-
CiteScore
-
Impact Factor
Volume 1, Issue 3, ICCK Transactions on Advanced Computing and Systems
Volume 1, Issue 3, 2024
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Advanced Computing and Systems, Volume 1, Issue 3, 2024: 117-137

Open Access | Review Article | 24 August 2024
A Comprehensive Survey of Deep Learning-Based Traffic Flow Prediction Models for Intelligent Transportation Systems
1 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
2 College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
3 College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
4 Institute of Image Processing & Pattern Recognition Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
5 King Abdullah II School of Information Technology, The University of Jordan, Amman, Jordan
6 Department of Computer Science, Westlake University, Hangzhou, China
* Corresponding Author: Ahmad Ali, [email protected]
Received: 03 April 2024, Accepted: 28 July 2024, Published: 24 August 2024  
Abstract
Traffic flow prediction is a critical component of Intelligent Transportation Systems (ITS) and smart city infrastructures. This survey paper provides a comprehensive analysis of recent advancements in deep learning-based approaches for traffic flow prediction, focusing on spatiotemporal correlations and attention mechanisms. We systematically review five seminal papers that propose innovative neural network architectures including DHSTNet, Att-DHSTNet, and ASTMGCNet for citywide traffic prediction. Our survey examines their methodologies, key contributions, experimental results, and comparative performance. We organize the discussion around three main themes: (1) modeling dynamic spatiotemporal dependencies, (2) attention mechanisms for traffic prediction, and (3) hybrid neural network architectures. The paper includes detailed comparison tables and conceptual figures synthesized from the reviewed works. Our analysis shows that attention-based hybrid models outperform traditional techniques, with ASTMGCNet having the lowest RMSE (4.06) and MAPE (12.56%) on benchmark datasets. We end by outlining current issues and potential research directions in this rapidly changing subject.

Graphical Abstract
A Comprehensive Survey of Deep Learning-Based Traffic Flow Prediction Models for Intelligent Transportation Systems

Keywords
intelligent transportation systems
traffic prediction
deep learning
machine learning
graph neural network
neural network

Data Availability Statement
Not applicable.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Ali, A., Zhu, Y., & Zakarya, M. (2021). Exploiting dynamic spatiotemporal correlations for citywide traffic flow prediction using attention based neural networks. Information Sciences, 577, 852-870.
    [CrossRef]   [Google Scholar]
  2. Chen, C., Li, K., Teo, S. G., Zou, X., Li, K., & Zeng, Z. (2020). Citywide traffic flow prediction based on multiple gated spatiotemporal convolutional neural networks. ACM Transactions on Knowledge Discovery from Data (TKDD), 14(4), 1-23.
    [CrossRef]   [Google Scholar]
  3. Zheng, C., Fan, X., Wen, C., Chen, L., Wang, C., & Li, J. (2019). DeepSTD: Mining spatiotemporal disturbances of multiple context factors for citywide traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 21(9), 3744-3755.
    [CrossRef]   [Google Scholar]
  4. Jia, T., & Yan, P. (2020). Predicting citywide road traffic flow using deep spatiotemporal neural networks. IEEE Transactions on Intelligent Transportation Systems, 22(5), 3101-3111.
    [CrossRef]   [Google Scholar]
  5. Luo, Y., Zheng, J., Wang, X., Tao, Y., & Jiang, X. (2024). GT-LSTM: A spatiotemporal ensemble network for traffic flow prediction. Neural Networks, 171, 251-262.
    [CrossRef]   [Google Scholar]
  6. Williams, B. M., & Hoel, L. A. (2003). Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results. Journal of transportation engineering, 129(6), 664-672.
    [CrossRef]   [Google Scholar]
  7. Zivot, E., & Wang, J. (2006). Vector autoregressive models for multivariate time series. Modeling financial time series with S-PLUS, 385-429.
    [CrossRef]   [Google Scholar]
  8. Zhang, J., Zheng, Y., & Qi, D. (2017, February). Deep spatiotemporal residual networks for citywide crowd flows prediction. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No. 1).
    [CrossRef]   [Google Scholar]
  9. Zeng, H., Peng, Z., Huang, X., Yang, Y., & Hu, R. (2022). Deep spatio-temporal neural network based on interactive attention for traffic flow prediction. Applied Intelligence, 1-12.
    [CrossRef]   [Google Scholar]
  10. Zhang, J., Wang, F. Y., Wang, K., Lin, W. H., Xu, X., & Chen, C. (2011). Data-driven intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1624-1639.
    [CrossRef]   [Google Scholar]
  11. Hahn, D., Munir, A., & Behzadan, V. (2019). Security and privacy issues in intelligent transportation systems: Classification and challenges. IEEE Intelligent Transportation Systems Magazine, 13(1), 181-196.
    [CrossRef]   [Google Scholar]
  12. Mahrez, Z., Sabir, E., Badidi, E., Saad, W., & Sadik, M. (2021). Smart urban mobility: When mobility systems meet smart data. IEEE Transactions on Intelligent Transportation Systems, 23(7), 6222-6239.
    [CrossRef]   [Google Scholar]
  13. Creß, C., Bing, Z., & Knoll, A. C. (2023). Intelligent transportation systems using roadside infrastructure: A literature survey. IEEE Transactions on Intelligent Transportation Systems, 25(7), 6309-6327.
    [CrossRef]   [Google Scholar]
  14. Wang, F. Y., Lin, Y., Ioannou, P. A., Vlacic, L., Liu, X., Eskandarian, A., ... & Olaverri-Monreal, C. (2023). Transportation 5.0: The DAO to safe, secure, and sustainable intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, 24(10), 10262-10278.
    [CrossRef]   [Google Scholar]
  15. Deng, X., Wang, L., Gui, J., Jiang, P., Chen, X., Zeng, F., & Wan, S. (2023). A review of 6G autonomous intelligent transportation systems: Mechanisms, applications and challenges. Journal of Systems Architecture, 142, 102929.
    [CrossRef]   [Google Scholar]
  16. Yu, B., Yin, H., & Zhu, Z. (2018). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18) (pp. 3634–3640). International Joint Conferences on Artificial Intelligence Organization.
    [CrossRef]   [Google Scholar]
  17. Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2017). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926.
    [Google Scholar]
  18. Bao, Y., Huang, J., Shen, Q., Cao, Y., Ding, W., Shi, Z., & Shi, Q. (2023). Spatial–temporal complex graph convolution network for traffic flow prediction. Engineering Applications of Artificial Intelligence, 121, 106044.
    [CrossRef]   [Google Scholar]
  19. Selvi, K. T., Thamilselvan, R., & Saranya, S. M. (2021, February). Diffusion convolution recurrent neural network–a comprehensive survey. In IOP Conference Series: Materials Science and Engineering (Vol. 1055, No. 1, p. 012119). IOP Publishing.
    [CrossRef]   [Google Scholar]
  20. Premsankar, G., Di Francesco, M., & Taleb, T. (2018). Edge computing for the Internet of Things: A case study. IEEE Internet of Things Journal, 5(2), 1275-1284.
    [CrossRef]   [Google Scholar]
  21. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90.
    [CrossRef]   [Google Scholar]
  22. Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural computation, 1(2), 270-280.
    [CrossRef]   [Google Scholar]
  23. Altché, F., & de La Fortelle, A. (2017, October). An LSTM network for highway trajectory prediction. In 2017 IEEE 20th international conference on intelligent transportation systems (ITSC) (pp. 353-359). IEEE.
    [CrossRef]   [Google Scholar]
  24. Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
    [Google Scholar]
  25. Sutskever, I., Martens, J., & Hinton, G. (2011, June). Generating text with recurrent neural networks. In Proceedings of the 28th International Conference on International Conference on Machine Learning (pp. 1017-1024).
    [CrossRef]   [Google Scholar]
  26. Vinyals, O., Ravuri, S. V., & Povey, D. (2012, March). Revisiting recurrent neural networks for robust ASR. In 2012 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 4085-4088). IEEE.
    [CrossRef]   [Google Scholar]
  27. Niepert, M., Ahmed, M., & Kutzkov, K. (2016, June). Learning convolutional neural networks for graphs. In Proceedings of the 33rd International Conference on International Conference on Machine Learning-Volume 48 (pp. 2014-2023).
    [CrossRef]   [Google Scholar]
  28. Li, B., Li, X., Zhang, Z., & Wu, F. (2019, July). Spatio-temporal graph routing for skeleton-based action recognition. In Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 8561-8568).
    [CrossRef]   [Google Scholar]
  29. Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203.
    [Google Scholar]
  30. Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems, 29.
    [CrossRef]   [Google Scholar]
  31. Yao, H., Tang, X., Wei, H., Zheng, G., Yu, Y., & Li, Z. (2018). Modeling spatial-temporal dynamics for traffic prediction. arXiv preprint arXiv:1803.01254, 1(9).
    [Google Scholar]
  32. Bai, L., Yao, L., Wang, X., Li, C., & Zhang, X. (2021). Deep spatial–temporal sequence modeling for multi-step passenger demand prediction. Future Generation Computer Systems, 121, 25-34.
    [CrossRef]   [Google Scholar]
  33. James, J. Q. (2021). Citywide traffic speed prediction: A geometric deep learning approach. Knowledge-Based Systems, 212, 106592.
    [CrossRef]   [Google Scholar]
  34. Osei, K. K., Adams, C. A., Sivanandan, R., & Ackaah, W. (2022). Modelling of segment level travel time on urban roadway arterials using floating vehicle and GPS probe data. Scientific African, 15, e01105.
    [CrossRef]   [Google Scholar]
  35. Zahedian, S. (2021). Introducing a Graph-Based Neural Network for Networkwide Traffic Volume Estimation (Doctoral dissertation, University of Maryland, College Park).
    [Google Scholar]
  36. Dong, G., Tang, M., Wang, Z., Gao, J., Guo, S., Cai, L., ... & Boukhechba, M. (2023). Graph neural networks in IoT: A survey. ACM Transactions on Sensor Networks, 19(2), 1-50.
    [CrossRef]   [Google Scholar]
  37. Zhang, X., Wen, S., Yan, L., Feng, J., & Xia, Y. (2024). A hybrid-convolution spatial–temporal recurrent network for traffic flow prediction. The Computer Journal, 67(1), 236-252.
    [CrossRef]   [Google Scholar]
  38. Tian, Y., & Pan, L. (2015, December). Predicting short-term traffic flow by long short-term memory recurrent neural network. In 2015 IEEE international conference on smart city/SocialCom/SustainCom (SmartCity) (pp. 153-158). IEEE.
    [CrossRef]   [Google Scholar]
  39. Lv, Y., Duan, Y., Kang, W., Li, Z., & Wang, F. Y. (2014). Traffic flow prediction with big data: A deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 16(2), 865--873.
    [CrossRef]   [Google Scholar]
  40. Sun, H., Xue, R., Hu, T., Pan, T., He, L., Rao, Y., ... & He, H. (2024). Predicting Citywide Crowd Flows in Critical Areas Based on Dynamic Spatio-Temporal Network. IEEE Transactions on Emerging Topics in Computational Intelligence.
    [CrossRef]   [Google Scholar]
  41. Wang, Y. (2023). Advances in spatiotemporal graph neural network prediction research. International Journal of Digital Earth, 16(1), 2034-2066.
    [CrossRef]   [Google Scholar]
  42. Chen, K., Chen, F., Lai, B., Jin, Z., Liu, Y., Li, K., Wei, L., Wang, P., Tang, Y., Huang, J., & others. (2020). Dynamic spatiotemporal graph-based CNNs for traffic flow prediction. IEEE Access, 8, 185136--185145.
    [CrossRef]   [Google Scholar]
  43. Zhang, S., Guo, Y., Zhao, P., Zheng, C., & Chen, X. (2021). A graph-based temporal attention framework for multi-sensor traffic flow forecasting. IEEE Transactions on Intelligent Transportation Systems, 23(7), 7743--7758.
    [CrossRef]   [Google Scholar]
  44. Qiu, H., Zheng, Q., Msahli, M., Memmi, G., Qiu, M., & Lu, J. (2020). Topological graph convolutional network-based urban traffic flow and density prediction. IEEE Transactions on Intelligent Transportation Systems, 22(7), 4560--4569.
    [CrossRef]   [Google Scholar]
  45. Wang, H., Zhang, R., Cheng, X., & Yang, L. (2022). Hierarchical traffic flow prediction based on spatial-temporal graph convolutional network. IEEE Transactions on Intelligent Transportation Systems, 23(9), 16137--16147.
    [CrossRef]   [Google Scholar]
  46. Chen, Y., Qin, Y., Li, K., Yeo, C. K., & Li, K. (2023). Adaptive spatial-temporal graph convolution networks for collaborative local-global learning in traffic prediction. IEEE Transactions on Vehicular Technology, 72(10), 12653-12663.
    [CrossRef]   [Google Scholar]
  47. Wang, L., Guo, D., Wu, H., Li, K., & Yu, W. (2024). TC-GCN: Triple cross-attention and graph convolutional network for traffic forecasting. Information Fusion, 105, 102229.
    [CrossRef]   [Google Scholar]
  48. Ling, J., Lan, Y., Huang, X., & Yang, X. (2024). A Multi-Scale Residual Graph Convolution Network with hierarchical attention for predicting traffic flow in urban mobility. Complex & Intelligent Systems, 10(3), 3305-3317.
    [CrossRef]   [Google Scholar]
  49. Reddy, S. M. V., Dammur, A., & Narasimhamurthy, A. (2023). Traffic Flow Prediction and Identifying Critical Node Networks Using Attention-based Spectral Temporal Graph Neural Network. International Journal of Intelligent Engineering & Systems, 16(6).
    [CrossRef]   [Google Scholar]
  50. Wang, Y., Jing, C., Xu, S., & Guo, T. (2022). Attention based spatiotemporal graph attention networks for traffic flow forecasting. Information Sciences, 607, 869–883.
    [CrossRef]   [Google Scholar]
  51. Reza, S., Ferreira, M. C., Machado, J. J., & Tavares, J. M. R. (2022). A multi-head attention-based transformer model for traffic flow forecasting with a comparative analysis to recurrent neural networks. Expert Systems with Applications, 202, 117275.
    [CrossRef]   [Google Scholar]
  52. Geng, Z., Xu, J., Wu, R., Zhao, C., Wang, J., Li, Y., & Zhang, C. (2024). STGAFormer: Spatial–temporal gated attention transformer based graph neural network for traffic flow forecasting. Information Fusion, 105, 102228.
    [CrossRef]   [Google Scholar]
  53. Sun, B., Sun, T., Zhang, Y., & Jiao, P. (2020). Urban traffic flow online prediction based on multi‐component attention mechanism. IET intelligent transport systems, 14(10), 1249-1258.
    [CrossRef]   [Google Scholar]
  54. Do, L. N., Vu, H. L., Vo, B. Q., Liu, Z., & Phung, D. (2019). An effective spatial-temporal attention based neural network for traffic flow prediction. Transportation research part C: emerging technologies, 108, 12-28.
    [CrossRef]   [Google Scholar]
  55. Xiong, C., Merity, S., & Socher, R. (2016, June). Dynamic memory networks for visual and textual question answering. In International conference on machine learning (pp. 2397-2406). PMLR.
    [CrossRef]   [Google Scholar]
  56. Kumar, R., Panwar, R., & Chaurasiya, V. K. (2024). Urban traffic forecasting using attention based model with GCN and GRU. Multimedia Tools and Applications, 83(16), 47751--47774.
    [CrossRef]   [Google Scholar]
  57. Hussain, B., Afzal, M. K., Ahmad, S., & Mostafa, A. M. (2021). Intelligent traffic flow prediction using optimized GRU model. IEEE Access, 9, 100736-100746.
    [CrossRef]   [Google Scholar]
  58. Khodabandelou, G., Katranji, M., Kraiem, S., Kheriji, W., & HadjSelem, F. (2019, October). Attention-based gated recurrent unit for links traffic speed forecasting. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC) (pp. 2577-2583). IEEE.
    [CrossRef]   [Google Scholar]
  59. Zhang, Q., Zhou, L., Su, Y., Xia, H., & Xu, B. (2023). Gated Recurrent Unit Embedded with Dual Spatial Convolution for Long-Term Traffic Flow Prediction. ISPRS International Journal of Geo-Information, 12(9), 366.
    [CrossRef]   [Google Scholar]
  60. Show, A. (2015). Tell: Neural image caption generation with visual attention kelvin xu. Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, Yoshua Bengio arXiv (2015-02-10) https://arxiv.org/abs/1502.03044 v3.
    [Google Scholar]
  61. Yang, Z., Yuan, Y., Wu, Y., Cohen, W. W., & Salakhutdinov, R. R. (2016). Review networks for caption generation. Advances in neural information processing systems, 29.
    [CrossRef]   [Google Scholar]
  62. Huang, L., Wang, W., Chen, J., & Wei, X. Y. (2019). Attention on attention for image captioning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 4634-4643).
    [CrossRef]   [Google Scholar]
  63. Xiao, X., Wang, L., Ding, K., Xiang, S., & Pan, C. (2019). Deep hierarchical encoder–decoder network for image captioning. IEEE Transactions on Multimedia, 21(11), 2942-2956.
    [CrossRef]   [Google Scholar]
  64. Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., & Bengio, Y. (2016, March). End-to-end attention-based large vocabulary speech recognition. In 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 4945-4949). IEEE.
    [CrossRef]   [Google Scholar]
  65. Li, J. (2022). Recent advances in end-to-end automatic speech recognition. APSIPA Transactions on Signal and Information Processing, 11(1). http://dx.doi.org/10.1561/116.00000050
    [Google Scholar]
  66. Park, D. S., Chan, W., Zhang, Y., Chiu, C. C., Zoph, B., Cubuk, E. D., & Le, Q. V. (2019). Specaugment: A simple data augmentation method for automatic speech recognition. arXiv preprint arXiv:1904.08779.
    [Google Scholar]
  67. Brauwers, G., & Frasincar, F. (2021). A general survey on attention mechanisms in deep learning. IEEE Transactions on Knowledge and Data Engineering, 35(4), 3279-3298.
    [CrossRef]   [Google Scholar]
  68. Chan, W., Jaitly, N., Le, Q., & Vinyals, O. (2016, March). Listen, attend and spell: A neural network for large vocabulary conversational speech recognition. In 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 4960-4964). IEEE.
    [CrossRef]   [Google Scholar]
  69. Subakan, C., Ravanelli, M., Cornell, S., Bronzi, M., & Zhong, J. (2021, June). Attention is all you need in speech separation. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 21-25). IEEE.
    [CrossRef]   [Google Scholar]
  70. Subakan, C., Ravanelli, M., Cornell, S., Grondin, F., & Bronzi, M. (2023). Exploring self-attention mechanisms for speech separation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 31, 2169-2180.
    [CrossRef]   [Google Scholar]
  71. Wang, D., & Chen, J. (2018). Supervised speech separation based on deep learning: An overview. IEEE/ACM transactions on audio, speech, and language processing, 26(10), 1702-1726.
    [CrossRef]   [Google Scholar]
  72. An, J., Guo, L., Liu, W., Fu, Z., Ren, P., Liu, X., & Li, T. (2021). IGAGCN: Information geometry and attention-based spatiotemporal graph convolutional networks for traffic flow prediction. Neural Networks, 143, 355-367.
    [CrossRef]   [Google Scholar]
  73. Tang, C., Sun, J., Sun, Y., Peng, M., & Gan, N. (2020). A general traffic flow prediction approach based on spatial-temporal graph attention. IEEE Access, 8, 153731-153741.
    [CrossRef]   [Google Scholar]
  74. Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., ... & Li, H. (2019). T-GCN: A temporal graph convolutional network for traffic prediction. IEEE transactions on intelligent transportation systems, 21(9), 3848-3858.
    [CrossRef]   [Google Scholar]
  75. Ni, Q., & Zhang, M. (2022). STGMN: A gated multi-graph convolutional network framework for traffic flow prediction. Applied Intelligence, 52(13), 15026-15039.
    [CrossRef]   [Google Scholar]
  76. Zheng, Y., Wang, S., Dong, C., Li, W., Zheng, W., & Yu, J. (2022). Urban road traffic flow prediction: A graph convolutional network embedded with wavelet decomposition and attention mechanism. Physica A: Statistical Mechanics and its Applications, 608, 128274.
    [CrossRef]   [Google Scholar]
  77. Künas, C. A. (2023). Optimizing machine learning models training in the cloud.
    [Google Scholar]
  78. Miglani, A., & Kumar, N. (2019). Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and challenges. Vehicular Communications, 20, 100184.
    [CrossRef]   [Google Scholar]
  79. Chen, Z., Wu, B., Li, B., & Ruan, H. (2021). Expressway exit traffic flow prediction for ETC and MTC charging system based on entry traffic flows and LSTM model. IEEE Access, 9, 54613-54624.
    [CrossRef]   [Google Scholar]
  80. Wang, X., Ma, Y., Wang, Y., Jin, W., Wang, X., Tang, J., ... & Yu, J. (2020, April). Traffic flow prediction via spatial temporal graph neural network. In Proceedings of the web conference 2020 (pp. 1082-1092).
    [CrossRef]   [Google Scholar]
  81. Hu, N., Zhang, D., Xie, K., Liang, W., Li, K. C., & Zomaya, A. Y. (2024). Dynamic multi-scale spatial–temporal graph convolutional network for traffic flow prediction. Future Generation Computer Systems, 158, 323-332.
    [CrossRef]   [Google Scholar]
  82. Zhang, X., Xu, Y., & Shao, Y. (2022). Forecasting traffic flow with spatial–temporal convolutional graph attention networks. Neural Computing and Applications, 34(18), 15457-15479.
    [CrossRef]   [Google Scholar]
  83. Ramsamy, E. (2006). World Bank and urban development: From projects to policy. Routledge.
    [Google Scholar]
  84. Wu, Y., Tan, H., Qin, L., Ran, B., & Jiang, Z. (2018). A hybrid deep learning based traffic flow prediction method and its understanding. Transportation Research Part C: Emerging Technologies, 90, 166-180.
    [CrossRef]   [Google Scholar]
  85. Wang, C., & Ye, Z. (2016). Traffic flow forecasting based on a hybrid model. Journal of Intelligent Transportation Systems, 20(5), 428-437.
    [CrossRef]   [Google Scholar]
  86. Yao, B., Wang, Z., Zhang, M., Hu, P., & Yan, X. (2016, April). Hybrid model for prediction of real-time traffic flow. In Proceedings of the Institution of Civil Engineers-Transport (Vol. 169, No. 2, pp. 88-96). Thomas Telford Ltd.
    [CrossRef]   [Google Scholar]
  87. Zheng, H., Lin, F., Feng, X., & Chen, Y. (2020). A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 22(11), 6910-6920.
    [CrossRef]   [Google Scholar]
  88. Zhang, Y., Zhang, Y., & Haghani, A. (2014). A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model. Transportation Research Part C: Emerging Technologies, 43, 65-78.
    [CrossRef]   [Google Scholar]
  89. Kato, T., Kim, Y., Suzuki, T., & Okuma, S. (2005). Model predictive control of traffic flow based on hybrid system modeling. IEICE transactions on fundamentals of electronics, communications and computer sciences, 88(2), 549-560.
    [CrossRef]   [Google Scholar]
  90. Ma, T., Antoniou, C., & Toledo, T. (2020). Hybrid machine learning algorithm and statistical time series model for network-wide traffic forecast. Transportation Research Part C: Emerging Technologies, 111, 352-372.
    [CrossRef]   [Google Scholar]
  91. Moretti, F., Pizzuti, S., Panzieri, S., & Annunziato, M. (2015). Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling. Neurocomputing, 167, 3-7.
    [CrossRef]   [Google Scholar]
  92. Dimitriou, L., Tsekeris, T., & Stathopoulos, A. (2008). Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow. Transportation Research Part C: Emerging Technologies, 16(5), 554-573.
    [CrossRef]   [Google Scholar]
  93. Bi, J., Zhang, X., Yuan, H., Zhang, J., & Zhou, M. (2021). A hybrid prediction method for realistic network traffic with temporal convolutional network and LSTM. IEEE Transactions on Automation Science and Engineering, 19(3), 1869-1879.
    [CrossRef]   [Google Scholar]
  94. Awan, N., Ali, A., Khan, F., Zakarya, M., Alturki, R., Kundi, M., Alshehri, M. D., & Haleem, M. (2021). Modeling dynamic spatiotemporal correlations for urban traffic flows prediction. IEEE Access, 9, 26502--26511.
    [CrossRef]   [Google Scholar]
  95. Chan, K. Y., Dillon, T. S., Singh, J., & Chang, E. (2011). Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg–Marquardt algorithm. IEEE Transactions on Intelligent Transportation Systems, 13(2), 644-654.
    [CrossRef]   [Google Scholar]
  96. Duan, P., Mao, G., Liang, W., & Zhang, D. (2018). A unified spatiotemporal model for short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 20(9), 3212-3223.
    [CrossRef]   [Google Scholar]
  97. Liu, M., Zhu, T., Ye, J., Meng, Q., Sun, L., & Du, B. (2023). Spatio-temporal autoencoder for traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 24(5), 5516-5526.
    [CrossRef]   [Google Scholar]
  98. Zhang, J., Zheng, Y., Sun, J., & Qi, D. (2019). Flow prediction in spatiotemporal networks based on multitask deep learning. IEEE Transactions on Knowledge and Data Engineering, 32(3), 468-478.
    [CrossRef]   [Google Scholar]
  99. Cao, S., Wu, L., Wu, J., Wu, D., & Li, Q. (2022). A spatiotemporal sequence-to-sequence network for traffic flow prediction. Information Sciences, 610, 185-203.
    [CrossRef]   [Google Scholar]
  100. Liu, Q., Chen, C., Zhang, Y., & Hu, Z. (2011). Feature selection for support vector machines with RBF kernel. Artificial Intelligence Review, 36(2), 99-115.
    [CrossRef]   [Google Scholar]
  101. Sun, S., Zhang, C., & Yu, G. (2006). A Bayesian network approach to traffic flow forecasting. IEEE Transactions on intelligent transportation systems, 7(1), 124-132.
    [CrossRef]   [Google Scholar]
  102. Ou, J., Xia, J., Wu, Y. J., & Rao, W. (2017). Short-term traffic flow forecasting for urban roads using data-driven feature selection strategy and bias-corrected random forests. Transportation Research Record, 2645(1), 157-167.
    [CrossRef]   [Google Scholar]
  103. Yang, H., Jiang, J., Zhao, Z., Pan, R., & Tao, S. (2024). STVANet: A spatiotemporal visual attention framework with large kernel attention mechanism for citywide traffic dynamics prediction. Expert Systems with Applications, 254, 124466.
    [CrossRef]   [Google Scholar]
  104. Ye, B. L., Zhang, M., Li, L., Liu, C., & Wu, W. (2024). A Survey of Traffic Flow Prediction Methods Based on Long Short-Term Memory Networks. IEEE Intelligent Transportation Systems Magazine, 16(5), 87-112.
    [CrossRef]   [Google Scholar]
  105. Hussain, B., Afzal, M. K., Anjum, S., Rao, I., & Kim, B. S. (2023). A novel graph convolutional gated recurrent unit framework for network-based traffic prediction. IEEE Access, 11, 130102-130118.
    [CrossRef]   [Google Scholar]
  106. Yang, L., Shami, A., Stevens, G., & De Rusett, S. (2022, December). LCCDE: A decision-based ensemble framework for intrusion detection in the Internet of Vehicles. In GLOBECOM 2022-2022 IEEE Global Communications Conference (pp. 3545-3550). IEEE.
    [CrossRef]   [Google Scholar]
  107. Anitha, P., Vimala, H. S., & Shreyas, J. (2024). Comprehensive review on congestion detection, alleviation, and control for IoT networks. Journal of Network and Computer Applications, 221, 103749.
    [CrossRef]   [Google Scholar]
  108. Ali, A., Qureshi, M. A., Shiraz, M., & Shamim, A. (2021). Mobile crowd sensing based dynamic traffic efficiency framework for urban traffic congestion control. Sustainable Computing: Informatics and Systems, 32, 100608.
    [CrossRef]   [Google Scholar]
  109. Garg, S., Mehrotra, D., Pandey, H. M., & Pandey, S. (2021). Accessible review of internet of vehicle models for intelligent transportation and research gaps for potential future directions. Peer-to-Peer Networking and Applications, 14(2), 978-1005.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Ali, R., Ali, A., Naeem, H. M. Y., Asad, M., Alsarhan, T., & Heyat, B. B. (2024). A Comprehensive Survey of Deep Learning-Based Traffic Flow Prediction Models for Intelligent Transportation Systems. ICCK Transactions on Advanced Computing and Systems, 1(3), 117–137. https://doi.org/10.62762/TACS.2024.795448

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 111
PDF Downloads: 23

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2024 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
ICCK Transactions on Advanced Computing and Systems

ICCK Transactions on Advanced Computing and Systems

ISSN: 3068-7969 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/