-
CiteScore
-
Impact Factor
Volume 1, Issue 4, ICCK Transactions on Advanced Computing and Systems
Volume 1, Issue 4, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Advanced Computing and Systems, Volume 1, Issue 4, 2025: 238-257

Open Access | Research Article | 04 October 2025
Transforming Citation Networks into Insights: Mapping Scholarly Influence with Advanced Graph Models
1 Department of Artificial Intelligence, Korea University, Seoul 02842, Republic of Korea
2 Convergence Institute of Human Data Technology, Jeonju University, Jeonju 55069, Republic of Korea
3 Department of Creative Technologies, Air University, Islamabad 44000, Pakistan
* Corresponding Author: Abdul Rehman, [email protected]
Received: 14 May 2025, Accepted: 09 July 2025, Published: 04 October 2025  
Abstract
The growing role of citation relations in identifying research impact has spurred much investigation on assessing the most cited papers and their roles within datasets. Due to the richness of the CORA dataset, this study selects highly cited papers and measures the results of node classification, as well as the H-index of research articles. Besides, it explores the correlations and robustness with regard to the nodes by computing their chances and studying their connections. To these ends, linear transformation was utilized for mapping low-level node features to high-level, and the Graph Attention Networks (GAT) for node classification. The study was able to find highly cited papers and compute their H-index, which gives insight into the citation patterns in the CORA dataset. For instance, Paper ID 12182 reported an H-index of 20, while a high citation paper index of 35 received 166 citations. On the test dataset, the study achieved a node classification accuracy ranging from 78.6% to 82% and an F1 score of 78.14%. Furthermore, 7 nodes of the machine learning domain have also been distinguished and categorized according to their features and their relations within the graph. In the citation network identified, the present research detailed the citation interconnection that characterized the works within the dataset. Our research mainly focuses on new tasks such as the extraction of highly cited papers and the calculation of the H index that improve the comprehension of the scholarly influence and the citation relation for future development strategies in citation network analysis.

Graphical Abstract
Transforming Citation Networks into Insights: Mapping Scholarly Influence with Advanced Graph Models

Keywords
deep learning
text mining
graph attention networks
citation
h-index

Data Availability Statement
The code supporting the findings of this study is openly available on GitHub at https://github.com/TahirSher/Graph-Attention-Networks-for-Node-Classification-and-Highly-Cited-Papers. All experiments were conducted using Google Colab with Python~3.10 and standard library versions compatible with Python~3.10.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Alachram, H., Chereda, H., Beißbarth, T., Wingender, E., & Stegmaier, P. (2021). Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks. PloS one, 16(10), e0258623.
    [CrossRef]   [Google Scholar]
  2. Backstrom, L., & Leskovec, J. (2011). Supervised random walks: predicting and recommending links in social networks. In Proceedings of the fourth ACM international conference on Web search and data mining (pp. 635–644).
    [CrossRef]   [Google Scholar]
  3. Akoglu, L., Tong, H., & Koutra, D. (2015). Graph based anomaly detection and description: a survey. Data mining and knowledge discovery, 29(3), 626–688.
    [CrossRef]   [Google Scholar]
  4. Zhang, S., Zhou, D., Yildirim, M. Y., Alcorn, S., He, J., Davulcu, H., & Tong, H. (2017, June). Hidden: hierarchical dense subgraph detection with application to financial fraud detection. In Proceedings of the 2017 SIAM international conference on data mining (pp. 570-578). Society for Industrial and Applied Mathematics.
    [CrossRef]   [Google Scholar]
  5. Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2017). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926.
    [Google Scholar]
  6. Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., & Bronstein, M. M. (2017, July). Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5425-5434). IEEE.
    [CrossRef]   [Google Scholar]
  7. Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural network model. IEEE transactions on neural networks, 20(1), 61–80.
    [CrossRef]   [Google Scholar]
  8. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: Structure and dynamics. Physics reports, 424(4-5), 175-308.
    [CrossRef]   [Google Scholar]
  9. Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., … Sun, M. (2020). Graph neural networks: A review of methods and applications. AI Open, 1, 57–81.
    [CrossRef]   [Google Scholar]
  10. Wu, Y., Lian, D., Xu, Y., Wu, L., & Chen, E. (2020, April). Graph convolutional networks with markov random field reasoning for social spammer detection. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 01, pp. 1054-1061).
    [CrossRef]   [Google Scholar]
  11. Dessì, D., Osborne, F., Recupero, D. R., Buscaldi, D., & Motta, E. (2021). Generating knowledge graphs by employing natural language processing and machine learning techniques within the scholarly domain. Future Generation Computer Systems, 116, 253-264.
    [CrossRef]   [Google Scholar]
  12. Nicholson, D. N., & Greene, C. S. (2020). Constructing knowledge graphs and their biomedical applications. Computational and structural biotechnology journal, 18, 1414-1428.
    [CrossRef]   [Google Scholar]
  13. MacLean, F. (2021). Knowledge graphs and their applications in drug discovery. Expert opinion on drug discovery, 16(9), 1057-1069.
    [CrossRef]   [Google Scholar]
  14. Chakrabarti, D., & Faloutsos, C. (2006). Graph mining: Laws, generators, and algorithms. ACM computing surveys (CSUR), 38(1), 2-es.
    [CrossRef]   [Google Scholar]
  15. West, D. B. (2001). Introduction to graph theory (Vol. 2). Prentice hall Upper Saddle River.
    [Google Scholar]
  16. Portmann, E., Kaltenrieder, P., & Pedrycz, W. (2015). Knowledge representation through graphs. Procedia Computer Science, 62, 245–248.
    [CrossRef]   [Google Scholar]
  17. Mordeson, J. N., & Nair, P. S. (2012). Fuzzy graphs and fuzzy hypergraphs (Vol. 46). Physica.
    [CrossRef]   [Google Scholar]
  18. Kosko, B. (1986). Fuzzy cognitive maps. International journal of man-machine studies, 24(1), 65–75.
    [CrossRef]   [Google Scholar]
  19. Bax, L., Ikeda, N., Fukui, N., Yaju, Y., Tsuruta, H., & Moons, K. G. (2009). More than numbers: the power of graphs in meta-analysis. American journal of epidemiology, 169(2), 249–255.
    [CrossRef]   [Google Scholar]
  20. Arora, S. (2020). A survey on graph neural networks for knowledge graph completion. arXiv preprint arXiv:2007.12374.
    [Google Scholar]
  21. Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. arXiv preprint arXiv:1606.09375.
    [Google Scholar]
  22. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436–444.
    [CrossRef]   [Google Scholar]
  23. Chung, F. R. (1997). Spectral graph theory (Vol. 92). American Mathematical Soc.
    [CrossRef]   [Google Scholar]
  24. Henaff, M., Bruna, J., & LeCun, Y. (2015). Deep convolutional networks on graph-structured data. arXiv preprint arXiv:1506.05163.
    [Google Scholar]
  25. Wang, H., Wang, J., Wang, J., & others. (2017). Graph representation learning with generative adversarial nets. AAAI, Graphgan.
    [Google Scholar]
  26. You, J., Ying, R., Ren, X., Hamilton, W., & Leskovec, J. (2018, July). Graphrnn: Generating realistic graphs with deep auto-regressive models. In International conference on machine learning (pp. 5708-5717). PMLR.
    [Google Scholar]
  27. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.
    [Google Scholar]
  28. Lee, J. B., Rossi, R., & Kong, X. (2018). Graph classification using structural attention. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1666–1674).
    [CrossRef]   [Google Scholar]
  29. Li, Y., Tarlow, D., Brockschmidt, M., & Zemel, R. (2015). Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493.
    [Google Scholar]
  30. Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved semantic representations from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075.
    [Google Scholar]
  31. Sperduti, A., & Starita, A. (1997). Supervised neural networks for the classification of structures. IEEE Transactions on Neural Networks, 8(3), 714–735.
    [CrossRef]   [Google Scholar]
  32. Dai, H., Kozareva, Z., Dai, B., Smola, A., & Song, L. (2018, July). Learning steady-states of iterative algorithms over graphs. In International conference on machine learning (pp. 1106-1114). PMLR.
    [Google Scholar]
  33. Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
    [Google Scholar]
  34. Levie, R., Monti, F., Bresson, X., & Bronstein, M. M. (2018). Cayleynets: Graph convolutional neural networks with complex rational spectral filters. IEEE Transactions on Signal Processing, 67(1), 97–109.
    [CrossRef]   [Google Scholar]
  35. Zhang, D., Yin, J., Zhu, X., & Zhang, C. (2018). Network representation learning: A survey. IEEE transactions on Big Data, 6(1), 3–28.
    [CrossRef]   [Google Scholar]
  36. Pan, S., Wu, J., Zhu, X., Zhang, C., & Wang, Y. (2016). Tri-party deep network representation. In 25th International Joint Conference on Artificial Intelligence (IJCAI-16). AAAI Press/International Joint Conferences on Artificial Intelligence.
    [Google Scholar]
  37. Kriege, N. M., Johansson, F. D., & Morris, C. (2020). A survey on graph kernels. Applied Network Science, 5(1), 6.
    [CrossRef]   [Google Scholar]
  38. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. stat, 1050(20), 10-48550.
    [Google Scholar]
  39. Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information processing systems, 30.
    [Google Scholar]
  40. Zhang, J., Shi, X., Xie, J., Ma, H., King, I., & Yeung, D.-Y. (2018). Gaan: Gated attention networks for learning on large and spatiotemporal graphs. arXiv preprint arXiv:1803.07294.
    [Google Scholar]
  41. Liu, Z., Chen, C., Li, L., Zhou, J., Li, X., Song, L., & Qi, Y. (2019). Geniepath: Graph neural networks with adaptive receptive paths. In Proceedings of the AAAI Conference on Artificial Intelligence (pp. 4424–4431).
    [CrossRef]   [Google Scholar]
  42. Madni, H. A., Anwar, Z., & Shah, M. A. (2017). Data mining techniques and applications—A decade review. In 2017 23rd international conference on automation and computing (ICAC) (pp. 1–7).
    [CrossRef]   [Google Scholar]
  43. Imran, A. S., Yang, R., Kastrati, Z., Daudpota, S. M., & Shaikh, S. (2022). The impact of synthetic text generation for sentiment analysis using GAN based models. Egyptian Informatics Journal, 23(3), 547-557.
    [CrossRef]   [Google Scholar]
  44. Aggarwal, C. C., & Zhai, C. (2012). An introduction to text mining. In Mining text data (pp. 1–10). Springer.
    [CrossRef]   [Google Scholar]
  45. Usai, A., Pironti, M., Mital, M., & Aouina Mejri, C. (2018). Knowledge discovery out of text data: a systematic review via text mining. Journal of knowledge management, 22(7), 1471-1488.
    [CrossRef]   [Google Scholar]
  46. Croft, W. B., Metzler, D., & Strohman, T. (2010). Search engines: Information retrieval in practice (Vol. 520). Addison-Wesley.
    [Google Scholar]
  47. Jones, K. S., & Willett, P. (1997). Readings in information retrieval. Morgan Kaufmann.
    [Google Scholar]
  48. Baeza-Yates, R. A., & Ribeiro-Neto, B. A. (2011). Modern Information Retrieval - the concepts and technology behind search, Second edition. ACM, Inc.
    [Google Scholar]
  49. Krzywicki, A., Wobcke, W., Bain, M., Martinez, J. C., & Compton, P. (2016). Data mining for building knowledge bases: techniques, architectures and applications. The Knowledge Engineering Review, 31(2), 97-123.
    [CrossRef]   [Google Scholar]
  50. Salton, G., & McGill, M. J. (1983). Introduction to modern information retrieval. mcgraw-hill.
    [Google Scholar]
  51. Manning, C. D. (2008). Prabhakar Raghavan, and Hinrich Schutze. Introduction to information retrieval. Cambridge University Press.
    [Google Scholar]
  52. Grossman, D. A., & Frieder, O. (2004). Information retrieval: Algorithms and heuristics (Vol. 15). Springer Science & Business Media.
    [Google Scholar]
  53. Hotho, A., Nürnberger, A., & Paaß, G. (2005). A brief survey of text mining. In LDV Forum (pp. 19–62).
    [Google Scholar]
  54. Bolasco, S., Canzonetti, A., Capo, F. M., Della Ratta-Rinaldi, F., & Singh, B. K. (2005, October). Understanding text mining: A pragmatic approach. In Knowledge Mining: Proceedings of the NEMIS 2004 Final Conference (pp. 31-50). Berlin, Heidelberg: Springer Berlin Heidelberg.
    [CrossRef]   [Google Scholar]
  55. Gupta, V., & Lehal, G. S. (2009). A survey of text mining techniques and applications. Journal of emerging technologies in web intelligence, 1(1), 60–76.
    [CrossRef]   [Google Scholar]
  56. Tao, J., Wang, H., & Xiong, T. (2018). Selective graph attention networks for account takeover detection. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW) (pp. 49–54).
    [CrossRef]   [Google Scholar]
  57. Zhang, T., Liu, B., Niu, D., Lai, K., & Xu, Y. (2018). Multiresolution graph attention networks for relevance matching. In Proceedings of the 27th ACM international conference on information and knowledge management (pp. 933–942).
    [CrossRef]   [Google Scholar]
  58. Wen, K., Gu, X., & Cheng, Q. (2020). Learning dual semantic relations with graph attention for image-text matching. IEEE transactions on circuits and systems for video technology, 31(7), 2866-2879.
    [CrossRef]   [Google Scholar]
  59. Chen, D., Li, Y., Yang, M., Zheng, H.-T., & Shen, Y. (2019). Knowledge-aware textual entailment with graph attention network. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 2145–2148).
    [CrossRef]   [Google Scholar]
  60. Wu, Q., Zhang, H., Gao, X., He, P., Weng, P., Gao, H., & Chen, G. (2019). Dual graph attention networks for deep latent representation of multifaceted social effects in recommender systems. In The World Wide Web Conference (pp. 2091–2102).
    [CrossRef]   [Google Scholar]
  61. Song, W., Xiao, Z., Wang, Y., Charlin, L., Zhang, M., & Tang, J. (2019). Session-based social recommendation via dynamic graph attention networks. In Proceedings of the Twelfth ACM international conference on web search and data mining (pp. 555–563).
    [CrossRef]   [Google Scholar]
  62. Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., & Yu, P. S. (2019). Heterogeneous graph attention network. In The world wide web conference (pp. 2022–2032).
    [CrossRef]   [Google Scholar]
  63. Wang, X., He, X., Cao, Y., Liu, M., & Chua, T.-S. (2019). Kgat: Knowledge graph attention network for recommendation. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 950–958).
    [CrossRef]   [Google Scholar]
  64. Harsha Vardhan, L. V., Jia, G., & Kok, S. (2020). Probabilistic logic graph attention networks for reasoning. In Companion Proceedings of the Web Conference 2020 (pp. 669–673).
    [CrossRef]   [Google Scholar]
  65. Yang, L., Wu, F., Gu, J., Wang, C., Cao, X., Jin, D., & Guo, Y. (2020). Graph attention topic modeling network. In Proceedings of The Web Conference 2020 (pp. 144–154).
    [CrossRef]   [Google Scholar]
  66. Huang, Q., Yu, J., Wu, J., & Wang, B. (2020). Heterogeneous graph attention networks for early detection of rumors on twitter. In 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8).
    [CrossRef]   [Google Scholar]
  67. Zhang, X., Huang, C., Xu, Y., & Xia, L. (2020). Spatial-temporal convolutional graph attention networks for citywide traffic flow forecasting. In Proceedings of the 29th ACM international conference on information & knowledge management (pp. 1853–1862).
    [CrossRef]   [Google Scholar]
  68. Wang, Y., Tang, S., Lei, Y., Song, W., Wang, S., & Zhang, M. (2020). Disenhan: Disentangled heterogeneous graph attention network for recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 1605–1614).
    [CrossRef]   [Google Scholar]
  69. Li, Y., Tian, Y., Zhang, J., & Chang, Y. (2020). Learning signed network embedding via graph attention. In Proceedings of the AAAI Conference on Artificial Intelligence (pp. 4772–4779).
    [CrossRef]   [Google Scholar]
  70. Zhang, Z., Huang, J., & Tan, Q. (2020). SR-HGAT: symmetric relations based heterogeneous graph attention network. IEEE Access, 8, 165631–165645.
    [CrossRef]   [Google Scholar]
  71. Tao, Z., Wei, Y., Wang, X., He, X., Huang, X., & Chua, T.-S. (2020). MGAT: multimodal graph attention network for recommendation. Information Processing & Management, 57(5), 102277.
    [CrossRef]   [Google Scholar]
  72. Liu, C., Sun, L., Ao, X., Feng, J., He, Q., & Yang, H. (2021). Intention-aware heterogeneous graph attention networks for fraud transactions detection. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (pp. 3280–3288).
    [CrossRef]   [Google Scholar]
  73. Chen, M. (2021). Short Text Generation Based on Adversarial Graph Attention Networks. In 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture (pp. 2889–2893).
    [CrossRef]   [Google Scholar]
  74. Yang, T., Hu, L., Shi, C., Ji, H., Li, X., & Nie, L. (2021). HGAT: Heterogeneous graph attention networks for semi-supervised short text classification. ACM Transactions on Information Systems (TOIS), 39(3), 1–29.
    [CrossRef]   [Google Scholar]
  75. Huo, Y., Jiang, D., & Sahli, H. (2021). Aspect-based Sentiment Analysis with Weighted Relational Graph Attention Network. In Companion Publication of the 2021 International Conference on Multimodal Interaction (pp. 63–70).
    [CrossRef]   [Google Scholar]
  76. Yao, D., Gu, Y., Cong, G., Jin, H., & Lv, X. (2022). Entity Resolution with Hierarchical Graph Attention Networks. In Proceedings of the 2022 International Conference on Management of Data (pp. 429–442).
    [CrossRef]   [Google Scholar]
  77. Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
    [Google Scholar]
  78. Shukla, S. S. P., & Singh, M. P. (2024). Stacked classification approach using optimized hybrid deep learning model for early prediction of behaviour changes on social media. ACM Transactions on Asian and Low-Resource Language Information Processing, 23(11), 1-22.
    [CrossRef]   [Google Scholar]
  79. Kanishka Silva, K. S., Can, B., Sarwar, R., Blain, F., & Mitkov, R. (2023). Text data augmentation using generative adversarial networks–a systematic review. Journal of Computational and Applied Linguistics, 1, 6-38.
    [CrossRef]   [Google Scholar]
  80. Izadi, M. R., Fang, Y., Stevenson, R., & Lin, L. (2020). Optimization of graph neural networks with natural gradient descent. In 2020 IEEE international conference on big data (big data) (pp. 171–179).
    [CrossRef]   [Google Scholar]
  81. Yang, C., Liu, J., & Shi, C. (2021). Extract the knowledge of graph neural networks and go beyond it: An effective knowledge distillation framework. In Proceedings of the web conference 2021 (pp. 1227–1237).
    [CrossRef]   [Google Scholar]
  82. Chen, M., Wei, Z., Huang, Z., Ding, B., & Li, Y. (2020). Simple and deep graph convolutional networks. In International conference on machine learning (pp. 1725–1735).
    [Google Scholar]
  83. Irfan, R., King, C. K., Grages, D., Ewen, S., Khan, S. U., Madani, S. A., ... & Li, H. (2015). A survey on text mining in social networks. The Knowledge Engineering Review, 30(2), 157-170.
    [CrossRef]   [Google Scholar]
  84. Stahl, F., Gaber, M. M., & Adedoyin-Olowe, M. (2014). A survey of data mining techniques for social network analysis. Journal of Data Mining and Digital Humanities, 18.
    [Google Scholar]
  85. Rehman, A., Paul, A., & Ahmad, A. (2020). A query based information search in an individual’s small world of social internet of things. Computer Communications, 163, 176–185.
    [CrossRef]   [Google Scholar]
  86. Rehman, A., Paul, A., Yaqub, M. A., & Rathore, M. M. U. (2020). Trustworthy intelligent industrial monitoring architecture for early event detection by exploiting social IoT. In Proceedings of the 35th Annual ACM Symposium on Applied Computing (pp. 2163–2169).
    [CrossRef]   [Google Scholar]
  87. Abdul, R., Paul, A., Gul M, J., Hong, W.-H., & Seo, H. (2018). Exploiting small world problems in a SIoT environment. Energies, 11(8), 2089.
    [CrossRef]   [Google Scholar]
  88. Kalusivalingam, A. K., Sharma, A., Patel, N., & Singh, V. (2020). Enhancing Customer Relationship Management with Natural Language Processing: A Comparative Study of BERT and LSTM Algorithms. International Journal of AI and ML, 1(2).
    [Google Scholar]
  89. Dash, B., Swayamsiddha, S., & Ali, A. I. (2023). Evolving of smart banking with NLP and deep learning. In Enabling Technologies for Effective Planning and Management in Sustainable Smart Cities (pp. 151-172). Cham: Springer International Publishing.
    [CrossRef]   [Google Scholar]
  90. Quân, T. M. (2024). A Strategic Analysis of AI-Driven Customer Relationship Management Systems in Enhancing Personalization and Retention in Financial Institutions. Orient Journal of Emerging Paradigms in Artificial Intelligence and Autonomous Systems, 14(9), 1-8.
    [Google Scholar]
  91. Ihsan, I., Rahman, H., Shaikh, A., Sulaiman, A., Rajab, K., & Rajab, A. (2023). Improving in-text citation reason extraction and classification using supervised machine learning techniques. Computer Speech & Language, 82, 101526.
    [CrossRef]   [Google Scholar]
  92. Bhagat, S., Cormode, G., & Muthukrishnan, S. (2011). Node classification in social networks. In Social network data analytics (pp. 115-148). Boston, MA: Springer US.
    [CrossRef]   [Google Scholar]
  93. Rong, Y., Huang, W., Xu, T., & Huang, J. (2019). Dropedge: Towards deep graph convolutional networks on node classification. arXiv preprint arXiv:1907.10903.
    [Google Scholar]
  94. Nanayakkara, A. C., Kumara, B. T. G. S., & Rathnayaka, R. M. K. T. (2021). A survey of finding trends in data mining techniques for social media analysis. Sri Lanka Journal of Social Sciences and Humanities, 1(2).
    [CrossRef]   [Google Scholar]
  95. Ergün, M. (2016). Using the techniques of data mining and text mining in educational research. Participatory Educational Research, 4(1), 140-151.
    [Google Scholar]
  96. Antons, D., Grünwald, E., Cichy, P., & Salge, T. O. (2020). The application of text mining methods in innovation research: current state, evolution patterns, and development priorities. R&D Management, 50(3), 329-351.
    [CrossRef]   [Google Scholar]
  97. Manzoor, H. U., Khan, A. R., Sher, T., Ahmad, W., & Zoha, A. (2023). Defending Federated Learning from Backdoor Attacks: Anomaly-Aware FedAVG with Layer-Based Aggregation. In 2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (pp. 1–6).
    [CrossRef]   [Google Scholar]
  98. Ihsan, I., Imran, A., Sher, T., Al-Rawi, M. B. A., Elmeligy, M. A., & Pathan, M. S. (2024). Graph-Based COVID-19 Detection Using Conditional Generative Adversarial Network. IEEE Access, 12, 191323–191344.
    [CrossRef]   [Google Scholar]
  99. Xu, Y., & Zhang, Y. (2023). Enhancement Economic System Based-Graph Neural Network in Stock Classification. IEEE Access, 11, 17956–17967.
    [CrossRef]   [Google Scholar]
  100. Xiao, B. Y., Tseng, C. C., & Lee, S. L. (2022, July). A Hypergraph Convolutional Neural Network for Node Classification of Citation Network Data. In 2022 IEEE International Conference on Consumer Electronics-Taiwan (pp. 243-244). IEEE.
    [CrossRef]   [Google Scholar]
  101. Li, B., & Pi, D. (2019). Learning deep neural networks for node classification. Expert Systems with Applications, 137, 324–334.
    [CrossRef]   [Google Scholar]
  102. Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10), 1345-1359.
    [CrossRef]   [Google Scholar]
  103. Antons, D., Grünwald, E., Cichy, P., & Salge, T. O. (2020). The application of text mining methods in innovation research: current state, evolution patterns, and development priorities. R&D Management, 50(3), 329–351.
    [CrossRef]   [Google Scholar]
  104. Sher, T., Rehman, A., Kim, D., & Ihsan, I. (2023). Exploiting Data Science for Measuring the Performance of Technology Stocks. Computers, Materials and Continua, 76(3), 2979-2995.
    [CrossRef]   [Google Scholar]
  105. Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 855–864).
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Sher, T., Rehman, A., & Ihsan, I. (2025). Transforming Citation Networks into Insights: Mapping Scholarly Influence with Advanced Graph Models. ICCK Transactions on Advanced Computing and Systems, 1(4), 238–257. https://doi.org/10.62762/TACS.2025.939169

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 91
PDF Downloads: 23

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
ICCK Transactions on Advanced Computing and Systems

ICCK Transactions on Advanced Computing and Systems

ISSN: 3068-7969 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/