-
CiteScore
-
Impact Factor
Volume 1, Issue 1, ICCK Transactions on Advanced Functional Materials and Processing
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Advanced Functional Materials and Processing, Volume 1, Issue 1, 2025: 25-31

Open Access | Research Article | 30 June 2025
Numerical Optimization of HTL-Free Perovskite Solar Cells: A Pathway to Enhanced Efficiency
1 Department of Physics, Sant Baba Bhag Singh University, Jalandhar, India
2 Department of Physics, Research & Incubation Center, Rayat Bahra University, Punjab, India
* Corresponding Author: Ankush Kumar Tangra, [email protected]
Received: 07 June 2025, Accepted: 28 June 2025, Published: 30 June 2025  
Abstract
Perovskite solar cells (PSCs) have appeared as an encouraging photovoltaic technology due to their high efficacy and low fabrication cost. However, their stability and scalability are hampered by charge recombination and intricate multilayer architectures. Using HTL-free design, this work explores reduced PSCs designs with the goal of reducing recombination losses and enhancing the overall device performance. Optimized ETL-only and HTL-free topologies may substantially decline the interfacial recombination and progress in charge extraction, according to numerical simulations conducted with SCAPS-1D. The FTO/α-Fe2O3/CH3NH3PbI3/Au device achieves a high power conversion efficiency (PCE) of 20.99 % with an open-circuit voltage (Voc) of 1.066 V, a short-circuit current density (Jsc) of 25.05 mA/cm2, and a fill factor (FF) of 78.59%. The essential of preserving thermal stability into account in HTL-free topologies is shown by temperature-dependent analysis, which reveals a tolerant decrease in PCE with increasing temperature. These effects show how enhanced HTL-free PSCs may lower manufacturing costs without sacrificing high photovoltaic performance.

Graphical Abstract
Numerical Optimization of HTL-Free Perovskite Solar Cells: A Pathway to Enhanced Efficiency

Keywords
SCAPS-1D
perovskite solar cell
HTL-free
efficiency

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Zhao, J., Wang, A., Taouk, M., Yun, F., Ebong, A., Stephens, A. W., ... & Green, M. A. (1993, May). 20\% efficient silicon solar cell modules. In Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference-1993 (Cat. No. 93CH3283-9) (pp. 1246-1249). IEEE.
    [CrossRef]   [Google Scholar]
  2. Schmidt-Mende, L., Dyakonov, V., Olthof, S., Ünlü, F., Lê, K. M. T., Mathur, S., ... & Draxl, C. (2021). Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. Apl Materials, 9(10).
    [CrossRef]   [Google Scholar]
  3. Hossain, M. K., Toki, G. I., Kuddus, A., Mohammed, M. K., Pandey, R., Madan, J., ... & Samajdar, D. P. (2023). Optimization of the architecture of lead-free CsSnCl3-perovskite solar cells for enhancement of efficiency: a combination of SCAPS-1D and wxAMPS study. Materials Chemistry and Physics, 308, 128281.
    [CrossRef]   [Google Scholar]
  4. Lotey, G. S., Sun, N. X., Tangra, A. K., Kanoun, M. B., Goumri-Said, S., Kanoun, A. A., ... & Garg, M. P. (2023). Boosting efficiency and stability of perovskite solar cells via integrating engineered Li/Na-ferrite-based inorganic charge transport layers: a combined experimental and theoretical study. Journal of Nanoparticle Research, 25(9), 179.
    [CrossRef]   [Google Scholar]
  5. Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., ... & Park, N. G. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9\%. Scientific reports, 2(1), 591.
    [CrossRef]   [Google Scholar]
  6. Park, J., Kim, J., Yun, H. S., Paik, M. J., Noh, E., Mun, H. J., ... & Seok, S. I. (2023). Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 616(7958), 724-730.
    [CrossRef]   [Google Scholar]
  7. Khattak, Y. H., Baig, F., Shuja, A., Atourki, L., Riaz, K., & Soucase, B. M. (2021). Device optimization of PIN structured perovskite solar cells: impact of design variants. ACS Applied Electronic Materials, 3(8), 3509-3520.
    [CrossRef]   [Google Scholar]
  8. Kosyachenko, L. A., Mathew, X., Paulson, P. D., Lytvynenko, V. Y., & Maslyanchuk, O. L. (2014). Optical and recombination losses in thin-film Cu (In, Ga) Se2 solar cells. Solar energy materials and solar cells, 130, 291-302.
    [CrossRef]   [Google Scholar]
  9. Chatzisideris, M. D., Espinosa, N., Laurent, A., & Krebs, F. C. (2016). Ecodesign perspectives of thin-film photovoltaic technologies: A review of life cycle assessment studies. Solar Energy Materials and Solar Cells, 156, 2-10.
    [CrossRef]   [Google Scholar]
  10. Xu, M., Bearda, T., Radhakrishnan, H. S., Jonnak, S. K., Hasan, M., Malik, S., ... & Poortmans, J. (2017). Silicon heterojunction interdigitated back-contact solar cells bonded to glass with efficiency> 21\%. Solar Energy Materials and Solar Cells, 165, 82-87.
    [CrossRef]   [Google Scholar]
  11. Medina-Montes, M. I., Vieyra-Brito, O., Mathews, N. R., & Mathew, X. (2018). Development of sputtered CuSbS2 thin films grown by sequential deposition of binary sulfides. Semiconductor Science and Technology, 33(5), 055004.
    [CrossRef]   [Google Scholar]
  12. Powalla, M., Paetel, S., Ahlswede, E., Wuerz, R., Wessendorf, C. D., & Magorian Friedlmeier, T. (2018). Thin‐film solar cells exceeding 22\% solar cell efficiency: An overview on CdTe-, Cu (In, Ga) Se2-, and perovskite-based materials. Applied Physics Reviews, 5(4).
    [CrossRef]   [Google Scholar]
  13. Xu, M., Bearda, T., Filipič, M., Radhakrishnan, H. S., Gordon, I., Szlufcik, J., & Poortmans, J. (2018). Simple emitter patterning of silicon heterojunction interdigitated back-contact solar cells using damage-free laser ablation. Solar Energy Materials and Solar Cells, 186, 78-83.
    [CrossRef]   [Google Scholar]
  14. Xu, M., Wang, C., Bearda, T., Simoen, E., Radhakrishnan, H. S., Gordon, I., ... & Poortmans, J. (2018). Dry passivation process for silicon heterojunction solar cells using hydrogen plasma treatment followed by in situ a-Si: H deposition. IEEE Journal of Photovoltaics, 8(6), 1539-1545.
    [CrossRef]   [Google Scholar]
  15. Cho, J., Melskens, J., Debucquoy, M., Recamán Payo, M., Jambaldinni, S., Bearda, T., ... & Poortmans, J. (2018). Passivating electron‐selective contacts for silicon solar cells based on an a‐Si: H/TiOx stack and a low work function metal. Progress in Photovoltaics: Research and Applications, 26(10), 835-845.
    [CrossRef]   [Google Scholar]
  16. Bouich, A., Hartiti, B., Ullah, S., Ullah, H., Touhami, M. E., Santos, D. M. F., & Mari, B. (2019). Experimental, theoretical, and numerical simulation of the performance of CuInxGa (1-x) S2-based solar cells. Optik, 183, 137-147.
    [CrossRef]   [Google Scholar]
  17. Abderrezek, M., & Djeghlal, M. E. (2020). Comparative study on Cu2ZnSn (S, Se) 4 based thin film solar cell performances by adding various back surface field (BSF) layers. Chinese Journal of Physics, 63, 231-239.
    [CrossRef]   [Google Scholar]
  18. Ahmad, F., Lakhtakia, A., Anderson, T. H., & Monk, P. B. (2020). Towards highly efficient thin-film solar cells with a graded-bandgap CZTSSe layer. Journal of Physics: Energy, 2(2), 025004.
    [CrossRef]   [Google Scholar]
  19. Baig, F., Khattak, Y. H., Shuja, A., Riaz, K., & Soucase, B. M. (2020). Performance investigation of Sb2Se3 based solar cell by device optimization, band offset engineering and Hole Transport Layer in SCAPS-1D. Current applied physics, 20(8), 973-981.
    [CrossRef]   [Google Scholar]
  20. Wang, Y., Xia, Z., Liang, J., Wang, X., Liu, Y., Liu, C., ... & Zhou, H. (2015). Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design. Semiconductor Science and Technology, 30(5), 054004.
    [CrossRef]   [Google Scholar]
  21. Huang, L., Sun, X., Li, C., Xu, R., Xu, J., Du, Y., ... & Zhang, J. (2016). Electron transport layer-free planar perovskite solar cells: further performance enhancement perspective from device simulation. Solar Energy Materials and Solar Cells, 157, 1038-1047.
    [CrossRef]   [Google Scholar]
  22. Kung, P. K., Li, M. H., Lin, P. Y., Chiang, Y. H., Chan, C. R., Guo, T. F., & Chen, P. (2018). A review of inorganic hole transport materials for perovskite solar cells. Advanced Materials Interfaces, 5(22), 1800882.
    [CrossRef]   [Google Scholar]
  23. Lin, L., Jiang, L., Li, P., Fan, B., Qiu, Y., & Yan, F. (2019). Simulation of optimum band structure of HTM-free perovskite solar cells based on ZnO electron transporting layer. Materials Science in Semiconductor Processing, 90, 1-6.
    [CrossRef]   [Google Scholar]
  24. Syafiq, U., Ataollahi, N., & Scardi, P. (2020). Progress in CZTS as hole transport layer in perovskite solar cell. Solar Energy, 196, 399-408.
    [CrossRef]   [Google Scholar]
  25. Ahmed, S., Shaffer, J., Harris, J., Pham, M., Daniel, A., Chowdhury, S., ... & Banerjee, S. (2019). Simulation studies of non-toxic tin-based perovskites: Critical insights into solar performance kinetics through comparison with standard lead-based devices. Superlattices and Microstructures, 130, 20-27.
    [CrossRef]   [Google Scholar]
  26. Tangra, A. K., Singh, S., Sun, N. X., & Lotey, G. S. (2019). Investigation of structural, Raman and photoluminescence properties of novel material: KFeO2 nanoparticles. Journal of Alloys and Compounds, 778, 47-52.
    [CrossRef]   [Google Scholar]
  27. Islam, M. T., Jani, M. R., Al Amin, S. M., Sami, M. S. U., Shorowordi, K. M., Hossain, M. I., ... & Ahmed, S. (2020). Numerical simulation studies of a fully inorganic Cs2AgBiBr6 perovskite solar device. Optical Materials, 105, 109957.
    [CrossRef]   [Google Scholar]
  28. Tangra, A. K., Sharma, M., Zainudeen, U. L., & Singh Lotey, G. (2020). Investigation of Inorganic electron–hole transport material for high efficiency, stable and low-cost perovskite solar cell. Journal of Materials Science: Materials in Electronics, 31, 13657-13666.
    [CrossRef]   [Google Scholar]
  29. Abdelaziz, S., Zekry, A., Shaker, A., & Abouelatta, M. J. O. M. (2020). Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Optical materials, 101, 109738.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Kumari, M., Kaur, M., & Tangra, A. K. (2025). Numerical Optimization of HTL-Free Perovskite Solar Cells: A Pathway to Enhanced Efficiency. ICCK Transactions on Advanced Functional Materials and Processing, 1(1), 25–31. https://doi.org/10.62762/TAFMP.2025.303826

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 130
PDF Downloads: 41

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
ICCK Transactions on Advanced Functional Materials and Processing

ICCK Transactions on Advanced Functional Materials and Processing

ISSN: request pending (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/