Volume 1, Issue 1, Aerospace Engineering Communications
Volume 1, Issue 1, 2026
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Aerospace Engineering Communications, Volume 1, Issue 1, 2026: 3-27

Open Access | Review Article | 24 January 2026
A Review of Fixed-Wing Unmanned Aerial Vehicle Formation Research
1 Honeycomb Aerospace Technologies (Beijing) Co., Ltd., Beijing 100071, China
2 Aerospace Information Research Institute, Chinese Acaemy of Sciences, Beijing 100097, China
3 Huzhou Institute of Zhejiang University, Huzhou 313098, China
* Corresponding Author: Jinbiao Zhu, [email protected]
ARK: ark:/57805/aec.2025.339037
Received: 30 November 2025, Accepted: 23 December 2025, Published: 24 January 2026  
Abstract
Fixed-wing unmanned aerial vehicle (UAV) formation technology, as a crucial research direction in multi-agent system cooperative control, while facing constraints in multiple areas, has demonstrated broad application prospects in military reconnaissance, disaster monitoring, agricultural plant protection and other fields in recent years. This paper systematically reviews the key technological systems of fixed-wing UAV formation control, including formation configuration design, communication topology, cooperative control algorithms, navigation positioning and obstacle avoidance strategies. By analyzing the latest research progress, the performance differences between centralized and distributed control architectures were summarized, and the applicable scenarios of mainstream formation control strategies such as behavior method, virtual structure method, and navigation-follow method were compared. The research results show that hybrid control architectures combining model predictive control and reinforcement learning algorithms exhibit superior performance in complex environments. Meanwhile, this paper discusses the technical challenges faced by formation systems in terms of communication reliability, dynamic obstacle avoidance, and energy optimization. This paper highlights the critical transition from traditional control to AI-enabled autonomous cooperation. By identifying the limitations of current communication protocols and energy management strategies, it provides a roadmap for the theoretical research and engineering application of large-scale fixed-wing UAV formations.

Graphical Abstract
A Review of Fixed-Wing Unmanned Aerial Vehicle Formation Research

Keywords
fixed-wing UAV
formation control
obstacle avoidance strategy
autonomous decision-making

Data Availability Statement
Not applicable.

Funding
This work was supported by the National Key R&D Program of China under Grant 2022YFB3902602.

Conflicts of Interest
Wei Li and Tiejun Liu are affiliated with the Honeycomb Aerospace Technologies (Beijing) Co., Ltd., Beijing 100071, China. The authors declare that this affiliation had no influence on the study design, data collection, analysis, interpretation, or the decision to publish, and that no other competing interests exist.

AI Use Statement
The authors declare that no generative AI was used in the preparation of this manuscript.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Grand View Research. (2025). Drone market size, share & trends analysis report by component (hardware, software, services), by product, by technology, by payload capacity, by power source, by end use, by region, and segment forecasts, 2025–2030 [Market research report overview]. Retrieved November 11, 2025, from https://www.grandviewresearch.com/industry-analysis/drone-market-report
    [Google Scholar]
  2. Reynolds, C. W. (1987, August). Flocks, herds and schools: A distributed behavioral model. In Proceedings of the 14th annual conference on Computer graphics and interactive techniques (pp. 25-34).
    [CrossRef]   [Google Scholar]
  3. Jadbabaie, A., Lin, J., & Morse, A. S. (2003). Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 48(6), 988–1001.
    [CrossRef]   [Google Scholar]
  4. Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95(1), 215-233.
    [CrossRef]   [Google Scholar]
  5. Fax, J. A., & Murray, R. M. (2004). Information flow and cooperative control of vehicle formations. IEEE transactions on automatic control, 49(9), 1465-1476.
    [CrossRef]   [Google Scholar]
  6. Ren, W., Beard, R. W., & Atkins, E. M. (2007). Information consensus in multivehicle cooperative control. IEEE Control Systems Magazine, 27(2), 71–82.
    [CrossRef]   [Google Scholar]
  7. Cao, Y., Yu, W., Ren, W., & Chen, G. (2012). An overview of recent progress in the study of distributed multi-agent coordination. IEEE Transactions on Industrial informatics, 9(1), 427-438.
    [CrossRef]   [Google Scholar]
  8. Murray, R. M. (2007). Recent research in cooperative control of multivehicle systems. Journal of Dynamic Systems, Measurement, and Control, 129(5), 571–583.
    [CrossRef]   [Google Scholar]
  9. Bullo, F., Cortés, J., & Martinez, S. (2009). Distributed control of robotic networks: a mathematical approach to motion coordination algorithms. Princeton University Press.
    [CrossRef]   [Google Scholar]
  10. Mesbahi, M., & Egerstedt, M. (2010). Graph theoretic methods in multiagent networks. Princeton University Press.
    [CrossRef]   [Google Scholar]
  11. Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(2), 298–305.
    [Google Scholar]
  12. Do, H. T., Hua, H. T., Nguyen, M. T., Nguyen, C. V., Nguyen, H. T., Nguyen, H. T., & Nguyen, N. T. (2021). Formation Control Algorithms for Multiple-UAVs: A Comprehensive Survey. EAI Endorsed Trans. Ind. Networks Intell. Syst., 8(27), e3.
    [CrossRef]   [Google Scholar]
  13. McLain, T., & Beard, R. (2000, August). Trajectory planning for coordinated rendezvous of unmanned air vehicles. In AIAA Guidance, navigation, and control conference and exhibit (p. 4369).
    [CrossRef]   [Google Scholar]
  14. Alonso-Mora, J., Montijano, E., Schwager, M., & Rus, D. (2016, May). Distributed multi-robot formation control among obstacles: A geometric and optimization approach with consensus. In 2016 IEEE international conference on robotics and automation (ICRA) (pp. 5356-5363). IEEE.
    [CrossRef]   [Google Scholar]
  15. Hu, T. Y., & Li, Z. Y. (2024). A multi‐agent deep reinforcement learning approach for traffic signal coordination. IET Intelligent Transport Systems, 18(8), 1428-1444.
    [CrossRef]   [Google Scholar]
  16. Oh, K. K., Park, M. C., & Ahn, H. S. (2015). A survey of multi-agent formation control. Automatica, 53, 424–440.
    [CrossRef]   [Google Scholar]
  17. Khuwaja, A. A., Chen, Y., Zhao, N., Alouini, M. S., & Dobbins, P. (2018). A survey of channel modeling for UAV communications. IEEE Communications Surveys & Tutorials, 20(4), 2804-2821.
    [CrossRef]   [Google Scholar]
  18. Loquercio, A., Kaufmann, E., Ranftl, R., Müller, M., Koltun, V., & Scaramuzza, D. (2021). Learning high-speed flight in the wild. Science Robotics, 6(59), eabg5810.
    [CrossRef]   [Google Scholar]
  19. Ferrante, E., Turgut, A. E., Dorigo, M., & Huepe, C. (2013). Elasticity-based mechanism for the collective motion of self-propelled particles with springlike interactions: a model system for natural and artificial swarms. Physical review letters, 111. https://dx.doi.org/10.1103/PhysRevLett.111.268302
    [Google Scholar]
  20. Wuerll, R., Robert, J., & Heuberger, A. (2019, March). An overview of current and proposed communication standards for large deployment of Unmanned Aircraft Systems. In 2019 IEEE Aerospace Conference (pp. 1-7). IEEE.
    [CrossRef]   [Google Scholar]
  21. ZHANG, Y., Meiyan, D. I. N. G., Yao, Y. U. A. N., ZHANG, J., Qiming, Y. A. N. G., Guoqing, S. H. I., & JIANG, J. (2025). Large-scale UAV swarm path planning based on mean-field reinforcement learning. Chinese Journal of Aeronautics, 103484.
    [CrossRef]   [Google Scholar]
  22. Cordesman, A. H. (2022). Gulf and Iran's Capability for Asymmetric Warfare. Center for Strategic and International Studies (CSIS).
    [Google Scholar]
  23. Park, H., Lee, B. Y., Tahk, M. J., & Yoo, D. W. (2016). Differential game based air combat maneuver generation using scoring function matrix. International Journal of Aeronautical and Space Sciences, 17(2), 204-213.
    [CrossRef]   [Google Scholar]
  24. Vásárhelyi, G., Virágh, C., Somorjai, G., Tarcai, N., Szörényi, T., Nepusz, T., & Vicsek, T. (2014, September). Outdoor flocking and formation flight with autonomous aerial robots. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3866-3873). IEEE.
    [CrossRef]   [Google Scholar]
  25. Desai, J. P., Ostrowski, J. P., & Kumar, V. (2002). Modeling and control of formations of nonholonomic mobile robots. IEEE transactions on Robotics and Automation, 17(6), 905-908.
    [CrossRef]   [Google Scholar]
  26. Zhang, J., Yan, J., Zhang, P., & Kong, X. (2018). Collision avoidance in fixed-wing UAV formation flight based on a consensus control algorithm. IEEE access, 6, 43672-43682.
    [CrossRef]   [Google Scholar]
  27. Farooq, A., Xiang, Z., Chang, W. J., & Aslam, M. S. (2025). Recent Advancement in Formation Control of Multi-Agent Systems: A Review. Computers, Materials & Continua, 83(3). http://dx.doi.org/10.32604/cmc.2025.063665
    [Google Scholar]
  28. Xu, Y., Xin, M., & Wang, J. (2011, August). Unmanned aerial vehicle formation flight via a hierarchical cooperative control approach. In AIAA Guidance, Navigation, and Control Conference (p. 6329).
    [CrossRef]   [Google Scholar]
  29. Hrabia, C. E., Lützenberger, M., & Albayrak, S. (2018). Towards adaptive multi-robot systems: Self-organization and self-adaptation. The Knowledge Engineering Review, 33, e16.
    [CrossRef]   [Google Scholar]
  30. Dimarogonas, D. V., & Johansson, K. H. (2009, December). Event-triggered control for multi-agent systems. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference (pp. 7131-7136). IEEE.
    [CrossRef]   [Google Scholar]
  31. Pratama, R., Nugroho, D., Setiawan, F., & Islam, A. (2025). Event-Triggered Swarm Optimization of Formation Control Policies for Unmanned Aerial Vehicle Networks with Limited Bandwidth. Archives of Interdisciplinary Science and Engineering Research, 15(10), 1-14.
    [Google Scholar]
  32. Lewis, F. L., Zhang, H., Hengster-Movric, K., & Das, A. (2014). Algebraic graph theory and cooperative control consensus. In Cooperative control of multi-agent systems: Optimal and adaptive design approaches (pp. 23-71). London: Springer London.
    [CrossRef]   [Google Scholar]
  33. Royle, G. F., & Godsil, C. (2001). Algebraic graph theory (Vol. 207). New York: Springer.
    [CrossRef]   [Google Scholar]
  34. Horn, R. A., & Johnson, C. R. (2012). Matrix analysis (2nd ed.). Cambridge University Press.
    [CrossRef]   [Google Scholar]
  35. Zhang, J., Wang, W., Zhang, Z., Luo, K., & Liu, J. (2019, July). Cooperative control of UAV cluster formation based on distributed consensus. In 2019 IEEE 15th International Conference on Control and Automation (ICCA) (pp. 788-793). IEEE.
    [CrossRef]   [Google Scholar]
  36. Cortés, J., Martínez, S., & Bullo, F. (2006). Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions. IEEE Transactions on Automatic Control, 51(8), 1289–1298.
    [CrossRef]   [Google Scholar]
  37. Belta, C., & Kumar, V. (2004). Abstraction and control for groups of robots. IEEE Transactions on Robotics, 20(5), 865–875.
    [CrossRef]   [Google Scholar]
  38. Anderson, B. D. O., Yu, C., Fidan, B., & Hendrickx, J. M. (2008). Rigid graph control architectures for autonomous formations. IEEE Control Systems Magazine, 28(6), 48–63.
    [CrossRef]   [Google Scholar]
  39. Lin, Z., Francis, B., & Maggiore, M. (2005). Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Transactions on Automatic Control, 50(1), 121–127.
    [CrossRef]   [Google Scholar]
  40. Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2007). Flocking in fixed and switching networks. IEEE Transactions on Automatic Control, 52(5), 863–868.
    [CrossRef]   [Google Scholar]
  41. Jarraya, I., Al-Batati, A., Kadri, M. B., Abdelkader, M., Ammar, A., Boulila, W., & Koubaa, A. (2025). Gnss-denied unmanned aerial vehicle navigation: analyzing computational complexity, sensor fusion, and localization methodologies. Satellite Navigation, 6(1), 9.
    [CrossRef]   [Google Scholar]
  42. Hayat, S., Yanmaz, E., & Muzaffar, R. (2016). Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Communications Surveys & Tutorials, 18(4), 2624–2661.
    [CrossRef]   [Google Scholar]
  43. Mozaffari, M., Saad, W., Bennis, M., Nam, Y. H., & Debbah, M. (2019). A tutorial on UAVs for wireless networks: Applications, challenges, and open problems. IEEE Communications Surveys & Tutorials, 21(3), 2334–2360.
    [CrossRef]   [Google Scholar]
  44. Gharibi, M., Boutaba, R., & Waslander, S. L. (2016). Internet of drones. IEEE Access, 4, 1148–1162.
    [CrossRef]   [Google Scholar]
  45. Sahingoz, O. K. (2014). Networking models in flying ad-hoc networks (FANETs): Concepts and challenges. Journal of Intelligent & Robotic Systems, 74(1), 513–527.
    [CrossRef]   [Google Scholar]
  46. Bekmezci, İ., Sahingoz, O. K., & Temel, Ş. (2013). Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 11(3), 1254–1270.
    [CrossRef]   [Google Scholar]
  47. Asadpour, M., Van den Bergh, B., Giustiniano, D., Hummel, K. A., Pollin, S., & Plattner, B. (2014). Micro aerial vehicle networks: An experimental analysis of challenges and opportunities. IEEE Communications Magazine, 52(7), 141-149.
    [CrossRef]   [Google Scholar]
  48. Fall, K. (2003, August). A delay-tolerant network architecture for challenged internets. In Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications (pp. 27-34).
    [CrossRef]   [Google Scholar]
  49. Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2005, August). Spray and wait: an efficient routing scheme for intermittently connected mobile networks. In Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking (pp. 252-259).
    [CrossRef]   [Google Scholar]
  50. Goudarzi, S., Kama, N., Anisi, M. H., Zeadally, S., & Mumtaz, S. (2019). Data collection using unmanned aerial vehicles for Internet of Things platforms. Computers & Electrical Engineering, 75, 1-15.
    [CrossRef]   [Google Scholar]
  51. Sharma, V., Srinivasan, K., Chao, H. C., Hua, K. L., & Cheng, W. H. (2017). Intelligent deployment of UAVs in 5G heterogeneous communication environment for improved coverage. Journal of Network and Computer Applications, 85, 94-105.
    [CrossRef]   [Google Scholar]
  52. Balch, T., & Arkin, R. C. (1998). Behavior-based formation control for multirobot teams. IEEE Transactions on Robotics and Automation, 14(6), 926–939.
    [CrossRef]   [Google Scholar]
  53. Raj, R., & Kos, A. (2022). A comprehensive study of mobile robot: history, developments, applications, and future research perspectives. Applied Sciences, 12(14), 6951.
    [CrossRef]   [Google Scholar]
  54. Lewis, M. A., & Tan, K. H. (1997). High precision formation control of mobile robots using virtual structures. Autonomous Robots, 4(4), 387–403.
    [CrossRef]   [Google Scholar]
  55. Ren, W., & Beard, R. W. (2004). Formation feedback control for multiple spacecraft via virtual structures. IEE Proceedings - Control Theory and Applications, 151(3), 357–368.
    [CrossRef]   [Google Scholar]
  56. Beard, R. W., Lawton, J., & Hadaegh, F. Y. (2001). A coordination architecture for spacecraft formation control. IEEE Transactions on Control Systems Technology, 9(6), 777–790.
    [CrossRef]   [Google Scholar]
  57. Askari, A., Mortazavi, M., & Talebi, H. A. (2015). UAV formation control via the virtual structure approach. Journal of Aerospace Engineering, 28(1), 04014047.
    [CrossRef]   [Google Scholar]
  58. Kuriki, Y., & Namerikawa, T. (2014). Formation control of UAVs with a fourth-order flight dynamics. SICE Journal of Control, Measurement, and System Integration, 7(2), 74-81.
    [CrossRef]   [Google Scholar]
  59. Consolini, L., Morbidi, F., Prattichizzo, D., & Tosques, M. (2008). Leader–follower formation control of nonholonomic mobile robots with input constraints. Automatica, 44(5), 1343-1349.
    [CrossRef]   [Google Scholar]
  60. Dong, X., Yu, B., Shi, Z., & Zhong, Y. (2014). Time-varying formation control for unmanned aerial vehicles: Theories and applications. IEEE Transactions on Control Systems Technology, 23(1), 340-348.
    [CrossRef]   [Google Scholar]
  61. Peng, Z., Wang, D., Chen, Z., Hu, X., & Lan, W. (2013). Adaptive dynamic surface control for formations of autonomous surface vehicles with uncertain dynamics. IEEE Transactions on Control Systems Technology, 21(2), 513–520.
    [CrossRef]   [Google Scholar]
  62. Arrichiello, F., Chiaverini, S., & Fossen, T. I. (2006, October). Formation control of underactuated surface vessels using the null-space-based behavioral control. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 5942-5947). IEEE.
    [CrossRef]   [Google Scholar]
  63. Wang, J., & Xin, M. (2013). Integrated optimal formation control of multiple unmanned aerial vehicles. IEEE Transactions on Control Systems Technology, 21(5), 1731–1744.
    [CrossRef]   [Google Scholar]
  64. Venkat, A. N., Hiskens, I. A., Rawlings, J. B., & Wright, S. J. (2008). Distributed MPC strategies with application to power system automatic generation control. IEEE transactions on control systems technology, 16(6), 1192-1206.
    [CrossRef]   [Google Scholar]
  65. Dunbar, W. B., & Murray, R. M. (2006). Distributed receding horizon control for multi-vehicle formation stabilization. Automatica, 42(4), 549-558.
    [CrossRef]   [Google Scholar]
  66. Keviczky, T., Borrelli, F., & Balas, G. J. (2006). Decentralized receding horizon control for large scale dynamically decoupled systems. Automatica, 42(12), 2105-2115.
    [CrossRef]   [Google Scholar]
  67. Richards, A., & How, J. P. (2007). Robust distributed model predictive control. International Journal of control, 80(9), 1517-1531.
    [CrossRef]   [Google Scholar]
  68. Dunbar, W. B. (2007). Distributed receding horizon control of dynamically coupled nonlinear systems. IEEE Transactions on Automatic Control, 52(7), 1249-1263.
    [CrossRef]   [Google Scholar]
  69. Maestre, J. M., & Negenborn, R. R. (Eds.). (2014). Distributed model predictive control made easy. Springer.
    [CrossRef]   [Google Scholar]
  70. Giselsson, P., & Rantzer, A. (2010, December). Distributed model predictive control with suboptimality and stability guarantees. In 49th IEEE Conference on Decision and Control (CDC) (pp. 7272-7277). IEEE.
    [CrossRef]   [Google Scholar]
  71. Shtessel, Y., Edwards, C., Fridman, L., & Levant, A. (2014). Sliding mode control and observation (Vol. 10). New York: Springer New York.
    [CrossRef]   [Google Scholar]
  72. Liu, J., Sun, M., Chen, Z., & Sun, Q. (2020). Super-twisting sliding mode control for aircraft at high angle of attack based on finite-time extended state observer. Nonlinear Dynamics, 99(4), 2785-2799.
    [CrossRef]   [Google Scholar]
  73. Utkin, V., Guldner, J., & Shi, J. (2009). Sliding mode control in electro-mechanical systems (2nd ed.). CRC Press.
    [CrossRef]   [Google Scholar]
  74. Yu, X., & Kaynak, O. (2009). Sliding-mode control with soft computing: A survey. IEEE transactions on industrial electronics, 56(9), 3275-3285.
    [CrossRef]   [Google Scholar]
  75. Defoort, M., Floquet, T., Kokosy, A., & Perruquetti, W. (2008). Sliding-mode formation control for cooperative autonomous mobile robots. IEEE Transactions on Industrial Electronics, 55(11), 3944–3953.
    [CrossRef]   [Google Scholar]
  76. Alwi, H., Edwards, C., & Tan, C. P. (2011). Fault detection and fault-tolerant control using sliding modes (pp. 7-28). London: Springer.
    [CrossRef]   [Google Scholar]
  77. Lavretsky, E., & Wise, K. A. (2024). Robust adaptive control. In Robust and adaptive control: With aerospace applications (pp. 469-506). Cham: Springer International Publishing.
    [CrossRef]   [Google Scholar]
  78. Ioannou, P. A., & Sun, J. (1996). Robust adaptive control. Prentice-Hall.
    [Google Scholar]
  79. Cao, C., & Hovakimyan, N. (2008). Design and analysis of a novel L1 adaptive control architecture with guaranteed transient performance. IEEE Transactions on Automatic Control, 53(2), 586–591.
    [CrossRef]   [Google Scholar]
  80. Krstic, M., Kanellakopoulos, I., & Kokotovic, P. V. (1995). Nonlinear and adaptive control design. Wiley.
    [Google Scholar]
  81. Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., & Whiteson, S. (2018, April). Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial intelligence (Vol. 32, No. 1).
    [CrossRef]   [Google Scholar]
  82. Rashid, T., Samvelyan, M., De Witt, C. S., Farquhar, G., Foerster, J., & Whiteson, S. (2020). Monotonic value function factorisation for deep multi-agent reinforcement learning. Journal of Machine Learning Research, 21(178), 1-51.
    [Google Scholar]
  83. Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zambaldi, V., Jaderberg, M., ... & Graepel, T. (2018, July). Value-Decomposition Networks For Cooperative Multi-Agent Learning Based On Team Reward. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (pp. 2085-2087).
    [Google Scholar]
  84. Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A., & Wu, Y. (2022). The surprising effectiveness of ppo in cooperative multi-agent games. Advances in neural information processing systems, 35, 24611-24624.
    [Google Scholar]
  85. Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel, O., & Mordatch, I. (2017). Multi-agent actor-critic for mixed cooperative-competitive environments. Advances in neural information processing systems, 30.
    [Google Scholar]
  86. U.S. Air Force Test Pilot School & DARPA. (2024). Autonomous air combat operations flight test on X-62A VISTA (ACE program). Retrieved from https://www.darpa.mil
    [Google Scholar]
  87. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel, P. (2017, September). Domain randomization for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 23-30). IEEE.
    [CrossRef]   [Google Scholar]
  88. Peng, X. B., Andrychowicz, M., Zaremba, W., & Abbeel, P. (2018, May). Sim-to-real transfer of robotic control with dynamics randomization. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 3803-3810). IEEE.
    [CrossRef]   [Google Scholar]
  89. Chebotar, Y., Handa, A., Makoviychuk, V., Macklin, M., Issac, J., Ratliff, N., & Fox, D. (2019, May). Closing the sim-to-real loop: Adapting simulation randomization with real world experience. In 2019 International Conference on Robotics and Automation (ICRA) (pp. 8973-8979). IEEE.
    [CrossRef]   [Google Scholar]
  90. Muratore, F., Treede, F., Gienger, M., & Peters, J. (2018, October). Domain randomization for simulation-based policy optimization with transferability assessment. In Conference on Robot Learning (pp. 700-713). PMLR.
    [Google Scholar]
  91. Koch, W., Mancuso, R., West, R., & Bestavros, A. (2019). Reinforcement learning for UAV attitude control. ACM Transactions on Cyber-Physical Systems, 3(2), 1-21.
    [CrossRef]   [Google Scholar]
  92. Hwangbo, J., Sa, I., Siegwart, R., & Hutter, M. (2017). Control of a quadrotor with reinforcement learning. IEEE Robotics and Automation Letters, 2(4), 2096-2103.
    [CrossRef]   [Google Scholar]
  93. Liaq, M., & Byun, Y. (2019). Autonomous UAV Navigation Using Reinforcement Learning. International Journal of Machine Learning and Computing, 9(6).
    [CrossRef]   [Google Scholar]
  94. Rodriguez-Ramos, A., Sampedro, C., Bavle, H., De La Puente, P., & Campoy, P. (2019). A deep reinforcement learning strategy for UAV autonomous landing on a moving platform. Journal of Intelligent & Robotic Systems, 93(1), 351-366.
    [CrossRef]   [Google Scholar]
  95. Loquercio, A., Kaufmann, E., Ranftl, R., Müller, M., Koltun, V., & Scaramuzza, D. (2021). Learning high-speed flight in the wild. Science Robotics, 6(59), eabg5810.
    [CrossRef]   [Google Scholar]
  96. Bauersfeld, L., & Scaramuzza, D. Accurate Dynamics Models for Agile Drone Flight: Zero-Shot Sim2Real-Transfer of Neural Controllers.
    [Google Scholar]
  97. Dey, S., & Xu, H. (2024). Distributed adaptive flocking control for large-scale multiagent systems. IEEE Transactions on Neural Networks and Learning Systems, 36(2), 3126-3135.
    [CrossRef]   [Google Scholar]
  98. Lin, W., & Mak, M. W. (2023). Model-agnostic meta-learning for fast text-dependent speaker embedding adaptation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 31, 1866-1876.
    [CrossRef]   [Google Scholar]
  99. Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, I., & Abbeel, P. (2016). Rl \$\^{ 2\$: Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779.
    [Google Scholar]
  100. Ho, J., & Ermon, S. (2016). Generative adversarial imitation learning. Advances in neural information processing systems, 29.
    [Google Scholar]
  101. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., ... & Zieba, K. (2016). End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316.
    [Google Scholar]
  102. Wang, C., Wang, J., Shen, Y., & Zhang, X. (2019). Autonomous navigation of UAVs in large-scale complex environments: A deep reinforcement learning approach. IEEE Transactions on Vehicular Technology, 68(3), 2124–2136.
    [CrossRef]   [Google Scholar]
  103. Duan, H., & Qiao, P. (2014). Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning. International Journal of Intelligent Computing and Cybernetics, 7(1), 24–37.
    [CrossRef]   [Google Scholar]
  104. Reynolds, C. W. (1999, March). Steering behaviors for autonomous characters. In Game developers conference (Vol. 1999, pp. 763-782).
    [Google Scholar]
  105. Jin, X., Ke, S., An, J., Wang, S., Pan, G., & Niyato, D. (2024). A novel consensus-based distributed time synchronization algorithm in high-dynamic multi-UAV networks. IEEE Transactions on Wireless Communications.
    [CrossRef]   [Google Scholar]
  106. Yang, Y., Xiong, X., & Yan, Y. (2023). UAV formation trajectory planning algorithms: A review. Drones, 7(1), 62.
    [CrossRef]   [Google Scholar]
  107. Ferreira, R., Gaspar, J., Sebastião, P., & Souto, N. (2022). A software defined radio based anti-UAV mobile system with jamming and spoofing capabilities. Sensors, 22(4), 1487.
    [CrossRef]   [Google Scholar]
  108. ETH Zurich. (2020). VINS-Fusion: A robust visual-inertial navigation system. Retrieved from https://github.com/HKUST-Aerial-Robotics/VINS-Fusion
    [Google Scholar]
  109. Mur-Artal, R., & Tardós, J. D. (2017). Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics, 33(5), 1255-1262.
    [CrossRef]   [Google Scholar]
  110. Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., & Furgale, P. (2015). Keyframe-based visual–inertial odometry using nonlinear optimization. International Journal of Robotics Research, 34(3), 314–334.
    [CrossRef]   [Google Scholar]
  111. Bloesch, M., Omari, S., Hutter, M., & Siegwart, R. (2015, September). Robust visual inertial odometry using a direct EKF-based approach. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 298-304). IEEE.
    [CrossRef]   [Google Scholar]
  112. Groves, P. D. (2013). Principles of GNSS, inertial, and multisensor integrated navigation systems (2nd ed.). Artech House.
    [Google Scholar]
  113. Sabatini, R., Moore, T., & Hill, C. (2016). Avionics-Based GNSS Integrity Augmentation for UAS mission planning and real-time trajectory optimisation. In Proceedings of the 29th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2016) (pp. 1415-1431).
    [CrossRef]   [Google Scholar]
  114. Mourikis, A. I., & Roumeliotis, S. I. (2007, April). A multi-state constraint Kalman filter for vision-aided inertial navigation. In Proceedings 2007 IEEE international conference on robotics and automation (pp. 3565-3572). IEEE.
    [CrossRef]   [Google Scholar]
  115. Roumeliotis, S. I., & Bekey, G. A. (2002). Distributed multirobot localization. IEEE transactions on robotics and automation, 18(5), 781-795.
    [CrossRef]   [Google Scholar]
  116. Vetrella, A. R., Fasano, G., Accardo, D., & Moccia, A. (2016). Differential GNSS and vision-based tracking to improve navigation performance in cooperative multi-UAV systems. Sensors, 16(12), 2164.
    [CrossRef]   [Google Scholar]
  117. Nerurkar, E. D., Roumeliotis, S. I., & Martinelli, A. (2009, May). Distributed maximum a posteriori estimation for multi-robot cooperative localization. In 2009 IEEE International Conference on Robotics and Automation (pp. 1402-1409). IEEE.
    [CrossRef]   [Google Scholar]
  118. Howard, A., Matark, M. J., & Sukhatme, G. S. (2002, September). Localization for mobile robot teams using maximum likelihood estimation. In IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 434-439). IEEE.
    [CrossRef]   [Google Scholar]
  119. Qualcomm Technologies. (2024). FastConnect 7900 mobile connectivity system (Wi-Fi 7 + Bluetooth + UWB). Retrieved from https://www.qualcomm.com/products/technology/wi-fi/fastconnect/fastconnect-7900
    [Google Scholar]
  120. Wang, K., Cao, C., Ma, S., & Ren, F. (2021). An optimization-based multi-sensor fusion approach towards global drift-free motion estimation. IEEE Sensors Journal, 21(10), 12228-12235.
    [CrossRef]   [Google Scholar]
  121. UK Ministry of Defence (Dstl). (2022). Quantum inertial navigation systems: A defence evaluation. Retrieved from https://www.gov.uk/government/organisations/defence-science-and-technology-laboratory
    [Google Scholar]
  122. Qualcomm Technologies, Inc. (n.d.). UAV-to-UAV communication and relative positioning for V2X-based drone swarms. Retrieved from https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/uav-to-uav_communication_and_relative_positioning_for_v2x-based_drone_swarms.pdf
    [Google Scholar]
  123. Chen, X., Wang, Y., & Zhang, L. (2023). Dynamic obstacle avoidance for UAV swarms in complex environments. Robotics and Autonomous Systems, 159, 104321.
    [CrossRef]   [Google Scholar]
  124. Herbert, S. L., Chen, M., Han, S., Bansal, S., Fisac, J. F., & Tomlin, C. J. (2017, December). FaSTrack: A modular framework for fast and guaranteed safe motion planning. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (pp. 1517-1522). IEEE.
    [CrossRef]   [Google Scholar]
  125. LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool for path planning (Technical Report No. 98-11). Iowa State University, Department of Computer Science.
    [Google Scholar]
  126. Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The international journal of robotics research, 30(7), 846-894.
    [CrossRef]   [Google Scholar]
  127. Gammell, J. D., Srinivasa, S. S., & Barfoot, T. D. (2014, September). Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic. In 2014 IEEE/RSJ international conference on intelligent robots and systems (pp. 2997-3004). IEEE.
    [CrossRef]   [Google Scholar]
  128. Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 5(1), 90–98.
    [CrossRef]   [Google Scholar]
  129. Ge, S. S., & Cui, Y. J. (2002). Dynamic motion planning for mobile robots using potential field method. Autonomous Robots, 13(3), 207–222.
    [CrossRef]   [Google Scholar]
  130. Park, M. G., Jeon, J. H., & Lee, M. C. (2001, June). Obstacle avoidance for mobile robots using artificial potential field approach with simulated annealing. In ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No. 01TH8570) (Vol. 3, pp. 1530-1535). IEEE.
    [CrossRef]   [Google Scholar]
  131. Fiorini, P., & Shiller, Z. (1998). Motion planning in dynamic environments using velocity obstacles. International Journal of Robotics Research, 17(7), 760–772.
    [CrossRef]   [Google Scholar]
  132. Van den Berg, J., Lin, M., & Manocha, D. (2008, May). Reciprocal velocity obstacles for real-time multi-agent navigation. 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, United States. 1928–1935.
    [CrossRef]   [Google Scholar]
  133. Beijing Institute of Technology. (2022). Path planning algorithm for UAVs based on improved RRT. Acta Automatica Sinica, 48(3), 1–10.
    [Google Scholar]
  134. Feng, L., & Katupitiya, J. (2022). UAV-based persistent full area coverage with dynamic priorities. Robotics and Autonomous Systems, 157, 104244.
    [CrossRef]   [Google Scholar]
  135. Amazon Science. (2022). Prime Air's approach to efficient long-range delivery. Retrieved from https://www.amazon.science/latest-news/prime-airs-approach-to-efficient-long-range-delivery
    [Google Scholar]
  136. Dorling, K., Heinrichs, J., Messier, G. G., & Magierowski, S. (2017). Vehicle routing problems for drone delivery. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(1), 70–85.
    [CrossRef]   [Google Scholar]
  137. Di Franco, C., & Buttazzo, G. (2015, April). Energy-aware coverage path planning of UAVs. 2015 IEEE International Conference on Autonomous Robot Systems and Competitions, Vila Real, Portugal. 111–117.
    [CrossRef]   [Google Scholar]
  138. Zeng, Y., & Zhang, R. (2017). Energy-efficient UAV communication with trajectory optimization. IEEE Transactions on Wireless Communications, 16(6), 3747–3760.
    [CrossRef]   [Google Scholar]
  139. Safwat, E., Reda, M., & Kamel, A. M. (2025). Model-based simulation and validation of small fixed wing UAV. Journal of Engineering Science and Military Technologies, 9(1), 33-51.
    [Google Scholar]
  140. Qu, C., Sorbelli, F. B., Singh, R., Calyam, P., & Das, S. K. (2023). Environmentally-aware and energy-efficient multi-drone coordination and networking for disaster response. IEEE transactions on network and service management, 20(2), 1093-1109.
    [CrossRef]   [Google Scholar]
  141. Stolaroff, J. K., Samaras, C., O'Neill, E. R., Lubers, A., Mitchell, A. S., & Ceperley, D. (2018). Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery. Nature Communications, 9(1), 409.
    [CrossRef]   [Google Scholar]
  142. Chung, S. J., Paranjape, A. A., Dames, P., Shen, S., & Kumar, V. (2018). A survey on aerial swarm robotics. IEEE Transactions on Robotics, 34(4), 837–855.
    [CrossRef]   [Google Scholar]
  143. Otto, A., Agatz, N., Campbell, J., Golden, B., & Pesch, E. (2018). Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey. Networks, 72(4), 411-458.
    [CrossRef]   [Google Scholar]
  144. Kim, J., Kim, S., Ju, C., & Son, H. I. (2019). Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications. IEEE Access, 7, 105100-105115.
    [CrossRef]   [Google Scholar]
  145. Zhang, T., Yu, D., Cheong, K. H., Liu, Y., & Wang, Z. (2025). Hierarchical Distributed Strategy for Autonomous UAV Swarm Formation Aggregation. IEEE Transactions on Vehicular Technology.
    [CrossRef]   [Google Scholar]
  146. Yan, Z., Jouandeau, N., & Cherif, A. A. (2013). A survey and analysis of multi-robot coordination. International Journal of Advanced Robotic Systems, 10(12), 399.
    [CrossRef]   [Google Scholar]
  147. Nigam, N., Bieniawski, S., Kroo, I., & Vian, J. (2011). Control of multiple UAVs for persistent surveillance: Algorithm and flight test results. IEEE transactions on control systems technology, 20(5), 1236-1251.
    [CrossRef]   [Google Scholar]
  148. Kuriki, Y., & Namerikawa, T. (2014, June). Consensus-based cooperative formation control with collision avoidance for a multi-UAV system. 2014 American Control Conference, Portland, OR, United States. 2077–2082.
    [CrossRef]   [Google Scholar]
  149. Freeman, R. A., Yang, P., & Lynch, K. M. (2006, December). Stability and convergence properties of dynamic average consensus estimators. In Proceedings of the 45th IEEE Conference on Decision and Control (pp. 338-343). IEEE.
    [CrossRef]   [Google Scholar]
  150. Seuret, A., Dimarogonas, D. V., & Johansson, K. H. (2008, December). Consensus under communication delays. 47th IEEE Conference on Decision and Control, Cancun, Mexico. 4922–4927.
    [CrossRef]   [Google Scholar]
  151. Basescu, M., Polevoy, A., Yeh, B., Scheuer, L., Sutton, E., & Moore, J. (2024). Agile fixed-wing UAVs for urban swarm operations. IEEE Transactions on Field Robotics.
    [CrossRef]   [Google Scholar]
  152. DJI Agriculture. (2023). Precision agriculture report 2023. Retrieved from https://ag.dji.com
    [Google Scholar]
  153. Salam, A., Javaid, Q., & Ahmad, M. (2021). Bio-inspired cluster–based optimal target identification using multiple unmanned aerial vehicles in smart precision agriculture. International Journal of Distributed Sensor Networks, 17(7), 15501477211034071.
    [CrossRef]   [Google Scholar]
  154. Ren, W., & Beard, R. W. (2008). Distributed consensus in multi-vehicle cooperative control: theory and applications. London: Springer London.
    [CrossRef]   [Google Scholar]
  155. Watts, A. C., Ambrosia, V. G., & Hinkley, E. A. (2012). Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote sensing, 4(6), 1671-1692.
    [CrossRef]   [Google Scholar]
  156. Villa, T. F., Gonzalez, F., Miljievic, B., Ristovski, Z. D., & Morawska, L. (2016). An overview of small unmanned aerial vehicles for air quality measurements: Present applications and future prospectives. Sensors, 16(7), 1072.
    [CrossRef]   [Google Scholar]
  157. Erdelj, M., Król, M., & Natalizio, E. (2017). Wireless sensor networks and multi-UAV systems for natural disaster management. Computer Networks, 124, 72–86.
    [CrossRef]   [Google Scholar]
  158. International Civil Aviation Organization. (2015). Manual on remotely piloted aircraft systems (RPAS) (Doc 10019 AN/507).
    [Google Scholar]
  159. Federal Aviation Administration. (2018). Integration of civil unmanned aircraft systems (UAS) in the National Airspace System (NAS) roadmap (2nd ed.).
    [Google Scholar]
  160. European Union Aviation Safety Agency. (2019). Acceptable means of compliance (AMC) and guidance material (GM) to Commission Implementing Regulation (EU) 2019/947.
    [Google Scholar]
  161. Clothier, R. A., Palmer, J. L., Walker, R. A., & Fulton, N. L. (2011). Definition of an airworthiness certification framework for civil unmanned aircraft systems. Safety Science, 49(6), 871–885.
    [CrossRef]   [Google Scholar]
  162. Stefan, N., & Axel, S. (2025, May). The Impact of HAT on Team Dynamics and Coordination: A Teaming-Oriented Study for MUM-T. In 2025 IEEE 5th International Conference on Human-Machine Systems (ICHMS) (pp. 465-470). IEEE.
    [CrossRef]   [Google Scholar]
  163. Chen, P., Shang, M., Liu, K., Zhu, L., Wang, S., Fu, Y., ... & Qing, Q. (2024, December). Application of Carbon Dioxide Energy Storage Technology Based on New Energy Atmospheric Pressure Flexible Gas Film Storage Bin: Take Xinjiang Region as a Case. In 2024 Boao New Power System International Forum-Power System and New Energy Technology Innovation Forum (NPSIF) (pp. 228-231). IEEE.
    [CrossRef]   [Google Scholar]
  164. Ma, L., Hu, C., Yu, J., Wen, S., & Wang, L. (2025). Distributed optimization-based fixed-time formation control with external disturbances: an event-based intermittent approach. Nonlinear Dynamics, 1-16.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Li, W., Zhu, J., Liu, T., Ni, F., Liu, Y., & Liu, G. (2026). A Review of Fixed-Wing Unmanned Aerial Vehicle Formation Research. Aerospace Engineering Communications, 1(1), 3–27. https://doi.org/10.62762/AEC.2025.339037
Export Citation
RIS Format
Compatible with EndNote, Zotero, Mendeley, and other reference managers
RIS format data for reference managers
TY  - JOUR
AU  - Li, Wei
AU  - Zhu, Jinbiao
AU  - Liu, Tiejun
AU  - Ni, Fan
AU  - Liu, Yiheng
AU  - Liu, Guoliang
PY  - 2026
DA  - 2026/01/24
TI  - A Review of Fixed-Wing Unmanned Aerial Vehicle Formation Research
JO  - Aerospace Engineering Communications
T2  - Aerospace Engineering Communications
JF  - Aerospace Engineering Communications
VL  - 1
IS  - 1
SP  - 3
EP  - 27
DO  - 10.62762/AEC.2025.339037
UR  - https://www.icck.org/article/abs/AEC.2025.339037
KW  - fixed-wing UAV
KW  - formation control
KW  - obstacle avoidance strategy
KW  - autonomous decision-making
AB  - Fixed-wing unmanned aerial vehicle (UAV) formation technology, as a crucial research direction in multi-agent system cooperative control, while facing constraints in multiple areas, has demonstrated broad application prospects in military reconnaissance, disaster monitoring, agricultural plant protection and other fields in recent years. This paper systematically reviews the key technological systems of fixed-wing UAV formation control, including formation configuration design, communication topology, cooperative control algorithms, navigation positioning and obstacle avoidance strategies. By analyzing the latest research progress, the performance differences between centralized and distributed control architectures were summarized, and the applicable scenarios of mainstream formation control strategies such as behavior method, virtual structure method, and navigation-follow method were compared. The research results show that hybrid control architectures combining model predictive control and reinforcement learning algorithms exhibit superior performance in complex environments. Meanwhile, this paper discusses the technical challenges faced by formation systems in terms of communication reliability, dynamic obstacle avoidance, and energy optimization. This paper highlights the critical transition from traditional control to AI-enabled autonomous cooperation. By identifying the limitations of current communication protocols and energy management strategies, it provides a roadmap for the theoretical research and engineering application of large-scale fixed-wing UAV formations.
SN  - pending
PB  - Institute of Central Computation and Knowledge
LA  - English
ER  - 
BibTeX Format
Compatible with LaTeX, BibTeX, and other reference managers
BibTeX format data for LaTeX and reference managers
@article{Li2026A,
  author = {Wei Li and Jinbiao Zhu and Tiejun Liu and Fan Ni and Yiheng Liu and Guoliang Liu},
  title = {A Review of Fixed-Wing Unmanned Aerial Vehicle Formation Research},
  journal = {Aerospace Engineering Communications},
  year = {2026},
  volume = {1},
  number = {1},
  pages = {3-27},
  doi = {10.62762/AEC.2025.339037},
  url = {https://www.icck.org/article/abs/AEC.2025.339037},
  abstract = {Fixed-wing unmanned aerial vehicle (UAV) formation technology, as a crucial research direction in multi-agent system cooperative control, while facing constraints in multiple areas, has demonstrated broad application prospects in military reconnaissance, disaster monitoring, agricultural plant protection and other fields in recent years. This paper systematically reviews the key technological systems of fixed-wing UAV formation control, including formation configuration design, communication topology, cooperative control algorithms, navigation positioning and obstacle avoidance strategies. By analyzing the latest research progress, the performance differences between centralized and distributed control architectures were summarized, and the applicable scenarios of mainstream formation control strategies such as behavior method, virtual structure method, and navigation-follow method were compared. The research results show that hybrid control architectures combining model predictive control and reinforcement learning algorithms exhibit superior performance in complex environments. Meanwhile, this paper discusses the technical challenges faced by formation systems in terms of communication reliability, dynamic obstacle avoidance, and energy optimization. This paper highlights the critical transition from traditional control to AI-enabled autonomous cooperation. By identifying the limitations of current communication protocols and energy management strategies, it provides a roadmap for the theoretical research and engineering application of large-scale fixed-wing UAV formations.},
  keywords = {fixed-wing UAV, formation control, obstacle avoidance strategy, autonomous decision-making},
  issn = {pending},
  publisher = {Institute of Central Computation and Knowledge}
}

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 138
PDF Downloads: 22

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2026 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Aerospace Engineering Communications

Aerospace Engineering Communications

ISSN: pending (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/