Volume 2, Issue 1, Journal of Geo-Energy and Environment
Volume 2, Issue 1, 2026
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Journal of Geo-Energy and Environment, Volume 2, Issue 1, 2026: 73-94

Open Access | Research Article | 17 February 2026
A GIS–AHP Framework for Solar Energy Site Selection in Developing Regions: Urcuqui, Ecuador
1 Energy and Sustainability Research Group, School of Earth Science, Energy and Environment, Yachay Tech University, Urcuqui 100115, Ecuador
* Corresponding Author: Bryan X. Medina-Rodriguez, [email protected]
ARK: ark:/57805/jgee.2026.577955
Received: 04 December 2025, Accepted: 03 February 2026, Published: 17 February 2026  
Abstract
Global warming and climate change challenge us to implement sustainable energy systems. Urcuqui, located in the Imbabura province in the North of Ecuador, is one of the cities with the most promising renewable energy resources. Therefore, analyzing the energy potential of Urcuqui at the micro and macro scales will provide valuable information for the national efforts to pursue the Sustainable Development Goals and the 2030 Agenda. This work aims to identify strategic points with high viability to implement renewable energy systems by collecting information from local governments, such as Municipio de Urcuqui and Prefectura de Imbabura, and implementing advanced methodologies like GIS and multi-criteria analysis. This research focuses mainly on solar and hydrological resources, which have been identified as the most significant energy sources and have the potential to be applied in different areas where required. As the intention is to give people and small communities access to affordable and clean energy, this investigation also incorporates demographic factors and environmental sustainability. The result illustrates Urcuqui parish as the main feasible area to implement PV systems, with approximately 43% of the canton's suitable area. The results show the importance of assessing the geological and technical aspects of the geological resources. They are expected to provide valuable information for regional decision-makers regarding energy policies and promoting more sustainable and environmentally friendly development.

Graphical Abstract
A GIS–AHP Framework for Solar Energy Site Selection in Developing Regions: Urcuqui, Ecuador

Keywords
renewable energy
PV
hydropower
sustainable development

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

AI Use Statement
The authors declare that no generative AI was used in the preparation of this manuscript.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Ghalehkhondabi, I. (2017). An overview of energy demand forecasting methods published in 2005--2015. \textit{Energy Systems, 8}(2), 411-447. [\href{
    [CrossRef]   [Google Scholar]
  2. Kochtcheeva, L. (2016). Renewable energy: global challenges. \textit{Environment, Climate Change and International Relations, 175}.
    [Google Scholar]
  3. United Nations, Department of Economic and Social Affairs, Population Division. (2018). 2018 Revision of World Urbanization Prospects. United Nations. Retrieved from \url{https://www.un.org/en/desa/2018-revision-world-urbanization-prospects}
    [Google Scholar]
  4. Sun, L., Chen, J., Li, Q., \& Huang, D. (2020). Dramatic uneven urbanization of large cities throughout the world in recent decades. \textit{Nature communications, 11}(1), 5366. [\href{
    [CrossRef]   [Google Scholar]
  5. Martins, F., Felgueiras, C., Smitkova, M., \& Caetano, N. (2019). Analysis of fossil fuel energy consumption and environmental impacts in European countries. \textit{Energies, 12}(6), 964. [\href{
    [CrossRef]   [Google Scholar]
  6. U.S. Energy Information Administration. (2025, March 21). U.S. primary energy production, consumption, and exports increased in 2024. Today in Energy. Retrieved from \url{https://www.eia.gov/todayinenergy/detail.php?id=65524}
    [Google Scholar]
  7. Ovezmyradov, B., Kepbanov, Y., \& Annamuradova, G. (2025). Dependence of Central Asian countries on fossil energy and low adoption of non-hydro renewables. \textit{Open Research Europe, 5}, 243. [\href{
    [CrossRef]   [Google Scholar]
  8. Areri, D. C., \& Bibi, T. S. (2023). Identification of small-scale hydropower potential sites using geographic information system and hydrologic modeling technique: Awata River, Genale Dawa Basin, Ethiopia. \textit{Energy Reports, 9}, 2405-2419. [\href{
    [CrossRef]   [Google Scholar]
  9. International Energy Agency. (2020). World Energy Outlook 2020. OECD/IEA. Retrieved from \url{https://www.iea.org/reports/world-energy-outlook-2020}
    [Google Scholar]
  10. Totouom, A. (2023, February). Oil dependency, political institutions, and urban–rural disparities in access to electricity in Africa. In \textit{Natural Resources Forum }(Vol. 47, No. 1, pp. 114-133). Oxford, UK: Blackwell Publishing Ltd. [\href{
    [CrossRef]   [Google Scholar]
  11. Kaygusuz, Kamil. (2012). Energy for sustainable development: A case of developing countries. \textit{Renewable and sustainable energy reviews, 16}(2), 1116-1126. [\href{
    [CrossRef]   [Google Scholar]
  12. Gehring, J. C., \& Cand, B. M. (2024). The Sustainable Energy Imperative: A Future Generations Perspective on Technologies Leading the Clean Energy Transition. \textit{The Global Youth Council on Science, Law \textnormal{\&} Sustainability: Cambridge, UK}.
    [Google Scholar]
  13. Kartal, M. T., Pata, U. K., \& Alola, A. A. (2024). Renewable electricity generation and carbon emissions in leading European countries: Daily-based disaggregate evidence by nonlinear approaches. \textit{Energy Strategy Reviews, 51}, 101300. [\href{
    [CrossRef]   [Google Scholar]
  14. Van de Graaf, T. (2021). The international renewable energy agency. In Energy law, climate change and the environment (Vol. 9, pp. 99-107). Edward Elgar. [\href{
    [CrossRef]   [Google Scholar]
  15. International Renewable Energy Agency. (2023). World Energy Transitions Outlook 2023: 1.5°C pathway (Vol. 1). Retrieved from \url{https://www.irena.org/Publications/2023/Jun/World-Energy-Transitions-Outlook-2023}
    [Google Scholar]
  16. Saeed, S., \& Siraj, T. (2024). Global Renewable Energy Infrastructure:: Pathways to Carbon Neutrality and Sustainability. \textit{Solar Energy and Sustainable Development Journal, 13}(2), 183-203. [\href{
    [CrossRef]   [Google Scholar]
  17. Kroposki, B., Johnson, B., Zhang, Y., Gevorgian, V., Denholm, P., Hodge, B. M., \& Hannegan, B. (2017). Achieving a 100\% renewable grid: Operating electric power systems with extremely high levels of variable renewable energy. \textit{IEEE Power and energy magazine, 15}(2), 61-73. [\href{
    [CrossRef]   [Google Scholar]
  18. Ospina, O. L. C. (2022). Who, How and How Far? Renewable Energy Transitions in Industrialized and Emerging Countries. \textit{Green Energy and Environmental Technology}. [\href{
    [CrossRef]   [Google Scholar]
  19. Miranda, A. C. P. (2020). Análisis del Plan Nacional de Eficiencia Energética en el Ecuador. [\href{
    [CrossRef]   [Google Scholar]
  20. Mendoza, D. R. M., de Souza, R. C. U., Guagua, E. F. Q., \& Quiñonez, B. K. C. (2024). Los nuevos desafíos de los reguladores energéticos en el Ecuador y su rol a nivel regional. \textit{Reincisol., 3}(6), 545-567. [\href{
    [CrossRef]   [Google Scholar]
  21. Asmelash, E., Prakash, G., Gorini, R., \& Gielen, D. (2020). Role of IRENA for global transition to 100\% renewable energy. In \textit{Accelerating the transition to a 100\% renewable energy era} (pp. 51-71). Cham: Springer International Publishing. [\href{
    [CrossRef]   [Google Scholar]
  22. Martínez, J., Martí-Herrero, J., Villacís, S., Riofrio, A. J., \& Vaca, D. (2017). Analysis of energy, CO2 emissions and economy of the technological migration for clean cooking in Ecuador. \textit{Energy Policy, 107}, 182-187. [\href{
    [CrossRef]   [Google Scholar]
  23. Sattich, T., Agyare, S., \& Langhelle, O. (2023). Solar powers-renewables and sustainable development around the world or geostrategic competition?. In \textit{Handbook on the geopolitics of the energy transition} (pp. 264-281). Edward Elgar Publishing.
    [Google Scholar]
  24. Ministerio de Ambiente y Energía, Ecuador. (2021). Balance Energético Nacional 2021. Quito, Ecuador: Ministerio de Energía y Minas (MEM). Retrieved from \url{https://www.ambienteyenergia.gob.ec/5900-2/}
    [Google Scholar]
  25. Yajamín, G. S. I., Carrión, D. F. C., Gualán, D. F. V., Zurita, R. C. B., \& Carrion, H. D. C. (2023). Evaluación de la actualidad de los sistemas fotovoltaicos en Ecuador: avances, desafíos y perspectivas. \textit{Ciencia Latina Revista Científica Multidisciplinar, 7}(3), 9493-9509. [\href{
    [CrossRef]   [Google Scholar]
  26. Icaza, D., Borge-Diez, D., \& Galindo, S. P. (2022). Analysis and proposal of energy planning and renewable energy plans in South America: Case study of Ecuador. \textit{Renewable Energy, 182}, 314-342. [\href{
    [CrossRef]   [Google Scholar]
  27. Agencia de Regulación y Control de Electricidad. (2024). \textit{Atlas del Sector Eléctrico Ecuatoriano 2024}. Available at \url{https://arconel.gob.ec/wp-content/uploads/downloads/2025/05/Atlas-2024-NEW.pdf}
    [Google Scholar]
  28. Alhammad, A., Sun, Q., \& Tao, Y. (2022). Optimal solar plant site identification using GIS and remote sensing: framework and case study. \textit{Energies, 15}(1), 312. [\href{
    [CrossRef]   [Google Scholar]
  29. Levosada, A. T. A., Ogena, R. P. T., Santos, J. R. V., \& Danao, L. A. M. (2022). Mapping of Suitable Sites for Concentrated Solar Power Plants in the Philippines Using Geographic Information System and Analytic Hierarchy Process. \textit{Sustainability, 14}(19), 12260. [\href{
    [CrossRef]   [Google Scholar]
  30. Sun, L., Jiang, Y., Guo, Q., Ji, L., Xie, Y., Qiao, Q., ... \& Xiao, K. (2021). A GIS-based multi-criteria decision making method for the potential assessment and suitable sites selection of PV and CSP plants. \textit{Resources, Conservation and Recycling, 168}, 105306. [\href{
    [CrossRef]   [Google Scholar]
  31. Chisale, S. W., Lee, H. S., {Soto Calvo}, M. A., Jeong, J.-S., Aljber, M., Williams, Z., \& Cabrera, J. S. (2025). Advanced solar energy potential assessment in Malawi: Utilizing high-resolution WRF model and GIS to identify optimal sites for solar PV generation. \textit{Renewable Energy, 239}, 122084. [\href{
    [CrossRef]   [Google Scholar]
  32. Sun, Y. W., Hof, A., Wang, R., Liu, J., Lin, Y. J., \& Yang, D. W. (2013). GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province. \textit{Energy Policy, 58}, 248-259. [\href{
    [CrossRef]   [Google Scholar]
  33. de Luis-Ruiz, J. M., Salas-Menocal, B. R., Pereda-Garc{\'i}a, R., P{\'e}rez-{\'A}lvarez, R., Sedano-Cibr{\'i}an, J., \& Ruiz-Fern{\'a}ndez, C. (2024). Optimal location of solar photovoltaic plants using geographic information systems and multi-criteria analysis. \textit{Sustainability, 16}(7), 2895. [\href{
    [CrossRef]   [Google Scholar]
  34. Gobierno Autónomo Descentralizado Municipal de Loja. (2023). \textit{Plan de Desarrollo y Ordenamiento Territorial 2023-2027}. Retrieved from \url{https://www.loja.gob.ec/files/image/LOTAIP/pdot-2023-2027.pdf}
    [Google Scholar]
  35. Secretaría Técnica Planifica Ecuador. (2019). Plan de Desarrollo y Ordenamiento Territorial (PDOT). Documento ejecutivo para autoridades provinciales. Retrieved from \url{https://www.planificacion.gob.ec/wp-content/uploads/downloads/2019/08/Folletos-autoridades-provinciales.pdf}
    [Google Scholar]
  36. Yousefi, H., Hafeznia, H., \& Yousefi-Sahzabi, A. (2018). Spatial site selection for solar power plants using a gis-based boolean-fuzzy logic model: A case study of Markazi Province, Iran. \textit{Energies, 11}(7), 1648. [\href{
    [CrossRef]   [Google Scholar]
  37. Usmani, S., Siddiqi, A., \& Wescoat Jr, J. L. (2021). Energy generation in the canal irrigation network in India: Integrated spatial planning framework on the Upper Ganga Canal corridor. \textit{Renewable and Sustainable Energy Reviews, 152}, 111692. [\href{
    [CrossRef]   [Google Scholar]
  38. Zakiah, A., \& Aditya, R. B. (2021, November). Assessing the potential of solar PV installation based on urban land cover analysis. In \textit{IOP Conference Series: Earth and Environmental Science} (Vol. 933, No. 1, p. 012024). IOP Publishing. [\href{
    [CrossRef]   [Google Scholar]
  39. Tukey, John W. (1949). Comparing Individual Means in the Analysis of Variance. \textit{Biometrics, 5}(2), 99-114. [\href{
    [CrossRef]   [Google Scholar]
  40. Jong, F. C., \& Ahmed, M. M. (2024). Multi-criteria decision-making solutions for optimal solar energy sites identification: a systematic review and analysis. \textit{IEEE Access}. [\href{
    [CrossRef]   [Google Scholar]
  41. Settou, B., Settou, N., Gouareh, A., Negrou, B., Mokhtara, C., \& Messaoudi, D. (2020). A high-resolution geographic information system-analytical hierarchy process-based method for solar PV power plant site selection: a case study Algeria. \textit{Clean Technologies and Environmental Policy, 23}(1), 219-234. [\href{
    [CrossRef]   [Google Scholar]
  42. Global Solar Atlas. (2023). Global Solar Atlas [Mapa interactivo]. World Bank. Retrieved from \url{https://globalsolaratlas.info}
    [Google Scholar]
  43. Instituto Geográfico Militar [IGM]. (2019). Cartografía base del cantón Urcuquí, escala 1:50.000 [Shapefile]. Geoportal IGM. Retrieved from \url{https://www.geoportaligm.gob.ec/descargas_prueba/urcuqui.html}
    [Google Scholar]
  44. Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. \textit{Journal of mathematical psychology, 15}(3), 234-281. [\href{
    [CrossRef]   [Google Scholar]
  45. IRENA. (2023). \textit{Renewable energy benefits: Leveraging local capacity for small-scale hydropower}. International Renewable Energy Agency. Retrieved from \url{https://www.irena.org/Publications/2023/Sep/Renewable-energy-benefits-Leveraging-local-capacity-for-small-scale-hydropower}
    [Google Scholar]
  46. Consejo Nacional de Competencias. (s.f.). Gobierno provincial de Imbabura. Gob.ec. Recuperado el 13 de febrero de 2026, de Retrieved from \url{https://www.competencias.gob.ec/gad/gobierno-provincial-de-imbabura/}
    [Google Scholar]
  47. Ministerio de Agricultura y Ganadería. (n.d.). Geoportal SIGTIERRAS [Online geographic viewer]. Retrieved November 13, 2025, from \url{http://www.sigtierras.gob.ec/geoportal/}
    [Google Scholar]
  48. NASA. (n.d.). POWER Data Access Viewer [Online data visualization tool]. Retrieved November 13, 2025, from \url{https://power.larc.nasa.gov/data-access-viewer/}
    [Google Scholar]
  49. Solcast. (2023). \textit{Solcast: Solar Forecasting and {PV} Performance Data}. Solcast Pty Ltd. Retrieved November 13, 2025, from \url{https://solcast.com/}
    [Google Scholar]
  50. Al Garni, H. Z., \& Awasthi, A. (2017). Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. \textit{Applied energy, 206}, 1225-1240. [\href{
    [CrossRef]   [Google Scholar]
  51. Cavazos, T., Bettolli, M. L., Campbell, D., Sánchez Rodríguez, R. A., Mycoo, M., Arias, P. A., ... \& Mahon, R. (2024). Challenges for climate change adaptation in Latin America and the Caribbean region. \textit{Frontiers in Climate, 6}, 1392033. [\href{
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Tana-Chulde, A., & Medina-Rodriguez, B. X. (2026). A GIS–AHP Framework for Solar Energy Site Selection in Developing Regions: Urcuqui, Ecuador. Journal of Geo-Energy and Environment, 2(1), 73–94. https://doi.org/10.62762/JGEE.2026.577955
Export Citation
RIS Format
Compatible with EndNote, Zotero, Mendeley, and other reference managers
RIS format data for reference managers
TY  - JOUR
AU  - Tana-Chulde, Alexia
AU  - Medina-Rodriguez, Bryan X.
PY  - 2026
DA  - 2026/02/17
TI  - A GIS–AHP Framework for Solar Energy Site Selection in Developing Regions: Urcuqui, Ecuador
JO  - Journal of Geo-Energy and Environment
T2  - Journal of Geo-Energy and Environment
JF  - Journal of Geo-Energy and Environment
VL  - 2
IS  - 1
SP  - 73
EP  - 94
DO  - 10.62762/JGEE.2026.577955
UR  - https://www.icck.org/article/abs/JGEE.2026.577955
KW  - renewable energy
KW  - PV
KW  - hydropower
KW  - sustainable development
AB  - Global warming and climate change challenge us to implement sustainable energy systems. Urcuqui, located in the Imbabura province in the North of Ecuador, is one of the cities with the most promising renewable energy resources. Therefore, analyzing the energy potential of Urcuqui at the micro and macro scales will provide valuable information for the national efforts to pursue the Sustainable Development Goals and the 2030 Agenda. This work aims to identify strategic points with high viability to implement renewable energy systems by collecting information from local governments, such as Municipio de Urcuqui and Prefectura de Imbabura, and implementing advanced methodologies like GIS and multi-criteria analysis. This research focuses mainly on solar and hydrological resources, which have been identified as the most significant energy sources and have the potential to be applied in different areas where required. As the intention is to give people and small communities access to affordable and clean energy, this investigation also incorporates demographic factors and environmental sustainability. The result illustrates Urcuqui parish as the main feasible area to implement PV systems, with approximately 43% of the canton's suitable area. The results show the importance of assessing the geological and technical aspects of the geological resources. They are expected to provide valuable information for regional decision-makers regarding energy policies and promoting more sustainable and environmentally friendly development.
SN  - 3069-3268
PB  - Institute of Central Computation and Knowledge
LA  - English
ER  - 
BibTeX Format
Compatible with LaTeX, BibTeX, and other reference managers
BibTeX format data for LaTeX and reference managers
@article{TanaChulde2026A,
  author = {Alexia Tana-Chulde and Bryan X. Medina-Rodriguez},
  title = {A GIS–AHP Framework for Solar Energy Site Selection in Developing Regions: Urcuqui, Ecuador},
  journal = {Journal of Geo-Energy and Environment},
  year = {2026},
  volume = {2},
  number = {1},
  pages = {73-94},
  doi = {10.62762/JGEE.2026.577955},
  url = {https://www.icck.org/article/abs/JGEE.2026.577955},
  abstract = {Global warming and climate change challenge us to implement sustainable energy systems. Urcuqui, located in the Imbabura province in the North of Ecuador, is one of the cities with the most promising renewable energy resources. Therefore, analyzing the energy potential of Urcuqui at the micro and macro scales will provide valuable information for the national efforts to pursue the Sustainable Development Goals and the 2030 Agenda. This work aims to identify strategic points with high viability to implement renewable energy systems by collecting information from local governments, such as Municipio de Urcuqui and Prefectura de Imbabura, and implementing advanced methodologies like GIS and multi-criteria analysis. This research focuses mainly on solar and hydrological resources, which have been identified as the most significant energy sources and have the potential to be applied in different areas where required. As the intention is to give people and small communities access to affordable and clean energy, this investigation also incorporates demographic factors and environmental sustainability. The result illustrates Urcuqui parish as the main feasible area to implement PV systems, with approximately 43\% of the canton's suitable area. The results show the importance of assessing the geological and technical aspects of the geological resources. They are expected to provide valuable information for regional decision-makers regarding energy policies and promoting more sustainable and environmentally friendly development.},
  keywords = {renewable energy, PV, hydropower, sustainable development},
  issn = {3069-3268},
  publisher = {Institute of Central Computation and Knowledge}
}

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 9
PDF Downloads: 2

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2026 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Journal of Geo-Energy and Environment

Journal of Geo-Energy and Environment

ISSN: 3069-3268 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/