-
CiteScore
-
Impact Factor
Volume 1, Issue 4, ICCK Journal of Image Analysis and Processing
Volume 1, Issue 4, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Journal of Image Analysis and Processing, Volume 1, Issue 4, 2025: 147-161

Open Access | Review Article | 07 November 2025
Recent Advances in Breast Cancer Detection: A Review on Segmentation and Classification Techniques
1 Department of Computer Science, HITEC University Taxila, 47080 Taxila, Pakistan
* Corresponding Author: Mehwish Zafar, [email protected]
Received: 31 August 2025, Accepted: 18 September 2025, Published: 07 November 2025  
Abstract
Breast Cancer (BC) is still one of the most significant, life-threatening, and prevalent diseases that affects women all around the globe. The early recognition and strategies of effective treatment measures improve the rate of survival among patients significantly, contributing to a critical research area in medical science. This review presents a comprehensive review of recent trends and advancements in the recognition of BC recognition, diagnosis, and treatment. It covers multiple imaging modalities, including Magnetic Resonance Imaging (MRI), ultrasound, mammography, and histopathology, along with various approaches of Machine Learning (ML) and Deep Learning (DL) that enhance the efficiency of diagnosis and improve accuracy. In particular, in some recent decades, the Computer-Aided Diagnosis (CAD) system gained noteworthy attention for the recognition of affected regions, for the minimization of diagnostic rates, and for assisting radiologists. ML algorithms have robust capabilities for feature extraction and classification, while the DL models, specifically Convolutional Neural Networks (CNNs), have shown remarkable performance in image-based diagnostic tasks. Moreover, the presented review also discusses some challenges, such as dense breast tissue, noise, and tumor heterogeneity, along with the limitations of the current studies. The review concludes with a compact summary of current trends, research problems, and future directions for the improvement of BC detection.

Graphical Abstract
Recent Advances in Breast Cancer Detection: A Review on Segmentation and Classification Techniques

Keywords
breast cancer
tumor detection
early diagnosis
computer-aided diagnosis
machine learning
deep learning

Data Availability Statement
Not applicable.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Nathanson, K. N., Wooster, R., & Weber, B. L. (2001). Breast cancer genetics: what we know and what we need. Nature medicine, 7(5), 552-556.
    [CrossRef]   [Google Scholar]
  2. Sharma, G. N., Dave, R., Sanadya, J., Sharma, P., & Sharma, K. (2010). Various types and management of breast cancer: an overview. Journal of advanced pharmaceutical technology & research, 1(2), 109-126.
    [Google Scholar]
  3. Mettlin, C. (1999). Global breast cancer mortality statistics. CA: a cancer journal for clinicians, 49(3), 138-144.
    [CrossRef]   [Google Scholar]
  4. Prasad, S. N., & Houserkova, D. (2007). The role of various modalities in breast imaging. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, 151(2), 209-218.
    [CrossRef]   [Google Scholar]
  5. Nounou, M. I., ElAmrawy, F., Ahmed, N., Abdelraouf, K., Goda, S., & Syed-Sha-Qhattal, H. (2015). Breast cancer: conventional diagnosis and treatment modalities and recent patents and technologies. Breast cancer: basic and clinical research, 9, BCBCR-S29420.
    [CrossRef]   [Google Scholar]
  6. Desperito, E., Schwartz, L., Capaccione, K. M., Collins, B. T., Jamabawalikar, S., Peng, B., ... & Salvatore, M. M. (2022). Chest CT for breast cancer diagnosis. Life, 12(11), 1699.
    [CrossRef]   [Google Scholar]
  7. Mehrgou, A., & Akouchekian, M. (2016). The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Medical journal of the Islamic Republic of Iran, 30, 369.
    [Google Scholar]
  8. Díaz, O., Rodríguez-Ruíz, A., & Sechopoulos, I. (2024). Artificial Intelligence for breast cancer detection: Technology, challenges, and prospects. European journal of radiology, 175, 111457.
    [CrossRef]   [Google Scholar]
  9. Priya CV, L., VG, B., BR, V., & Ramachandran, S. (2024). Deep learning approaches for breast cancer detection in histopathology images: A review. Cancer Biomarkers, 40(1), 1-25.
    [CrossRef]   [Google Scholar]
  10. Lafi, O. I., Albanna, R. N., Alborno, D. F., Altarazi, R. E., Nabahin, A., Abu-Nasser, B. S., & Abu-Naser, S. S. (2024). Breakthroughs in Breast Cancer Detection: Emerging Technologies and Future Prospects.
    [Google Scholar]
  11. Abdelrahman, L., Al Ghamdi, M., Collado-Mesa, F., & Abdel-Mottaleb, M. (2021). Convolutional neural networks for breast cancer detection in mammography: A survey. Computers in biology and medicine, 131, 104248.
    [CrossRef]   [Google Scholar]
  12. Khairunnahar, L., Hasib, M. A., Rezanur, R. H. B., Islam, M. R., & Hosain, M. K. (2019). Classification of malignant and benign tissue with logistic regression. Informatics in Medicine Unlocked, 16, 100189.
    [CrossRef]   [Google Scholar]
  13. Vu, H. A. (2024). Integrating preprocessing methods and convolutional neural networks for effective tumor detection in medical imaging. arXiv preprint arXiv:2402.16221.
    [Google Scholar]
  14. Comer, M. L., & Delp III, E. J. (1999). Morphological operations for color image processing. Journal of electronic imaging, 8(3), 279-289.
    [CrossRef]   [Google Scholar]
  15. De Natale, F. G., & Boato, G. (2017). Detecting morphological filtering of binary images. IEEE Transactions on Information Forensics and Security, 12(5), 1207-1217.
    [CrossRef]   [Google Scholar]
  16. Sriani, S., Zufria, I., & Syahnan, M. (2022). Improved Digital Image Quality Using the Gaussian Filter Method. IJISTECH (International Journal of Information System and Technology), 5(5), 556-563.
    [CrossRef]   [Google Scholar]
  17. Sun, M. (2023). Comparison of processing results of median filter and mean filter on Gaussian noise. Appl. Comput. Eng, 5, 779-785.
    [Google Scholar]
  18. Dorothy, R., Joany, R. M., Rathish, R. J., Prabha, S. S., Rajendran, S., & Joseph, S. T. (2015). Image enhancement by histogram equalization. International Journal of Nano Corrosion Science and Engineering, 2(4), 21-30.
    [Google Scholar]
  19. Patro, S. G. O. P. A. L., & Sahu, K. K. (2015). Normalization: A preprocessing stage. arXiv preprint arXiv:1503.06462.
    [Google Scholar]
  20. Yun, J., & Kim, H. (2024). Znorm: Z-score gradient normalization for deep neural networks. arXiv preprint arXiv:2408.01215.
    [Google Scholar]
  21. Mikołajczyk, A., & Grochowski, M. (2018, May). Data augmentation for improving deep learning in image classification problem. In 2018 international interdisciplinary PhD workshop (IIPhDW) (pp. 117-122). IEEE.
    [CrossRef]   [Google Scholar]
  22. Krishna, S., Krishnamoorthy, S., & Bhavsar, A. (2022). Stain normalized breast histopathology image recognition using convolutional neural networks for cancer detection. arXiv preprint arXiv:2201.00957.
    [Google Scholar]
  23. Fallahi, A., & Jafari, S. (2011). An Expert System for Detection of Breast Cancer Using Data Preprocessing and Bayesian Network. International Journal of Advanced Science and Technology, 34, 65-70.
    [Google Scholar]
  24. Abo-El-Rejal, A., Ayman, S., & Aymen, F. (2024). Advances in breast cancer segmentation: A comprehensive review. Acadlore Transactions on AI and Machine Learning, 3(2), 70-83.
    [Google Scholar]
  25. Michael, E., Ma, H., Li, H., Kulwa, F., & Li, J. (2021). Breast cancer segmentation methods: current status and future potentials. BioMed research international, 2021(1), 9962109.
    [CrossRef]   [Google Scholar]
  26. Zhuang, Z., Li, N., Joseph Raj, A. N., Mahesh, V. G., & Qiu, S. (2019). An RDAU-NET model for lesion segmentation in breast ultrasound images. PloS one, 14(8), e0221535.
    [CrossRef]   [Google Scholar]
  27. Zebari, D. A., Zeebaree, D. Q., Abdulazeez, A. M., Haron, H., & Hamed, H. N. A. (2020). Improved threshold based and trainable fully automated segmentation for breast cancer boundary and pectoral muscle in mammogram images. IEEE Access, 8, 203097-203116.
    [CrossRef]   [Google Scholar]
  28. Singh, V. K., Rashwan, H. A., Romani, S., Akram, F., Pandey, N., Sarker, M. M. K., ... & Torrents-Barrena, J. (2020). Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network. Expert Systems with Applications, 139, 112855.
    [CrossRef]   [Google Scholar]
  29. Li, H., Chen, D., Nailon, W. H., Davies, M. E., & Laurenson, D. I. (2021). Dual convolutional neural networks for breast mass segmentation and diagnosis in mammography. IEEE Transactions on Medical Imaging, 41(1), 3-13.
    [CrossRef]   [Google Scholar]
  30. Lei, Y., He, X., Yao, J., Wang, T., Wang, L., Li, W., ... & Yang, X. (2021). Breast tumor segmentation in 3D automatic breast ultrasound using Mask scoring R‐CNN. Medical physics, 48(1), 204-214.
    [CrossRef]   [Google Scholar]
  31. Tarighat, A. P. (2021). Breast tumor segmentation using deep learning by U-net network. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 13(2), 49-54.
    [Google Scholar]
  32. Huo, L., Hu, X., Xiao, Q., Gu, Y., Chu, X., & Jiang, L. (2021). Segmentation of whole breast and fibroglandular tissue using nnU-Net in dynamic contrast enhanced MR images. Magnetic Resonance Imaging, 82, 31-41.
    [CrossRef]   [Google Scholar]
  33. Shareef, B., Vakanski, A., Freer, P. E., & Xian, M. (2022, November). Estan: Enhanced small tumor-aware network for breast ultrasound image segmentation. In Healthcare (Vol. 10, No. 11, p. 2262). MDPI.
    [CrossRef]   [Google Scholar]
  34. Punn, N. S., & Agarwal, S. (2022). RCA-IUnet: a residual cross-spatial attention-guided inception U-Net model for tumor segmentation in breast ultrasound imaging. Machine Vision and Applications, 33(2), 27.
    [CrossRef]   [Google Scholar]
  35. Huang, R., Xu, Z., Xie, Y., Wu, H., Li, Z., Cui, Y., ... & Wang, Y. (2023). Joint-phase attention network for breast cancer segmentation in DCE-MRI. Expert Systems with Applications, 224, 119962.
    [CrossRef]   [Google Scholar]
  36. Hu, M., Li, Y., & Yang, X. (2023). Breastsam: A study of segment anything model for breast tumor detection in ultrasound images. arXiv preprint arXiv:2305.12447.
    [Google Scholar]
  37. Pramanik, P., Roy, A., Cuevas, E., Perez-Cisneros, M., & Sarkar, R. (2024). DAU-Net: Dual attention-aided U-Net for segmenting tumor in breast ultrasound images. Plos one, 19(5), e0303670.
    [CrossRef]   [Google Scholar]
  38. Cai, F., Wen, J., He, F., Xia, Y., Xu, W., Zhang, Y., ... & Li, J. (2024). Sc-unext: A lightweight image segmentation model with cellular mechanism for breast ultrasound tumor diagnosis. Journal of Imaging Informatics in Medicine, 37(4), 1505-1515.
    [CrossRef]   [Google Scholar]
  39. Zhang, H., Liang, H., Wenjia, G., Jing, M., Gang, S., & Hongbing, M. (2024). ACL-DUNet: A tumor segmentation method based on multiple attention and densely connected breast ultrasound images. PloS one, 19(11), e0307916.
    [CrossRef]   [Google Scholar]
  40. Narimani, S., Roth Hoff, S., Dæhli Kurz, K., Gjesdal, K. I., Geisler, J., & Grøvik, E. (2025). Comparative analysis of deep learning architectures for breast region segmentation with a novel breast boundary proposal. Scientific Reports, 15(1), 8806.
    [CrossRef]   [Google Scholar]
  41. Tareke, T. W., Payan, N., Cochet, A., Arnould, L., Presles, B., Vrigneaud, J. M., ... & Lalande, A. (2025). Automatic quantification of breast cancer biomarkers from multiple 18F-FDG PET image segmentation. arXiv preprint arXiv:2502.04083.
    [Google Scholar]
  42. Kalpana, G., Deepa, N., & Dhinakaran, D. (2025). Advanced image preprocessing and context-aware spatial decomposition for enhanced breast cancer segmentation. MethodsX, 14, 103224.
    [CrossRef]   [Google Scholar]
  43. Anusha, K., & Madhavi, K. R. (2025). A Deep Learning Model for Accurate Multi-Modal Feature Fusion and Segmentation of Breast Cancer Nodules. International Journal of Computer Information Systems and Industrial Management Applications, 17, 16-16.
    [CrossRef]   [Google Scholar]
  44. Trayes, K. P., & Cokenakes, S. E. (2021). Breast cancer treatment. American family physician, 104(2), 171-178.
    [Google Scholar]
  45. ElOuassif, B., Idri, A., Hosni, M., & Abran, A. (2021). Classification techniques in breast cancer diagnosis: a systematic literature review. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 9(1), 50-77.
    [CrossRef]   [Google Scholar]
  46. Hameed, M., Sharif, M., Raza, M., Haider, S. W., & Iqbal, M. (2012). Framework for the comparison of classifiers for medical image segmentation with transform and moment based features. Research Journal of Recent Sciences, 2277, 2502.
    [Google Scholar]
  47. Yadavendra, & Chand, S. (2020). A comparative study of breast cancer tumor classification by classical machine learning methods and deep learning method. Machine Vision and Applications, 31(6), 46.
    [CrossRef]   [Google Scholar]
  48. Sharma, S., & Mehra, R. (2020). Conventional machine learning and deep learning approach for multi-classification of breast cancer histopathology images—a comparative insight. Journal of digital imaging, 33(3), 632-654.
    [CrossRef]   [Google Scholar]
  49. Motlagh, M. H., Jannesari, M., Aboulkheyr, H., Khosravi, P., Elemento, O., Totonchi, M., & Hajirasouliha, I. (2018). Breast cancer histopathological image classification: A deep learning approach. BioRxiv, 242818.
    [CrossRef]   [Google Scholar]
  50. Patil, A., Tamboli, D., Meena, S., Anand, D., & Sethi, A. (2019, November). Breast cancer histopathology image classification and localization using multiple instance learning. In 2019 IEEE International WIE conference on electrical and computer engineering (WIECON-ECE) (pp. 1-4). IEEE.
    [CrossRef]   [Google Scholar]
  51. Gour, M., Jain, S., & Sunil Kumar, T. (2020). Residual learning based CNN for breast cancer histopathological image classification. International Journal of Imaging Systems and Technology, 30(3), 621-635.
    [CrossRef]   [Google Scholar]
  52. Boumaraf, S., Liu, X., Wan, Y., Zheng, Z., Ferkous, C., Ma, X., ... & Bardou, D. (2021). Conventional machine learning versus deep learning for magnification dependent histopathological breast cancer image classification: A comparative study with visual explanation. Diagnostics, 11(3), 528.
    [CrossRef]   [Google Scholar]
  53. Behboodi, B., Rasaee, H., Tehrani, A. K., & Rivaz, H. (2021, February). Deep classification of breast cancer in ultrasound images: more classes, better results with multi-task learning. In Medical Imaging 2021: Ultrasonic Imaging and Tomography (Vol. 11602, pp. 170-175). SPIE.
    [CrossRef]   [Google Scholar]
  54. Senousy, Z., Abdelsamea, M. M., Gaber, M. M., Abdar, M., Acharya, U. R., Khosravi, A., & Nahavandi, S. (2021). MCUa: Multi-level context and uncertainty aware dynamic deep ensemble for breast cancer histology image classification. IEEE Transactions on Biomedical Engineering, 69(2), 818-829.
    [CrossRef]   [Google Scholar]
  55. Abunasser, B. S., Al-Hiealy, M. R. J., Zaqout, I. S., & Abu-Naser, S. S. (2023). Convolution neural network for breast cancer detection and classification using deep learning. Asian Pacific journal of cancer prevention: APJCP, 24(2), 531.
    [CrossRef]   [Google Scholar]
  56. Shruthishree, S. H., Tiwari, H., & Verma, D. C. (2021). AlexResNet+: A deep hybrid featured machine learning model for breast cancer tissue classification. Turkish Journal of Computer and Mathematics Education, 12(6), 2420-2438.
    [Google Scholar]
  57. Misra, S., Yoon, C., Kim, K. J., Managuli, R., Barr, R. G., Baek, J., & Kim, C. (2023). Deep learning‐based multimodal fusion network for segmentation and classification of breast cancers using B‐mode and elastography ultrasound images. Bioengineering & Translational Medicine, 8(6), e10480.
    [CrossRef]   [Google Scholar]
  58. Leow, J. R., Khoh, W. H., Pang, Y. H., & Yap, H. Y. (2023). Breast cancer classification with histopathological image based on machine learning. International Journal of Electrical & Computer Engineering (2088-8708), 13(5).
    [CrossRef]   [Google Scholar]
  59. Zheng, Y., Li, C., Zhou, X., Chen, H., Xu, H., Li, Y., ... & Grzegorzek, M. (2023). Application of transfer learning and ensemble learning in image-level classification for breast histopathology. Intelligent Medicine, 3(02), 115-128.
    [Google Scholar]
  60. Mahmud, M. I., Mamun, M., & Abdelgawad, A. (2023, March). A deep analysis of transfer learning based breast cancer detection using histopathology images. In 2023 10th International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 198-204). IEEE.
    [CrossRef]   [Google Scholar]
  61. Alotaibi, A., Alafif, T., Alkhilaiwi, F., Alatawi, Y., Althobaiti, H., Alrefaei, A., ... & Nguyen, T. (2023, January). Vit-deit: An ensemble model for breast cancer histopathological images classification. In 2023 1st International conference on advanced innovations in smart cities (ICAISC) (pp. 1-6). IEEE.
    [CrossRef]   [Google Scholar]
  62. Wang, W., Li, Y., Yan, X., Xiao, M., & Gao, M. (2024, September). Breast cancer image classification method based on deep transfer learning. In Proceedings of the International Conference on Image Processing, Machine Learning and Pattern Recognition (pp. 190-197).
    [CrossRef]   [Google Scholar]
  63. Labonno, M., Asadujjaman, D. M., Rahman, M. M., Tamim, A., Ferdous, M., & Mahi, R. M. (2025). Early Detection and Classification of Breast Cancer Using Deep Learning Techniques. arXiv preprint arXiv:2501.12217.
    [Google Scholar]
  64. Oyelade, O. N., Aminu, E. F., Wang, H., & Rafferty, K. (2025). An adaptation of hybrid binary optimization algorithms for medical image feature selection in neural network for classification of breast cancer. Neurocomputing, 617, 129018.
    [CrossRef]   [Google Scholar]
  65. Yusuf, M., Kana, A. F. D., Bagiwa, M. A., & Abdullahi, M. (2025). Multi-classification of breast cancer histopathological image using enhanced shallow convolutional neural network. Journal of Engineering and Applied Science, 72(1), 24.
    [CrossRef]   [Google Scholar]
  66. Rosli, M. M., Tempero, E., & Luxton-Reilly, A. (2016, February). What is in our datasets? Describing a structure of datasets. In Proceedings of the Australasian Computer Science Week Multiconference (pp. 1-10).
    [CrossRef]   [Google Scholar]
  67. Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. (2015). A dataset for breast cancer histopathological image classification. IEEE transactions on biomedical engineering, 63(7), 1455-1462.
    [CrossRef]   [Google Scholar]
  68. Lopez, M. G., Posada, N., Moura, D. C., Pollán, R. R., Valiente, J. M. F., Ortega, C. S., ... & Fernandes, T. C. (2012, July). BCDR: a breast cancer digital repository. In 15th International conference on experimental mechanics (Vol. 1215, pp. 113-120).
    [Google Scholar]
  69. Moreira, I. C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M. J., & Cardoso, J. S. (2012). Inbreast: toward a full-field digital mammographic database. Academic radiology, 19(2), 236-248.
    [CrossRef]   [Google Scholar]
  70. Ahmad, J., Akram, S., Jaffar, A., Rashid, M., & Bhatti, S. M. (2023). Breast cancer detection using deep learning: An investigation using the ddsm dataset and a customized alexnet and support vector machine. IEEE Access, 11, 108386-108397.
    [CrossRef]   [Google Scholar]
  71. Aresta, G., Araújo, T., Kwok, S., Chennamsetty, S. S., Safwan, M., Alex, V., ... & Aguiar, P. (2019). Bach: Grand challenge on breast cancer histology images. Medical image analysis, 56, 122-139.
    [CrossRef]   [Google Scholar]
  72. Ibrahim, N., Fujita, H., Hara, T., & Endo, T. (1997). Automated detection of clustered microcalcifications on mammograms: CAD system application to MIAS database. Physics in Medicine & Biology, 42(12), 2577.
    [CrossRef]   [Google Scholar]
  73. Litjens, G., Bandi, P., Ehteshami Bejnordi, B., Geessink, O., Balkenhol, M., Bult, P., ... & van der Laak, J. (2018). 1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset. GigaScience, 7(6), giy065.
    [CrossRef]   [Google Scholar]
  74. Aksac, A., Demetrick, D. J., Ozyer, T., & Alhajj, R. (2019). BreCaHAD: a dataset for breast cancer histopathological annotation and diagnosis. BMC research notes, 12(1), 82.
    [CrossRef]   [Google Scholar]
  75. Jiao, Y., & Du, P. (2016). Performance measures in evaluating machine learning based bioinformatics predictors for classifications. Quantitative Biology, 4(4), 320-330.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Khan, M. M. R., Zafar, M., Majid, A., & Khan, F. A. (2025). Recent Advances in Breast Cancer Detection: A Review on Segmentation and Classification Techniques. ICCK Journal of Image Analysis and Processing, 1(4), 147–161. https://doi.org/10.62762/JIAP.2025.780624

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 253
PDF Downloads: 63

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
ICCK Journal of Image Analysis and Processing

ICCK Journal of Image Analysis and Processing

ISSN: 3068-6679 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/