-
CiteScore
-
Impact Factor
Volume 2, Issue 1, ICCK Transactions on Advanced Computing and Systems
Volume 2, Issue 1, 2026
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Advanced Computing and Systems, Volume 2, Issue 1, 2026: 1-24

Open Access | Review Article | 17 November 2025
A Systematic Literature Review of Text-to-SQL: Performance, Challenges, and Limitations
1 Department of Creative Technologies, Air University, Islamabad 44000, Pakistan
2 Department of Artificial Intelligence, Korea University, Seoul 02842, Republic of Korea
3 Convergence Institute of Human Data Technology, Jeonju University, Jeonju 55069, Republic of Korea
4 Department of Computer Science, Air University, Islamabad 44000, Pakistan
† These authors contributed equally to this work
* Corresponding Authors: Tahir Sher, [email protected] ; Abdul Rehman, [email protected]
Received: 27 June 2025, Accepted: 03 August 2025, Published: 17 November 2025  
Abstract
This literature review examines the state of Text-to-SQL technology, which translates natural language queries into SQL. It analyzes rule-based, neural, and hybrid approaches, assessing their strengths and weaknesses, and surveys commonly used datasets, benchmarks, and evaluation metrics. The study identifies research gaps concerning generalization, scalability, and interpretability, and suggests integrating user feedback and domain knowledge. To better understand the implementation and potential improvements of machine learning in this domain, we conducted a systematic literature review (SLR) of publications from 2015 to 2023. From 439 gathered papers, 23 were identified as highly relevant. The review analyzes these works across four areas: (i) datasets employed, (ii) evolution of learning methods, (iii) development of evaluation procedures, and (iv) a meta-analysis of model performance. The findings confirm significant room for improvement in learning strategies. Persistent research gaps include cross-domain generalization, schema linking for complex databases, a lack of robust multilingual models, and the trade-off between model accuracy and interpretability. We propose future directions such as integrating contrastive schema linking, zero-shot/few-shot learning, explainability-driven design, and developing diverse, large-scale benchmarks that reflect real-world database complexity.

Graphical Abstract
A Systematic Literature Review of Text-to-SQL: Performance, Challenges, and Limitations

Keywords
Text-to-SQL
systematic literature review
natural language processing
meta analysis

Data Availability Statement
Not applicable.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Zhang, C., Wang, H., Jiang, F., & Yin, H. (2021, April). Adapting to context-aware knowledge in natural conversation for multi-turn response selection. In Proceedings of the Web Conference 2021 (pp. 1990-2001).
    [CrossRef]   [Google Scholar]
  2. Huang, P. S., Wang, C., Singh, R., Yih, W. T., & He, X. (2018). Natural language to structured query generation via meta-learning. arXiv preprint arXiv:1803.02400.
    [Google Scholar]
  3. Yu, T., Yasunaga, M., Yang, K., Zhang, R., Wang, D., Li, Z., & Radev, D. R. (2018). SyntaxSqlnet: Syntax tree networks for complex and cross-domain text-to-SQL task. In 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018 (pp. 1653-1663). Association for Computational Linguistics.
    [Google Scholar]
  4. Finegan-Dollak, C., Kummerfeld, J. K., Zhang, L., Ramanathan, K., Sadasivam, S., Zhang, R., & Radev, D. (2018, July). Improving Text-to-SQL Evaluation Methodology. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 351-360).
    [CrossRef]   [Google Scholar]
  5. Liu, A., Hu, X., Lin, L., & Wen, L. (2022, August). Semantic enhanced text-to-sql parsing via iteratively learning schema linking graph. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 1021-1030).
    [CrossRef]   [Google Scholar]
  6. Affolter, K., Stockinger, K., & Bernstein, A. (2019). A comparative survey of recent natural language interfaces for databases. The VLDB Journal, 28(5), 793-819.
    [CrossRef]   [Google Scholar]
  7. Saha, S., Park, J. J., & Faruqui, A. (2018). Semantically equivalent adversarial rules for debugging NLP models. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (pp. 4569-4579).
    [CrossRef]   [Google Scholar]
  8. Beloki, Z., Artola, X., & Soroa, A. (2017). A scalable architecture for data-intensive natural language processing. Natural Language Engineering, 23(5), 709-731.
    [CrossRef]   [Google Scholar]
  9. Choi, D., Shin, M. C., Kim, E., & Shin, D. R. (2021). Ryansql: Recursively applying sketch-based slot fillings for complex text-to-sql in cross-domain databases. Computational Linguistics, 47(2), 309-332.
    [CrossRef]   [Google Scholar]
  10. Bais, H., & Machkour, M. (2019). Method and Apparatus for Querying Relational and XML Database Using French Language. Revue d'Intelligence Artificielle, 33(6).
    [CrossRef]   [Google Scholar]
  11. Shi, T., Tatwawadi, K., Chakrabarti, K., Mao, Y., Polozov, O., & Chen, W. (2018). Incsql: Training incremental text-to-sql parsers with non-deterministic oracles. arXiv preprint arXiv:1809.05054.
    [Google Scholar]
  12. Rajkumar, N., Li, R., & Bahdanau, D. (2022). Evaluating the text-to-sql capabilities of large language models. arXiv preprint arXiv:2204.00498.
    [Google Scholar]
  13. Souza, F., Nogueira, R., & Lotufo, R. (2020, October). BERTimbau: pretrained BERT models for Brazilian Portuguese. In Brazilian conference on intelligent systems (pp. 403-417). Cham: Springer International Publishing.
    [CrossRef]   [Google Scholar]
  14. Krishnamurthy, R., Chakaravarthy, V. T., Kaushik, R., & Naughton, J. F. (2004, April). Recursive XML schemas, recursive XML queries, and relational storage: XML-to-SQL query translation. In Proceedings. 20th International Conference on Data Engineering (pp. 42-53). IEEE.
    [CrossRef]   [Google Scholar]
  15. Zhong, V., Xiong, C., & Socher, R. (2017). Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning. arXiv e-prints, arXiv-1709.
    [Google Scholar]
  16. Herzig, J., & Berant, J. (2017, July). Neural semantic parsing over multiple knowledge-bases. In Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics (ACL).
    [Google Scholar]
  17. Yu, T., Li, Z., Zhang, Z., Zhang, R., & Radev, D. (2018). Typesql: Knowledge-based type-aware neural text-to-sql generation. arXiv preprint arXiv:1804.09769.
    [Google Scholar]
  18. Zhan, Z., Haihong, E., & Song, M. (2025). Leveraging large language model for enhanced Text-to-SQL parsing. IEEE Access.
    [CrossRef]   [Google Scholar]
  19. Zhuang, F., Luo, P., Shen, Z., He, Q., Xiong, Y., Shi, Z., & Xiong, H. (2011). Mining distinction and commonality across multiple domains using generative model for text classification. IEEE Transactions on Knowledge and Data Engineering, 24(11), 2025-2039.
    [CrossRef]   [Google Scholar]
  20. Qi, J., Tang, J., He, Z., Wan, X., Cheng, Y., Zhou, C., ... & Lin, Z. (2022). Rasat: Integrating relational structures into pretrained seq2seq model for text-to-sql. arXiv preprint arXiv:2205.06983.
    [Google Scholar]
  21. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019, June). Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers) (pp. 4171-4186).
    [CrossRef]   [Google Scholar]
  22. Gupta, M., Dutta, M., & Maurya, C. K. (2024). Direct Speech-to-Speech Neural Machine Translation: A Survey. arXiv preprint arXiv:2411.14453.
    [Google Scholar]
  23. Xu, X., Liu, C., & Song, D. (2017). SQLNet: Generating Structured Queries From Natural Language Without Reinforcement Learning. arXiv e-prints, arXiv-1711.
    [Google Scholar]
  24. Guo, J., Zhan, Z., Gao, Y., Xiao, Y., Lou, J. G., Liu, T., & Zhang, D. (2019, July). Towards Complex Text-to-SQL in Cross-Domain Database with Intermediate Representation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 4524-4535).
    [CrossRef]   [Google Scholar]
  25. Han, S., Gao, N., Guo, X., & Shan, Y. (2022). RuleSQLova: Improving text-to-SQL with logic rules. In 2022 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8).
    [CrossRef]   [Google Scholar]
  26. Wang, C., Brockschmidt, M., & Singh, R. (2017). Pointing Out SQL Queries From Text. Microsoft Research. Retrieved from https://www.microsoft.com/en-us/research/publication/pointing-out-sql-queries-from-text/
    [Google Scholar]
  27. Scholak, T., Schucher, N., & Bahdanau, D. (2021, November). PICARD: Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (pp. 9895-9901).
    [CrossRef]   [Google Scholar]
  28. Zhang, R., Yu, T., Er, H., Shim, S., Xue, E., Lin, X. V., ... & Radev, D. (2019, November). Editing-based SQL query generation for cross-domain context-dependent questions. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 5338-5349).
    [CrossRef]   [Google Scholar]
  29. Kelkar, A., Relan, R., Bhardwaj, V., Vaichal, S., Khatri, C., & Relan, P. (2020). Bertrand-dr: Improving text-to-sql using a discriminative re-ranker. arXiv preprint arXiv:2002.00557.
    [Google Scholar]
  30. Hwang, W., Yim, J., Park, S., & Seo, M. (2019). A comprehensive exploration on wikisql with table-aware word contextualization. arXiv preprint arXiv:1902.01069.
    [Google Scholar]
  31. Cai, R., Yuan, J., Xu, B., & Hao, Z. (2021). Sadga: Structure-aware dual graph aggregation network for text-to-sql. Advances in Neural Information Processing Systems, 34, 7664-7676.
    [Google Scholar]
  32. Liang, C., Norouzi, M., Berant, J., Le, Q., & Lao, N. (2018, December). Memory augmented policy optimization for program synthesis and semantic parsing. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (pp. 10015-10027).
    [Google Scholar]
  33. Dong, L., & Lapata, M. (2018, July). Coarse-to-Fine Decoding for Neural Semantic Parsing. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 731-742).
    [Google Scholar]
  34. Bogin, B., Berant, J., & Gardner, M. (2019, July). Representing schema structure with graph neural networks for text-to-SQL parsing. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 4560-4565).
    [CrossRef]   [Google Scholar]
  35. Rubin, O., & Berant, J. (2021, June). SmBoP: Semi-autoregressive bottom-up semantic parsing. In Proceedings of the 2021 conference of the North American chapter of the association for computational linguistics: human language technologies (pp. 311-324).
    [CrossRef]   [Google Scholar]
  36. Chen, Z., Chen, L., Zhao, Y., Cao, R., Xu, Z., Zhu, S., & Yu, K. (2021). ShadowGNN: Graph projection neural network for text-to-SQL parser. arXiv preprint arXiv:2104.04689.
    [Google Scholar]
  37. Mohan, P. S. (2023). Extending the work of DT-Fixup: Examining the Effects of PowerNorm and MADGRAD Optimization on DT-Fixup Performance (Master's thesis, University of Windsor (Canada)).
    [Google Scholar]
  38. Wang, B., Shin, R., Liu, X., Polozov, O., & Richardson, M. (2020, July). Rat-sql: Relation-aware schema encoding and linking for text-to-sql parsers. In Proceedings of the 58th annual meeting of the association for computational linguistics (pp. 7567-7578).
    [CrossRef]   [Google Scholar]
  39. Pourreza, M., & Rafiei, D. (2023). Din-sql: Decomposed in-context learning of text-to-sql with self-correction. Advances in Neural Information Processing Systems, 36, 36339-36348.
    [Google Scholar]
  40. Huo, N., Xu, X., Li, J., Jacobsson, P., Lin, S., Qin, B., ... & Cheng, R. (2025). BIRD-INTERACT: Re-imagining Text-to-SQL Evaluation for Large Language Models via Lens of Dynamic Interactions. arXiv e-prints, arXiv-2510.
    [Google Scholar]
  41. Nascimento, E. R., Garcia, G. M., Feijó, L., Victorio, W., Izquierdo, Y. T., Oliveira, A., ... & Casanova, M. A. (2024). Text-to-SQL meets the real-world. In Proceedings of the 26th international conference on enterprise information systems (Vol. 1, pp. 61-72).
    [Google Scholar]
  42. Liu, G., Tan, Y., Zhong, R., Xie, Y., Zhao, L., Wang, Q., ... & Li, Z. (2025, January). Solid-SQL: Enhanced schema-linking based in-context learning for robust text-to-SQL. In Proceedings of the 31st International Conference on Computational Linguistics (pp. 9793-9803).
    [Google Scholar]
  43. Xiong, G., Bao, J., Jiang, H., Song, Y., & Zhao, W. (2025, November). Multi-Turn Interactions for Text-to-SQL with Large Language Models. In Proceedings of the 34th ACM International Conference on Information and Knowledge Management (pp. 3560-3570).
    [CrossRef]   [Google Scholar]
  44. Dou, L., Gao, Y., Pan, M., Wang, D., Che, W., Zhan, D., & Lou, J. G. (2023, June). MultiSpider: towards benchmarking multilingual text-to-SQL semantic parsing. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, No. 11, pp. 12745-12753).
    [CrossRef]   [Google Scholar]
  45. Vougiouklis, P., Papasarantopoulos, N., Zheng, D., Tuckey, D., Diao, C., Shen, Z., & Pan, J. (2023, November). Fastrat: Fast and efficient cross-lingual text-to-sql semantic parsing. In Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 564-576).
    [CrossRef]   [Google Scholar]
  46. He, P., Mao, Y., Chakrabarti, K., & Chen, W. (2019). X-SQL: reinforce schema representation with context. arXiv preprint arXiv:1908.08113.
    [Google Scholar]
  47. Wang, C., Tatwawadi, K., Brockschmidt, M., Huang, P. S., Mao, Y., Polozov, O., & Singh, R. (2018). Robust text-to-sql generation with execution-guided decoding. arXiv preprint arXiv:1807.03100.
    [Google Scholar]
  48. Lee, D. (2019). Clause-wise and recursive decoding for complex and cross-domain text-to-SQL generation. arXiv preprint arXiv:1904.08835.
    [Google Scholar]
  49. Lin, K., Bogin, B., Neumann, M., Berant, J., & Gardner, M. (2019). Grammar-based neural text-to-sql generation. arXiv preprint arXiv:1905.13326.
    [Google Scholar]
  50. Cao, R., Chen, L., Chen, Z., Zhao, Y., Zhu, S., & Yu, K. (2021). LGESQL: line graph enhanced text-to-SQL model with mixed local and non-local relations. arXiv preprint arXiv:2106.01093.
    [Google Scholar]
  51. Zheng, Q., Xia, X., Zou, X., Dong, Y., Wang, S., Xue, Y., ... & Tang, J. (2023, August). Codegeex: A pre-trained model for code generation with multilingual benchmarking on humaneval-x. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 5673-5684).
    [CrossRef]   [Google Scholar]
  52. Yu, T., Zhang, R., Yasunaga, M., Tan, Y. C., Lin, X. V., Li, S., ... & Radev, D. (2019). Sparc: Cross-domain semantic parsing in context. arXiv preprint arXiv:1906.02285.
    [Google Scholar]
  53. Shalaan, H. S., Soliman, T. H. A., & Abdelaziz, A. M. (2025). G-SQL: A Schema-Aware and Rule-Guided Approach for Robust Natural Language to SQL Translation. IEEE Access.
    [CrossRef]   [Google Scholar]
  54. Wang, C., Cheung, A., & Bodik, R. (2017, June). Synthesizing highly expressive SQL queries from input-output examples. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (pp. 452-466).
    [CrossRef]   [Google Scholar]
  55. Pan, Z., Li, Y., Lin, H., Pei, Q., Tang, Z., Wu, W., ... & Wu, L. (2025). Lemma: Learning from errors for mathematical advancement in llms. arXiv preprint arXiv:2503.17439.
    [Google Scholar]
  56. Mellah, Y., Rhouati, A., Ettifouri, E. H., Bouchentouf, T., & Belkasmi, M. G. (2021, April). COMBINE: A Pipeline for SQL Generation from Natural Language. In International Conference on Advances in Computing and Data Sciences (pp. 97-106). Cham: Springer International Publishing.
    [CrossRef]   [Google Scholar]
  57. Herzig, J., Nowak, P. K., Müller, T., Piccinno, F., & Eisenschlos, J. (2020, July). TaPas: Weakly supervised table parsing via pre-training. In Proceedings of the 58th annual meeting of the association for computational linguistics (pp. 4320-4333).
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Baig, M. S., Sher, T., Rehman, A., & Sheikh, S. (2025). A Systematic Literature Review of Text-to-SQL: Performance, Challenges, and Limitations. ICCK Transactions on Advanced Computing and Systems, 2(1), 1–24. https://doi.org/10.62762/TACS.2025.497935

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 67
PDF Downloads: 11

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
ICCK Transactions on Advanced Computing and Systems

ICCK Transactions on Advanced Computing and Systems

ISSN: 3068-7969 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/