-
CiteScore
-
Impact Factor
Volume 2, Issue 1, ICCK Transactions on Advanced Computing and Systems
Volume 2, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Advanced Computing and Systems, Volume 2, Issue 1, 2025: 1-10

Open Access | | 10 February 2025
A Novel Deep Learning Framework for Brain Tumor Classification Using Improved Swin Transformer V2
1 Department of Computer Science and Engineering, Sejong University, Seoul 05006, Republic of Korea
2 Department of Anesthesiology, Dalian Medical University, Dalian 116000, China
3 Department of Clinical Medicine, Shandong Xiehe University, Jinan 250109, China
4 College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
* Corresponding Author: Muhammad Fayaz, [email protected]
Received: 08 January 2025, Accepted: 29 January 2025, Published: 10 February 2025  
Abstract
Brain tumors pose a serious threat to global health, making accurate and early detection essential for effective treatment planning. While Magnetic Resonance Imaging (MRI) is widely used for diagnosis, manual interpretation is time-consuming and subject to error. This has prompted increasing use of deep learning for automated tumor classification. We propose a novel framework based on the Swin Transformer V2 architecture for classifying brain tumors in MRI scans into glioma, meningioma, pituitary tumor, and non-tumor categories. The design introduces two core innovations: a Dual-Branch Down-sampling module and an Enhanced Attention Mechanism, which improve multi-scale feature representation and computational efficiency. Using a dataset of 7,023 grayscale MRI images, the proposed model achieved an accuracy of 98.97%, outperforming ResNet50 (90.39%) and DenseNet121 (93.20%). It maintained precision, recall, and F1-scores above 98% across all classes and showed improved training efficiency. These results demonstrate the model’s potential as a robust and efficient diagnostic support system for brain tumor classification.

Graphical Abstract
A Novel Deep Learning Framework for Brain Tumor Classification Using Improved Swin Transformer V2

Keywords
brain tumor classification
deep learning
MRI scans
computational efficiency
medical image analysis

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Khazaei, Z., Goodarzi, E., Borhaninejad, V., Iranmanesh, F., Mirshekarpour, H., Mirzaei, B., ... & Naghibzadeh-Tahami, A. (2020). The association between incidence and mortality of brain cancer and human development index (HDI): an ecological study. BMC Public Health, 20, 1-7.
    [CrossRef]   [Google Scholar]
  2. Ferlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., & Piñeros, M. (2020). The global cancer observatory-all cancers. International Agency for Research on Cancer-WHO, 419, 199-200.
    [Google Scholar]
  3. Newman-Toker, D. E. (2023). Johns Hopkins University School of Medicine.
    [Google Scholar]
  4. Small, L. (2023). AfterWards: a narrative medicine program at Johns Hopkins Medicine and in China. Chinese Medicine and Culture, 6(2), 213-217.
    [CrossRef]   [Google Scholar]
  5. Tiwari, A., Srivastava, S., & Pant, M. (2020). Brain tumor segmentation and classification from magnetic resonance images: Review of selected methods from 2014 to 2019. Pattern recognition letters, 131, 244-260.
    [CrossRef]   [Google Scholar]
  6. Al-Masni, M. A., Lee, S., Yi, J., Kim, S., Gho, S. M., Choi, Y. H., & Kim, D. H. (2022). Stacked U-Nets with self-assisted priors towards robust correction of rigid motion artifact in brain MRI. NeuroImage, 259, 119411.
    [CrossRef]   [Google Scholar]
  7. Ukwuoma, C. C., Qin, Z., Heyat, M. B. B., Akhtar, F., Smahi, A., Jackson, J. K., ... & Nneji, G. U. (2022). Automated lung-related pneumonia and COVID-19 detection based on novel feature extraction framework and vision transformer approaches using chest X-ray images. Bioengineering, 9(11), 709.
    [CrossRef]   [Google Scholar]
  8. Battineni, G., Chintalapudi, N., Hossain, M. A., Losco, G., Ruocco, C., Sagaro, G. G., ... & Amenta, F. (2022). Artificial intelligence models in the diagnosis of adult-onset dementia disorders: A review. Bioengineering, 9(8), 370.
    [CrossRef]   [Google Scholar]
  9. Kaplan, K., Kaya, Y., Kuncan, M., & Ertunç, H. M. (2020). Brain tumor classification using modified local binary patterns (LBP) feature extraction methods. Medical hypotheses, 139, 109696.
    [CrossRef]   [Google Scholar]
  10. El-Shafai, W., Mahmoud, A. A., El-Rabaie, E. S. M., Taha, T. E., Zahran, O. F., El-Fishawy, A. S., ... & Abd El-Samie, F. E. (2022). Hybrid Segmentation Approach for Different Medical Image Modalities. Computers, Materials and Continua, 73(2), 3455-3472.
    [CrossRef]   [Google Scholar]
  11. VVR, M. R., Meenakshi, K., Silpa, N., Gottumukkala, V. R., & Pamarthi, N. (2023, June). An innovative machine learning based heart disease assessment system by sequential feature selection approach. In 2023 3rd International Conference on Intelligent Technologies (CONIT) (pp. 1-7). IEEE.
    [CrossRef]   [Google Scholar]
  12. Imad, M., Hussain, A., Hassan, M. A., Butt, Z., & Sahar, N. U. (2022). IoT based machine learning and deep learning platform for COVID-19 prevention and control: A systematic review. Ai and IoT for Sustainable Development in Emerging Countries: Challenges and Opportunities, 523-536.
    [CrossRef]   [Google Scholar]
  13. Hossain, M. M., Ali, M. S., Ahmed, M. M., Rakib, M. R. H., Kona, M. A., Afrin, S., ... & Rahman, M. H. (2023). Cardiovascular disease identification using a hybrid CNN-LSTM model with explainable AI. Informatics in Medicine Unlocked, 42, 101370.
    [CrossRef]   [Google Scholar]
  14. Zhang, X., Lee, V. C., Rong, J., Lee, J. C., & Liu, F. (2022). Deep convolutional neural networks in thyroid disease detection: a multi-classification comparison by ultrasonography and computed tomography. Computer Methods and Programs in Biomedicine, 220, 106823.
    [CrossRef]   [Google Scholar]
  15. Badža, M. M., & Barjaktarović, M. Č. (2020). Classification of brain tumors from MRI images using a convolutional neural network. Applied Sciences, 10(6), 1999.
    [CrossRef]   [Google Scholar]
  16. Gumaei, A., Hassan, M. M., Hassan, M. R., Alelaiwi, A., & Fortino, G. (2019). A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification. IEEE Access, 7, 36266-36273.
    [CrossRef]   [Google Scholar]
  17. Srujan, K., Shivakumar, S., Sitnur, K., Garde, O., & Poornima, P. (2020). Brain tumor segmentation and classification using CNN model. Brain, 7(4).
    [Google Scholar]
  18. Ahmad, B., Sun, J., You, Q., Palade, V., & Mao, Z. (2022). Brain tumor classification using a combination of variational autoencoders and generative adversarial networks. Biomedicines, 10(2), 223.
    [CrossRef]   [Google Scholar]
  19. Ayadi, W., Charfi, I., Elhamzi, W., & Atri, M. (2022). Brain tumor classification based on hybrid approach. The Visual Computer, 38(1), 107-117.
    [CrossRef]   [Google Scholar]
  20. Swati, Z. N. K., Zhao, Q., Kabir, M., Ali, F., Ali, Z., Ahmed, S., & Lu, J. (2019). Brain tumor classification for MR images using transfer learning and fine-tuning. Computerized Medical Imaging and Graphics, 75, 34-46.
    [CrossRef]   [Google Scholar]
  21. Noreen, N., Palaniappan, S., Qayyum, A., Ahmad, I., & Alassafi, M. O. (2021). Brain Tumor Classification Based on Fine-Tuned Models and the Ensemble Method. CMES-Computer Modeling in Engineering and Sciences, 67(3), 3967-3982.
    [CrossRef]   [Google Scholar]
  22. Hussain, A., Ul Amin, S., Fayaz, M., & Seo, S. (2023). An Efficient and Robust Hand Gesture Recognition System of Sign Language Employing Finetuned Inception-V3 and Efficientnet-B0 Network. Computer Systems Science & Engineering, 46(3).
    [CrossRef]   [Google Scholar]
  23. Satyanarayana, G., Naidu, P. A., Desanamukula, V. S., & Rao, B. C. (2023). A mass correlation based deep learning approach using deep convolutional neural network to classify the brain tumor. Biomedical signal processing and control, 81, 104395.
    [CrossRef]   [Google Scholar]
  24. Deepak, S., & Ameer, P. (2023). Brain tumor categorization from imbalanced MRI dataset using weighted loss and deep feature fusion. Neurocomputing, 520, 94-102.
    [CrossRef]   [Google Scholar]
  25. Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., ... & Guo, B. (2022). Swin transformer v2: Scaling up capacity and resolution. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 12009-12019).
    [CrossRef]   [Google Scholar]
  26. Kanchan, S. B., Acharjya, K., Bhoi, P., Banerjee, S., & Dey, S. (2020). Brain tumor classification (MRI). Kaggle.
    [Google Scholar]
  27. Jun, C. (2017). Brain tumor dataset. Figshare, 10, m9.
    [Google Scholar]
  28. Mahesha, Y. (2023, May). Identification of brain tumor images using a novel machine learning model. In International Conference on Information, Communication and Computing Technology (pp. 447-457). Singapore: Springer Nature Singapore.
    [CrossRef]   [Google Scholar]
  29. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778).
    [CrossRef]   [Google Scholar]
  30. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017, July). Densely Connected Convolutional Networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 2261-2269). IEEE.
    [CrossRef]   [Google Scholar]
  31. Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M., ... & Adam, H. (2019). Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 1314-1324).
    [CrossRef]   [Google Scholar]
  32. Mao, X., Qi, G., Chen, Y., Li, X., Duan, R., Ye, S., ... & Xue, H. (2022, June). Towards Robust Vision Transformer. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 12032-12041). IEEE.
    [CrossRef]   [Google Scholar]
  33. Gulzar, Y. (2023). Fruit image classification model based on MobileNetV2 with deep transfer learning technique. Sustainability, 15(3), 1906.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Alam, N., Zhu, Y., Shao, J., Usman, M., & Fayaz, M. (2025). A Novel Deep Learning Framework for Brain Tumor Classification Using Improved Swin Transformer V2. ICCK Transactions on Advanced Computing and Systems, 2(1), 1–10. https://doi.org/10.62762/TACS.2025.807755

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 37
PDF Downloads: 7

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
ICCK Transactions on Advanced Computing and Systems

ICCK Transactions on Advanced Computing and Systems

ISSN: pending (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/