Volume 2, Issue 1, ICCK Transactions on Mobile and Wireless Intelligence
Volume 2, Issue 1, 2026
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Mobile and Wireless Intelligence, Volume 2, Issue 1, 2026: 1-20

Free to Read | Review Article | 01 January 2026
Exploring the Spectrum Frontier: Comparative Analysis of RF, mmWave, and THz Communication for 6G and Beyond
1 Department of Electronics and Communication Engineering, Yildiz Technical University, Istanbul 34220, Turkey
2 Department of Electronics Engineering, Turkish Air Force Academy, National Defense University, Istanbul 34149, Turkey
* Corresponding Author: Nazifa Mustari, [email protected]
ARK: ark:/57805/tmwi.2025.996592
Received: 09 February 2025, Accepted: 23 December 2025, Published: 01 January 2026  
Abstract
Wireless communication technologies are becoming increasingly important in today's rapidly developing technological world. The widespread use of the Internet, the popularity of smartphones and other mobile devices, and the rise in industrial applications have all contributed to the start of a new wireless communication technology revolution. As a result, 6th generation (6G) wireless communication technology is intended to provide enhanced performance features such as faster speeds, larger bandwidths, lower latency, higher connection density, and improved reliability. mmWave-band communications are already having a vital impact on 5G. Similarly, communications in the TeraHertz (THz)-band will be crucial for the next 6G and beyond. THz, mmWave, and RF communication technologies constitute the fundamental pillars of 6G; therefore, a comparative analysis of these technologies is essential for the robust design and development of future 6G networks. In this paper, a study of THz, mmWave, and RF communication technologies is presented with their roles in developing the 6G network. Firstly, an overview of THz, mmWave and RF technologies is presented. Then, the conventional channel modeling is discussed. After that, artificial intelligence (AI) based channel modeling is presented. Furthermore, challenges and future research directions are highlighted based on the current state of the art.

Graphical Abstract
Exploring the Spectrum Frontier: Comparative Analysis of RF, mmWave, and THz Communication for 6G and Beyond

Keywords
AI
applications
challenges
channel modeling
mmWave
RF
THz
6G

Data Availability Statement
Not applicable.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Shah, A. S., Qasim, A. N., Karabulut, M. A., Ilhan, H., & Islam, M. B. (2021). Survey and performance evaluation of multiple access schemes for next-generation wireless communication systems. IEEE Access, 9, 113428-113442.
    [CrossRef]   [Google Scholar]
  2. Shah, A. S. (2022, January). A survey from 1G to 5G including the advent of 6G: Architectures, multiple access techniques, and emerging technologies. In 2022 IEEE 12th annual computing and communication workshop and conference (CCWC) (pp. 1117-1123). IEEE.
    [CrossRef]   [Google Scholar]
  3. Letaief, K. B., Shi, Y., Lu, J., & Lu, J. (2021). Edge artificial intelligence for 6G: Vision, enabling technologies, and applications. IEEE journal on selected areas in communications, 40(1), 5-36.
    [CrossRef]   [Google Scholar]
  4. Sa'don, S. N. H., Kamarudin, M. R., Dahri, M. H., Ashyap, A. Y. I., Seman, F. C., Abbasi, M. I., & Abidin, Z. Z. (2020, December). The review and analysis of antenna for sixth generation (6G) applications. In 2020 IEEE International RF and Microwave Conference (RFM) (pp. 1-5). IEEE.
    [CrossRef]   [Google Scholar]
  5. Bai, L., Huang, Z., Zhang, X., & Cheng, X. (2021). A non-stationary 3D model for 6G massive MIMO mmWave UAV channels. IEEE Transactions on Wireless Communications, 21(6), 4325-4339.
    [CrossRef]   [Google Scholar]
  6. Serghiou, D., Khalily, M., Brown, T. W., & Tafazolli, R. (2022). Terahertz channel propagation phenomena, measurement techniques and modeling for 6G wireless communication applications: A survey, open challenges and future research directions. IEEE Communications Surveys & Tutorials, 24(4), 1957-1996.
    [CrossRef]   [Google Scholar]
  7. Chen, H., Sarieddeen, H., Ballal, T., Wymeersch, H., Alouini, M. S., & Al-Naffouri, T. Y. (2022). A tutorial on terahertz-band localization for 6G communication systems. IEEE Communications Surveys & Tutorials, 24(3), 1780-1815.
    [CrossRef]   [Google Scholar]
  8. Bashir, M. N., Iqbal, S., & Yusof, K. M. (2022, February). Design principles for cooperative relaying on uavs-based fanet. In 2022 Advances in Science and Engineering Technology International Conferences (ASET) (pp. 1-6). IEEE.
    [CrossRef]   [Google Scholar]
  9. Wang, J., Wang, C. X., Huang, J., Wang, H., & Gao, X. (2021). A general 3D space-time-frequency non-stationary THz channel model for 6G ultra-massive MIMO wireless communication systems. IEEE Journal on Selected Areas in Communications, 39(6), 1576-1589.
    [CrossRef]   [Google Scholar]
  10. Kokkoniemi, J., Jornet, J. M., Petrov, V., Koucheryavy, Y., & Juntti, M. (2021). Channel modeling and performance analysis of airplane-satellite terahertz band communications. IEEE Transactions on Vehicular Technology, 70(3), 2047-2061.
    [CrossRef]   [Google Scholar]
  11. Shen, L. H., Feng, K. T., & Hanzo, L. (2023). Five facets of 6G: Research challenges and opportunities. ACM Computing Surveys, 55(11), 1-39.
    [CrossRef]   [Google Scholar]
  12. Amodu, O. A., Jarray, C., Busari, S. A., & Othman, M. (2023). THz-enabled UAV communications: Motivations, results, applications, challenges, and future considerations. Ad Hoc Networks, 140, 103073.
    [CrossRef]   [Google Scholar]
  13. Cheng, C. L., Sangodoyin, S., & Zajić, A. (2020). THz cluster-based modeling and propagation characterization in a data center environment. IEEE Access, 8, 56544-56558.
    [CrossRef]   [Google Scholar]
  14. Liu, S., Yu, X., Guo, R., Tang, Y., & Zhao, Z. (2021). THz channel modeling: Consolidating the road to THz communications. China Communications, 18(5), 33-49.
    [CrossRef]   [Google Scholar]
  15. Guan, K., He, D., Ai, B., Chen, Y., Han, C., Peng, B., ... & Kuerner, T. (2021). Channel characterization and capacity analysis for THz communication enabled smart rail mobility. IEEE Transactions on Vehicular Technology, 70(5), 4065-4080.
    [CrossRef]   [Google Scholar]
  16. Ali, A., Khalily, M., Serghiou, D., & Tafazolli, R. (2023). Reflective metasurface with steered OAM beams for THz communications. IEEE access, 11, 12394-12401.
    [CrossRef]   [Google Scholar]
  17. Rikkinen, K., Kyosti, P., Leinonen, M. E., Berg, M., & Parssinen, A. (2020). THz radio communication: Link budget analysis toward 6G. IEEE Communications Magazine, 58(11), 22-27.
    [CrossRef]   [Google Scholar]
  18. Tan, J., & Dai, L. (2022). THz precoding for 6G: Challenges, solutions, and opportunities. IEEE Wireless Communications, 30(4), 132-138.
    [CrossRef]   [Google Scholar]
  19. Tekbıyık, K., Ekti, A. R., Kurt, G. K., & Görçin, A. (2019). Terahertz band communication systems: Challenges, novelties and standardization efforts. Physical Communication, 35, 100700.
    [CrossRef]   [Google Scholar]
  20. Guan, Z., & Kulkarni, T. (2019, April). On the effects of mobility uncertainties on wireless communications between flying drones in the mmWave/THz bands. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (pp. 768-773). IEEE.
    [CrossRef]   [Google Scholar]
  21. Shah, S. H. A., Aditya, S., & Rangan, S. (2021). Power-efficient beam tracking during connected mode DRX in mmWave and sub-THz systems. IEEE Journal on Selected Areas in Communications, 39(6), 1711-1724.
    [CrossRef]   [Google Scholar]
  22. Bandyopadhyay, A. (2023, March). Differentiated silicon technologies for mmWave 5G and 6G applications. In 2023 IEEE International Reliability Physics Symposium (IRPS) (pp. 1-4). IEEE.
    [CrossRef]   [Google Scholar]
  23. Uwaechia, A. N., & Mahyuddin, N. M. (2020). A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: Feasibility and challenges. IEEE Access, 8, 62367-62414.
    [CrossRef]   [Google Scholar]
  24. Jiang, W., & Schotten, H. D. (2022, April). Initial beamforming for millimeter-wave and terahertz communications in 6G mobile systems. In 2022 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 2613-2618). IEEE.
    [CrossRef]   [Google Scholar]
  25. Ballesteros, C., Montero, L., Ramirez, G. A., & Jofre-Roca, L. (2022). Multi-antenna 3D pattern design for millimeter-wave vehicular communications. Vehicular Communications, 35, 100473.
    [CrossRef]   [Google Scholar]
  26. Guo, Y. J., Ansari, M., Ziolkowski, R. W., & Fonseca, N. J. (2021). Quasi-optical multi-beam antenna technologies for B5G and 6G mmWave and THz networks: A review. IEEE Open Journal of Antennas and Propagation, 2, 807-830.
    [CrossRef]   [Google Scholar]
  27. Porambage, P., Gür, G., Osorio, D. P. M., Livanage, M., & Ylianttila, M. (2021, June). 6G security challenges and potential solutions. In 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit) (pp. 622-627). IEEE.
    [CrossRef]   [Google Scholar]
  28. Di Renzo, M., Zappone, A., Debbah, M., Alouini, M. S., Yuen, C., De Rosny, J., & Tretyakov, S. (2020). Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead. IEEE journal on selected areas in communications, 38(11), 2450-2525.
    [CrossRef]   [Google Scholar]
  29. Petrov, V., Komarov, M., Moltchanov, D., Jornet, J. M., & Koucheryavy, Y. (2017). Interference and SINR in millimeter wave and terahertz communication systems with blocking and directional antennas. IEEE Transactions on Wireless Communications, 16(3), 1791-1808.
    [CrossRef]   [Google Scholar]
  30. Chelli, A., Kansanen, K., Alouini, M. S., & Balasingham, I. (2018). On bit error probability and power optimization in multihop millimeter wave relay systems. IEEE Access, 6, 3794-3808.
    [CrossRef]   [Google Scholar]
  31. Pi, Z., Choi, J., & Heath, R. (2016). Millimeter-wave gigabit broadband evolution toward 5G: Fixed access and backhaul. IEEE Communications Magazine, 54(4), 138-144.
    [CrossRef]   [Google Scholar]
  32. Rasheed, I., & Hu, F. (2021). Intelligent super-fast Vehicle-to-Everything 5G communications with predictive switching between mmWave and THz links. Vehicular Communications, 27, 100303.
    [CrossRef]   [Google Scholar]
  33. Cui, J., Ding, Z., Fan, P., & Al-Dhahir, N. (2018). Unsupervised machine learning-based user clustering in millimeter-wave-NOMA systems. IEEE Transactions on Wireless Communications, 17(11), 7425-7440.
    [CrossRef]   [Google Scholar]
  34. Xiao, Z., Zhu, L., Liu, Y., Yi, P., Zhang, R., Xia, X. G., & Schober, R. (2021). A survey on millimeter-wave beamforming enabled UAV communications and networking. IEEE Communications Surveys & Tutorials, 24(1), 557-610.
    [CrossRef]   [Google Scholar]
  35. Tarboush, S., Sarieddeen, H., Chen, H., Loukil, M. H., Jemaa, H., Alouini, M. S., & Al-Naffouri, T. Y. (2021). TeraMIMO: A channel simulator for wideband ultra-massive MIMO terahertz communications. IEEE Transactions on Vehicular Technology, 70(12), 12325-12341.
    [CrossRef]   [Google Scholar]
  36. Lie, D. Y., Mayeda, J. C., & Lopez, J. (2021, September). RF hardware design for 5G mm-wave and 6G revolutions: Challenges and opportunities. In 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW) (pp. 1-2). IEEE.
    [CrossRef]   [Google Scholar]
  37. Payami, S., Nikitopoulos, K., Khalily, M., & Tafazolli, R. (2021). A signal processing framework for agile RF beamforming: From RF-chain-free to hybrid beamformers. IEEE transactions on communications, 69(6), 4038-4053.
    [CrossRef]   [Google Scholar]
  38. Guo, J., Wen, C. K., & Jin, S. (2023). AI-Native Air Interface. In Fundamentals of 6G Communications and Networking (pp. 143-163). Cham: Springer International Publishing.
    [CrossRef]   [Google Scholar]
  39. Sarkar, P., & Saha, A. (2023). Evolution of 6G and terahertz communication. In Optical to Terahertz Engineering (pp. 45-58). Singapore: Springer Nature Singapore.
    [CrossRef]   [Google Scholar]
  40. Alghamdi, R., Alhadrami, R., Alhothali, D., Almorad, H., Faisal, A., Helal, S., ... & Alouini, M. S. (2020). Intelligent surfaces for 6G wireless networks: A survey of optimization and performance analysis techniques. IEEE Access, 8, 202795-202818.
    [CrossRef]   [Google Scholar]
  41. Attiah, M. L., Isa, A. A. M., Zakaria, Z., Abdulhameed, M. K., Mohsen, M. K., & Ali, I. (2020). A survey of mmWave user association mechanisms and spectrum sharing approaches: An overview, open issues and challenges, future research trends. Wireless Networks, 26(4), 2487-2514.
    [CrossRef]   [Google Scholar]
  42. Kumar, T. S. (2025, June). AI-augmented metasurface-aided THz communication: A comprehensive survey and future research directions. In ECCSUBMIT Conferences (Vol. 3, No. 2, pp. 1-9).
    [Google Scholar]
  43. Ratul, R. H., & Wang, H. C. (2023, July). Cellular communication network evolution and the reliability of system design from 1g to 6g. In International Conference on Wireless Intelligent and Distributed Environment for Communication (pp. 165-187). Cham: Springer International Publishing.
    [CrossRef]   [Google Scholar]
  44. Liu, R., Zhang, L., Li, R. Y. N., & Di Renzo, M. (2025). The itu vision and framework for 6g: Scenarios, capabilities, and enablers. IEEE Vehicular Technology Magazine.
    [CrossRef]   [Google Scholar]
  45. Gao, Y., Xue, H., Zhang, L., & Sun, E. (2023). UAV trajectory design and power optimization for terahertz band-integrated sensing and communications. Sensors, 23(6), 3005.
    [CrossRef]   [Google Scholar]
  46. Akyildiz, I. F., Han, C., Hu, Z., Nie, S., & Jornet, J. M. (2022). Terahertz band communication: An old problem revisited and research directions for the next decade. IEEE Transactions on Communications, 70(6), 4250-4285.
    [CrossRef]   [Google Scholar]
  47. Farrag, S., Maher, E., El-Mahdy, A., & Dressler, F. (2021). Performance analysis of UAV assisted mobile communications in THz channel. IEEE Access, 9, 160104-160115.
    [CrossRef]   [Google Scholar]
  48. Nabati, M., Mahmoodi, T., Pal, S., & Sarkar, S. (2025). Opportunities & Challenges of Native Sensing in 6G: A Survey on Research and Standardization. IEEE Internet of Things Journal.
    [CrossRef]   [Google Scholar]
  49. Sharma, D., Tilwari, V., & Pack, S. (2024). An overview for Designing 6G Networks: Technologies, Spectrum Management, Enhanced Air Interface and AI/ML Optimization. IEEE Internet of Things Journal.
    [CrossRef]   [Google Scholar]
  50. Cui, J., Liu, Y., Ding, Z., Fan, P., Nallanathan, A., & Hanzo, L. (2019). Next-generation mm-wave small-cell networks: Multiple access, caching, and resource management. IEEE Vehicular Technology Magazine, 15(1), 46-53.
    [CrossRef]   [Google Scholar]
  51. Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE journal on selected areas in communications, 32(6), 1164-1179.
    [CrossRef]   [Google Scholar]
  52. Jain, P., Gupta, A., Kumar, N., & Guizani, M. (2023). Dynamic and efficient spectrum utilization for 6G with THz, mmWave, and RF band. IEEE Transactions on Vehicular Technology, 72(3), 3264-3273.
    [CrossRef]   [Google Scholar]
  53. Karim, R., Iftikhar, A., & Ramzan, R. (2020). Performance-issues-mitigation-techniques for on-chip-antennas–Recent developments in RF, MM-Wave, and THz bands with future directions. IEEE Access, 8, 219577-219610.
    [CrossRef]   [Google Scholar]
  54. Khawam, K., Lahoud, S., El Helou, M., Martin, S., & Gang, F. (2020). Coordinated framework for spectrum allocation and user association in 5G HetNets with mmWave. IEEE Transactions on Mobile Computing, 21(4), 1226-1243.
    [CrossRef]   [Google Scholar]
  55. Han, C., & Akyildiz, I. F. (2016). Distance-aware bandwidth-adaptive resource allocation for wireless systems in the terahertz band. IEEE Transactions on Terahertz Science and Technology, 6(4), 541-553.
    [CrossRef]   [Google Scholar]
  56. Dai, L., Wang, B., Peng, M., & Chen, S. (2018). Hybrid precoding-based millimeter-wave massive MIMO-NOMA with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 37(1), 131-141.
    [CrossRef]   [Google Scholar]
  57. Jain, P., Gupta, A., Kumar, N., Joshi, G. P., & Cho, W. (2022). Performance evaluation of cooperative OMA and NOMA systems in 6G deployment scenarios. Sensors, 22(11), 3986.
    [CrossRef]   [Google Scholar]
  58. Ma, X., Gao, Z., Gao, F., & Di Renzo, M. (2021). Model-driven deep learning based channel estimation and feedback for millimeter-wave massive hybrid MIMO systems. IEEE Journal on Selected Areas in Communications, 39(8), 2388–2406.
    [CrossRef]   [Google Scholar]
  59. Huang, C., He, R., Ai, B., Molisch, A. F., Lau, B. K., Haneda, K., ... & Zhong, Z. (2022). Artificial intelligence enabled radio propagation for communications—Part II: Scenario identification and channel modeling. IEEE Transactions on Antennas and Propagation, 70(6), 3955-3969.
    [CrossRef]   [Google Scholar]
  60. Huang, C., He, R., Ai, B., Molisch, A. F., Lau, B. K., Haneda, K., ... & Zhong, Z. (2022). Artificial intelligence enabled radio propagation for communications—Part I: Channel characterization and antenna-channel optimization. IEEE Transactions on Antennas and Propagation, 70(6), 3939-3954.
    [CrossRef]   [Google Scholar]
  61. Bose, P., Khaleghi, A., Albatat, M., Bergsland, J., & Balasingham, I. (2018). RF channel modeling for implant-to-implant communication and implant to subcutaneous implant communication for future leadless cardiac pacemakers. IEEE Transactions on Biomedical Engineering, 65(12), 2798–2807.
    [CrossRef]   [Google Scholar]
  62. Wang, Z., Zhang, J., Du, H., Sha, W. E., Ai, B., Niyato, D., & Debbah, M. (2023). Extremely large-scale MIMO: Fundamentals, challenges, solutions, and future directions. IEEE Wireless Communications, 31(3), 117-124.
    [CrossRef]   [Google Scholar]
  63. He, D., Ai, B., Guan, K., Wang, L., Zhong, Z., & Kürner, T. (2018). The design and applications of high-performance ray-tracing simulation platform for 5G and beyond wireless communications: A tutorial. IEEE communications surveys & tutorials, 21(1), 10-27.
    [CrossRef]   [Google Scholar]
  64. Yang, Y., Gao, F., Ma, X., & Zhang, S. (2019). Deep learning-based channel estimation for doubly selective fading channels. IEEE Access, 7, 36579-36589.
    [CrossRef]   [Google Scholar]
  65. Murshed, R. U., Ashraf, Z. B., Hridhon, A. H., Munasinghe, K., Jamalipour, A., & Hossain, M. F. (2023). A cnn-lstm-based fusion separation deep neural network for 6g ultra-massive mimo hybrid beamforming. IEEE Access, 11, 38614-38630.
    [CrossRef]   [Google Scholar]
  66. Pathak, V., Chethan, R., Pandya, R. J., Iyer, S., & Bhatia, V. (2024). Deep learning based energy, spectrum, and SINR-margin tradeoff enabled resource allocation strategies for 6G. IEEE Access, 12, 74024–74044.
    [CrossRef]   [Google Scholar]
  67. Gizzini, A. K., Medjahdi, Y., Ghandour, A. J., & Clavier, L. (2024). Towards explainable AI for channel estimation in wireless communications. IEEE Transactions on Vehicular Technology, 73(5), 7389–7394.
    [CrossRef]   [Google Scholar]
  68. Zhang, Z., Zhang, J., Zhang, Y., Yu, L., & Liu, G. (2023). AI-based time-, frequency-, and space-domain channel extrapolation for 6G: Opportunities and challenges. IEEE Vehicular Technology Magazine, 18(1), 29–39.
    [CrossRef]   [Google Scholar]
  69. Wang, C. X., Di Renzo, M., Stanczak, S., Wang, S., & Larsson, E. G. (2020). Artificial intelligence enabled wireless networking for 5G and beyond: Recent advances and future challenges. IEEE Wireless Communications, 27(1), 16-23.
    [CrossRef]   [Google Scholar]
  70. Xie, H., Tian, X., & Zhang, K. (2022, July). Noise Reduction Method Based on Wavelet Analysis for RF side-channel Signals. In 2022 Global Conference on Robotics, Artificial Intelligence and Information Technology (GCRAIT) (pp. 668-672). IEEE.
    [CrossRef]   [Google Scholar]
  71. Linna, W., & Xue, W. (2023, December). Research on Millimeter Wave Communication System Based on Integrated Computer Artificial Intelligence Technology. In 2023 IEEE 6th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE) (pp. 918-922). IEEE.
    [CrossRef]   [Google Scholar]
  72. Tarafder, P., Ahmed, I., Rawat, D. B., Annavajjala, R., & Mishra, K. V. (2024, October). Deep Learning Model-Based Channel Estimation for THz Band Massive MIMO with RF Impairments. In MILCOM 2024-2024 IEEE Military Communications Conference (MILCOM) (pp. 282-287). IEEE.
    [CrossRef]   [Google Scholar]
  73. Yang, Y., Li, Y., Zhang, W., Qin, F., Zhu, P., & Wang, C. X. (2019). Generative-adversarial-network-based wireless channel modeling: Challenges and opportunities. IEEE Communications Magazine, 57(3), 22-27.
    [CrossRef]   [Google Scholar]
  74. Mendu, U., & Mendu, V. S. P. (2023). An Artificial Neural Network Model for Predicting the Nanofluids’ Optimal Velocity and Skin Friction in a Convergent Channel. IEEE Access, 11, 123820-123829.
    [CrossRef]   [Google Scholar]
  75. Wang, Y. (2025, August). A Hybrid Deep Learning-Based Spatio-Temporal Channel State Estimation Framework for 5G/6G High-Mobility Scenarios. In 2025 5th International Conference on Intelligent Communications and Computing (ICICC) (pp. 188-193). IEEE.
    [CrossRef]   [Google Scholar]
  76. Jiang, W., & Schotten, H. D. (2019). Neural network-based fading channel prediction: A comprehensive overview. IEEE Access, 7, 118112-118124.
    [CrossRef]   [Google Scholar]
  77. Lu, C., Pathak, S., Englebienne, G., & Seifert, C. (2022). Channel Contribution in Deep Learning Based Automatic Sleep Scoring—How Many Channels Do We Need?. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 494-505.
    [CrossRef]   [Google Scholar]
  78. Iliya, S., Goodyer, E., Shell, J., Gongora, M., & Gow, J. (2014, October). Optimized neural network using differential evolutionary and swarm intelligence optimization algorithms for rf power prediction in cognitive radio network: A comparative study. In 2014 IEEE 6th International Conference on Adaptive Science & Technology (ICAST) (pp. 1-7). IEEE.
    [CrossRef]   [Google Scholar]
  79. Mengjiao, Z., Yu, L., Jie, H., Ruisi, H., Jingfan, Z., Chongyang, Y., & Chengxiang, W. (2024). Artificial intelligence based multi-scenario mmWave channel modeling for intelligent high-speed train communications. China Communications, 21(3), 260-272.
    [CrossRef]   [Google Scholar]
  80. Lan, X., Taghia, J., Moradi, F., Khoshkholghi, M. A., Zec, E. L., Mogren, O., ... & Johnsson, A. (2023). Federated learning for performance prediction in multi-operator environments. ITU Journal on Future and Evolving Technologies, 4(1), 166-177.
    [Google Scholar]
  81. Rahim, M., Nguyen, T. L., Kaddoum, G., & Do, T. N. (2024). Multi-IRS-aided terahertz networks: Channel modeling and user association with imperfect CSI. IEEE Open Journal of the Communications Society, 5, 836-855.
    [CrossRef]   [Google Scholar]
  82. Tian, N., Wang, X., Xu, Y., Wang, R., Lian, G., & Zhang, L. (2023, November). Terahertz Characterization for Debonding Defects of Composites based on the Group-CNN Network. In 2023 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD) (pp. 1-5). IEEE.
    [CrossRef]   [Google Scholar]
  83. Zardi, F., Nayeri, P., Rocca, P., & Haupt, R. (2020). Artificial intelligence for adaptive and reconfigurable antenna arrays: A review. IEEE Antennas and Propagation Magazine, 63(3), 28-38.
    [CrossRef]   [Google Scholar]
  84. Challita, U., Ryden, H., & Tullberg, H. (2020). When machine learning meets wireless cellular networks: Deployment, challenges, and applications. IEEE Communications Magazine, 58(6), 12–18.
    [CrossRef]   [Google Scholar]
  85. Khan, M. Q., Gaber, A., Schulz, P., & Fettweis, G. (2023). Machine learning for millimeter wave and terahertz beam management: A survey and open challenges. IEEE Access, 11, 11880-11902.
    [CrossRef]   [Google Scholar]
  86. Aldosary, A. M., Aldossari, S. A., Chen, K. C., Mohamed, E. M., & Al-Saman, A. (2021). Predictive wireless channel modeling of mmwave bands using machine learning. Electronics, 10(24), 3114.
    [CrossRef]   [Google Scholar]
  87. Aldossari, S. M., & Chen, K. C. (2019). Machine learning for wireless communication channel modeling: An overview. Wireless Personal Communications, 106(1), 41-70.
    [CrossRef]   [Google Scholar]
  88. Xue, Q., Ji, C., Ma, S., Guo, J., Xu, Y., Chen, Q., & Zhang, W. (2024). A survey of beam management for mmWave and THz communications towards 6G. IEEE Communications Surveys & Tutorials, 26(3), 1520-1559.
    [CrossRef]   [Google Scholar]
  89. Li, J., Niu, Y., Wu, H., Ai, B., Chen, S., Feng, Z., ... & Wang, N. (2022). Mobility support for millimeter wave communications: Opportunities and challenges. IEEE Communications Surveys & Tutorials, 24(3), 1816-1842.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Mustari, N., Karabult, M. A., Shah, A. F. M. S., Ilhan, H., & Tureli, U. (2026). Exploring the Spectrum Frontier: Comparative Analysis of RF, mmWave, and THz Communication for 6G and Beyond. ICCK Transactions on Mobile and Wireless Intelligence, 2(1), 1–20. https://doi.org/10.62762/TMWI.2025.996592
Export Citation
RIS Format
Compatible with EndNote, Zotero, Mendeley, and other reference managers
RIS format data for reference managers
TY  - JOUR
AU  - Mustari, Nazifa
AU  - Karabult, Muhammet Ali
AU  - Shah, A. F. M. Shahen
AU  - Ilhan, Haci
AU  - Tureli, Ufuk
PY  - 2026
DA  - 2026/01/01
TI  - Exploring the Spectrum Frontier: Comparative Analysis of RF, mmWave, and THz Communication for 6G and Beyond
JO  - ICCK Transactions on Mobile and Wireless Intelligence
T2  - ICCK Transactions on Mobile and Wireless Intelligence
JF  - ICCK Transactions on Mobile and Wireless Intelligence
VL  - 2
IS  - 1
SP  - 1
EP  - 20
DO  - 10.62762/TMWI.2025.996592
UR  - https://www.icck.org/article/abs/TMWI.2025.996592
KW  - AI
KW  - applications
KW  - challenges
KW  - channel modeling
KW  - mmWave
KW  - RF
KW  - THz
KW  - 6G
AB  - Wireless communication technologies are becoming increasingly important in today's rapidly developing technological world. The widespread use of the Internet, the popularity of smartphones and other mobile devices, and the rise in industrial applications have all contributed to the start of a new wireless communication technology revolution. As a result, 6th generation (6G) wireless communication technology is intended to provide enhanced performance features such as faster speeds, larger bandwidths, lower latency, higher connection density, and improved reliability. mmWave-band communications are already having a vital impact on 5G. Similarly, communications in the TeraHertz (THz)-band will be crucial for the next 6G and beyond. THz, mmWave, and RF communication technologies constitute the fundamental pillars of 6G; therefore, a comparative analysis of these technologies is essential for the robust design and development of future 6G networks. In this paper, a study of THz, mmWave, and RF communication technologies is presented with their roles in developing the 6G network. Firstly, an overview of THz, mmWave and RF technologies is presented. Then, the conventional channel modeling is discussed. After that, artificial intelligence (AI) based channel modeling is presented. Furthermore, challenges and future research directions are highlighted based on the current state of the art.
SN  - 3069-0692
PB  - Institute of Central Computation and Knowledge
LA  - English
ER  - 
BibTeX Format
Compatible with LaTeX, BibTeX, and other reference managers
BibTeX format data for LaTeX and reference managers
@article{Mustari2026Exploring,
  author = {Nazifa Mustari and Muhammet Ali Karabult and A. F. M. Shahen Shah and Haci Ilhan and Ufuk Tureli},
  title = {Exploring the Spectrum Frontier: Comparative Analysis of RF, mmWave, and THz Communication for 6G and Beyond},
  journal = {ICCK Transactions on Mobile and Wireless Intelligence},
  year = {2026},
  volume = {2},
  number = {1},
  pages = {1-20},
  doi = {10.62762/TMWI.2025.996592},
  url = {https://www.icck.org/article/abs/TMWI.2025.996592},
  abstract = {Wireless communication technologies are becoming increasingly important in today's rapidly developing technological world. The widespread use of the Internet, the popularity of smartphones and other mobile devices, and the rise in industrial applications have all contributed to the start of a new wireless communication technology revolution. As a result, 6th generation (6G) wireless communication technology is intended to provide enhanced performance features such as faster speeds, larger bandwidths, lower latency, higher connection density, and improved reliability. mmWave-band communications are already having a vital impact on 5G. Similarly, communications in the TeraHertz (THz)-band will be crucial for the next 6G and beyond. THz, mmWave, and RF communication technologies constitute the fundamental pillars of 6G; therefore, a comparative analysis of these technologies is essential for the robust design and development of future 6G networks. In this paper, a study of THz, mmWave, and RF communication technologies is presented with their roles in developing the 6G network. Firstly, an overview of THz, mmWave and RF technologies is presented. Then, the conventional channel modeling is discussed. After that, artificial intelligence (AI) based channel modeling is presented. Furthermore, challenges and future research directions are highlighted based on the current state of the art.},
  keywords = {AI, applications, challenges, channel modeling, mmWave, RF, THz, 6G},
  issn = {3069-0692},
  publisher = {Institute of Central Computation and Knowledge}
}

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 376
PDF Downloads: 77

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
Institute of Central Computation and Knowledge (ICCK) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ICCK Transactions on Mobile and Wireless Intelligence

ICCK Transactions on Mobile and Wireless Intelligence

ISSN: 3069-0692 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/