. IEEE Wireless Communications Letters, 8(6), 1688-1691.
    [CrossRef]   [Google Scholar]
  30. Dou, Y., Lian, Z., Wang, Y., Zhang, B., Luo, H., & Zu, C. (2024). Channel Modeling and Performance Analysis of UAV-Enabled Communications With UAV Wobble. IEEE Communications Letters, 28(12), 2749-2753.
    [CrossRef]   [Google Scholar]
  31. Chai, S., & Lau, V. K. (2021). Multi-UAV trajectory and power optimization for cached UAV wireless networks with energy and content recharging-demand driven deep learning approach. IEEE Journal on Selected Areas in Communications, 39(10), 3208-3224.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Soni, L., & Taneja, A. (2025). Joint Design of Energy-Efficient MIMO Receiver and Power Allocation for Spatial NOMA in Miniature UAV-Assisted IoT Networks. ICCK Transactions on Wireless Networks, 1(1), 42–50. https://doi.org/10.62762/TWN.2025.484759

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 8
PDF Downloads: 3

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
ICCK Transactions on Wireless Networks

ICCK Transactions on Wireless Networks

ISSN: request pending (Online) | ISSN: request pending (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/