-
CiteScore
-
Impact Factor
Volume 1, Issue 1, Journal of Advanced Biomaterials
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Journal of Advanced Biomaterials, Volume 1, Issue 1, 2025: 1-9

Open Access | Review Article | 12 August 2025
Nanotechnology and Cartilage Regeneration: A Review
1 School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
2 School of Engineering, Saveetha University, Chennai 602105, India
3 Division of Pre-College and Undergraduate Studies, Brown University, Providence 02912, United States
* Corresponding Author: Thomas J. Webster, [email protected]
Received: 25 June 2025, Accepted: 11 July 2025, Published: 12 August 2025  
Abstract
This review article covers the comprehensive incorporation of nanotechnology into cartilage tissue engineering. Specifically, nano-engineered scaffolds which replicate the hierarchical architecture of native cartilage, providing biomechanical support while promoting chondrocyte attachment and extracellular matrix deposition are highlighted. Nanoparticle-based systems which further enhance regeneration by enabling site-specific, sustained release of growth factors, anti-inflammatory agents, and gene therapies such as TGF-β and IL-1Ra, thereby improving therapeutic precision and efficacy are also discussed. Nanotopographical cues and surface functionalization techniques (e.g., RGD peptides) which guide mesenchymal stem cell behavior, influencing cell adhesion, proliferation, and differentiation pathways like FAK, MAPK, and Wnt signaling are also mentioned. Non-viral nanocarriers which offer a safer and effective route for localized gene delivery, minimizing immunogenic risks and providing sustained genetic modulation are also covered. In summary, this review provides promising information for how nanotechnology has aided in all aspects of cartilage tissue engineering.

Graphical Abstract
Nanotechnology and Cartilage Regeneration: A Review

Keywords
cartilage
nanomedicine
nanomaterials
regeneration
tissue engineering

Data Availability Statement
Not applicable.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Hunter, D. J., & Bierma-Zeinstra, S. (2019). Osteoarthritis. The Lancet, 393(10182), 1745-1759.
    [CrossRef]   [Google Scholar]
  2. Gaharwar, A. K., Peppas, N. A., & Khademhosseini, A. (2014). Nanocomposite hydrogels for biomedical applications. Biotechnology and bioengineering, 111(3), 441-453.
    [CrossRef]   [Google Scholar]
  3. Liu, B., Liu, T., Li, Y., & Tan, C. (2024). Innovative biotherapies and nanotechnology in osteoarthritis: Advancements in inflammation control and cartilage regeneration. International Journal of Molecular Sciences, 25(24), 13384.
    [CrossRef]   [Google Scholar]
  4. Gatoo, M. A., Naseem, S., Arfat, M. Y., Mahmood Dar, A., Qasim, K., & Zubair, S. (2014). Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed research international, 2014(1), 498420.
    [CrossRef]   [Google Scholar]
  5. Zhang, L., & Webster, T. J. (2009). Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano today, 4(1), 66-80.
    [CrossRef]   [Google Scholar]
  6. Jandt, K. D. (2007). Evolutions, revolutions and trends in biomaterials science–a perspective. Advanced Engineering Materials, 9(12), 1035-1050.
    [CrossRef]   [Google Scholar]
  7. Kay, S., Thapa, A., Haberstroh, K. M., & Webster, T. J. (2002). Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue engineering, 8(5), 753-761.
    [CrossRef]   [Google Scholar]
  8. Lin, T. H., Wang, H. C., Cheng, W. H., Hsu, H. C., & Yeh, M. L. (2019). Osteochondral tissue regeneration using a tyramine-modified bilayered PLGA scaffold combined with articular chondrocytes in a porcine model. International journal of molecular sciences, 20(2), 326.
    [CrossRef]   [Google Scholar]
  9. Balasundaram, G., & Webster, T. J. (2007). An overview of nano‐polymers for orthopedic applications. Macromolecular bioscience, 7(5), 635-642.
    [CrossRef]   [Google Scholar]
  10. Isomursu, A., Lerche, M., Taskinen, M. E., Ivaska, J., & Peuhu, E. (2019). Integrin signaling and mechanotransduction in regulation of somatic stem cells. Experimental cell research, 378(2), 217-225.
    [CrossRef]   [Google Scholar]
  11. Kim, E. S., Ahn, E. H., Dvir, T., & Kim, D. H. (2014). Emerging nanotechnology approaches in tissue engineering and regenerative medicine. International journal of nanomedicine, 9(sup1), 1-5.
    [CrossRef]   [Google Scholar]
  12. Denchai, A., Tartarini, D., & Mele, E. (2018). Cellular response to surface morphology: electrospinning and computational modeling. Frontiers in Bioengineering and Biotechnology, 6, 155.
    [CrossRef]   [Google Scholar]
  13. Lu, H., Zhang, S., Wang, J., & Chen, Q. (2021). A review on polymer and lipid-based nanocarriers and its application to nano-pharmaceutical and food-based systems. Frontiers in nutrition, 8, 783831.
    [CrossRef]   [Google Scholar]
  14. Shi, Y., Han, X., Pan, S., Wu, Y., Jiang, Y., Lin, J., ... & Jin, H. (2021). Gold nanomaterials and bone/cartilage tissue engineering: biomedical applications and molecular mechanisms. Frontiers in Chemistry, 9, 724188.
    [CrossRef]   [Google Scholar]
  15. Spirescu, V. A., Chircov, C., Grumezescu, A. M., Vasile, B. Ș., & Andronescu, E. (2021). Inorganic nanoparticles and composite films for antimicrobial therapies. International journal of molecular sciences, 22(9), 4595.
    [CrossRef]   [Google Scholar]
  16. Gong, M., Sun, J., Liu, G., Li, L., Wu, S., & Xiang, Z. (2021). Graphene oxide–modified 3D acellular cartilage extracellular matrix scaffold for cartilage regeneration. Materials Science and Engineering: C, 119, 111603.
    [CrossRef]   [Google Scholar]
  17. Díez-Pascual, A. M. (2022). Graphene-based polymer nanocomposites: recent advances. Polymers, 14(10), 2102.
    [CrossRef]   [Google Scholar]
  18. Gonzalez-Leon, E. A., Bielajew, B. J., Hu, J. C., & Athanasiou, K. A. (2020). Engineering self-assembled neomenisci through combination of matrix augmentation and directional remodeling. Acta biomaterialia, 109, 73-81.
    [CrossRef]   [Google Scholar]
  19. Li, C. S., Xu, Y., Li, J., Qin, S. H., Huang, S. W., Chen, X. M., ... & Xiao, J. H. (2025). Ultramodern natural and synthetic polymer hydrogel scaffolds for articular cartilage repair and regeneration. BioMedical Engineering OnLine, 24(1), 1-26.
    [CrossRef]   [Google Scholar]
  20. Ghazzy, A., Naik, R. R., & Shakya, A. K. (2023). Metal–polymer nanocomposites: A promising approach to antibacterial materials. Polymers, 15(9), 2167.
    [CrossRef]   [Google Scholar]
  21. Sharifi, F., Irani, S., Azadegan, G., Pezeshki-Modaress, M., Zandi, M., & Saeed, M. (2020). Co-electrospun gelatin-chondroitin sulfate/polycaprolactone nanofibrous scaffolds for cartilage tissue engineering. Bioactive Carbohydrates and Dietary Fibre, 22, 100215.
    [CrossRef]   [Google Scholar]
  22. Kadir, N. D., Yang, Z., Hassan, A., Denslin, V., & Lee, E. H. (2021). Electrospun fibers enhanced the paracrine signaling of mesenchymal stem cells for cartilage regeneration. Stem Cell Research & Therapy, 12(1), 100.
    [CrossRef]   [Google Scholar]
  23. Li, L., Hao, R., Qin, J., Song, J., Chen, X., Rao, F., ... & Xue, J. (2022). Electrospun fibers control drug delivery for tissue regeneration and cancer therapy. Advanced Fiber Materials, 4(6), 1375-1413.
    [CrossRef]   [Google Scholar]
  24. Silva, J. C., Udangawa, R. N., Chen, J., Mancinelli, C. D., Garrudo, F. F., Mikael, P. E., ... & Linhardt, R. J. (2020). Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering. Materials Science and Engineering: C, 107, 110291.
    [CrossRef]   [Google Scholar]
  25. Nabizadeh, Z., Nasrollahzadeh, M., Daemi, H., Eslaminejad, M. B., Shabani, A. A., Dadashpour, M., ... & Nasrabadi, D. (2022). Micro-and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis. Beilstein Journal of Nanotechnology, 13(1), 363-389.
    [CrossRef]   [Google Scholar]
  26. Huang, J., Xiong, J., Wang, D., Zhang, J., Yang, L., Sun, S., & Liang, Y. (2021). 3D bioprinting of hydrogels for cartilage tissue engineering. Gels, 7(3), 144.
    [CrossRef]   [Google Scholar]
  27. Ghobadi, F., Mohammadi, M., Kalantarzadeh, R., Lotfi, E., Borhan, S., Chauhan, N. P. S., ... & Simorgh, S. (2025). Advanced 3D-Printed Multiphasic Scaffold with Optimal PRP Dosage for Chondrogenesis of BM-MSCs in Osteochondral Tissue Engineering. arXiv preprint arXiv:2502.11130.
    [Google Scholar]
  28. Baird, D., & Vogt, T. (2004). Societal and Ethical Interactions with Nanotechnology (SEIN)-An Introduction. Nanotech. L. & Bus., 1, 391.
    [Google Scholar]
  29. Qiao, K., Xu, L., Tang, J., Wang, Q., Lim, K. S., Hooper, G., ... & Cui, X. (2022). The advances in nanomedicine for bone and cartilage repair. Journal of Nanobiotechnology, 20(1), 141.
    [CrossRef]   [Google Scholar]
  30. Gantenbein, B., Tang, S., Guerrero, J., Higuita-Castro, N., Salazar-Puerta, A. I., Croft, A. S., ... & Purmessur, D. (2020). Non-viral gene delivery methods for bone and joints. Frontiers in bioengineering and biotechnology, 8, 598466.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Tian, Y., & Webster, T. J. (2025). Nanotechnology and Cartilage Regeneration: A Review. Journal of Advanced Biomaterials, 1(1), 1–9. https://doi.org/10.62762/JAB.2025.300184

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 134
PDF Downloads: 32

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Journal of Advanced Biomaterials

Journal of Advanced Biomaterials

ISSN: pending (Online) | ISSN: pending (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/