-
CiteScore
-
Impact Factor
Volume 2, Issue 3, ICCK Transactions on Sensing, Communication, and Control
Volume 2, Issue 3, 2025
Submit Manuscript Edit a Special Issue
Academic Editor
Achyut Shankar
Achyut Shankar
University of warwick, United Kingdom
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Sensing, Communication, and Control, Volume 2, Issue 3, 2025: 168-199

Review Article | 28 July 2025
Strain Sensing Technologies: Recent Developments in Materials, Performance, and Applications
1 Centre for Advanced Electronics & and Photovoltaic Engineering, International Islamic University, Islamabad, Pakistan
2 Department of Electrical and Electronic Engineering, Beaconhouse International College, Islamabad, Pakistan
3 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
4 Faculty of Electrical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, K.P.K, Pakistan
* Corresponding Authors: Gul Hassan, [email protected] ; Bilal Mushtaq, [email protected]
Received: 19 May 2025, Accepted: 18 June 2025, Published: 28 July 2025  
Abstract
Strain sensors have become fundamental to contemporary sensing technology driven by the growing demand for flexible, sensitive, and durable sensors, transforming across a broad range of applications including medical care, robotics, structural monitoring, human-machine interface and robotics. The swift progress in the fields of materials and nanotechnology has facilitated the fabrication of very flexible, resilient, and ultra-sensitive strain sensors, enabling the emergence of next-generation electronic devices. This mini review covers sensors, strain sensors' fundamentals, classifications, innovative materials utilized, applications overall provide an in-depth analysis of the latest developments in strain sensor. Emerging materials that have together pushed the limits of sensor performance in terms of gauge factors, stretchability, reaction time, and durability are highlighted, including self-healing polymers, hybrid nanomaterials, graphene derivatives, carbon nanotube composites, and hydrogels. Even with impressive advancements, issues like biocompatibility, durability and many more factors continue to be major roadblocks to practical integration. Additionally, innovative solutions that enhance mechanical conformance and long-term stability are addressed in conjunction with challenges associated with packaging, integration, and other factors. This article offers a thorough roadmap for future research and real-world application of strain sensors in wearable electronics, soft robotics, and healthcare monitoring systems by combining recent literature and emphasizing important insights into the engineering of materials and functional performance. Finally, the analysis highlights emerging trends and possible prospects for next-generation strain sensing technologies that combine multi-functionality, self-healing, and scalable fabrication to fulfill real-world application demands.

Graphical Abstract
Strain Sensing Technologies: Recent Developments in Materials, Performance, and Applications

Keywords
strain sensors
hydrogels
flexible wearable technology
biomedical applications
nano materials
polymers

Data Availability Statement
Not applicable.

Funding
This work was supported by the National Research Program for Universities- NRPU (20-15054/NRPU/R&D/HEC/2021 2021) funded by the Higher Education Commission, Pakistan.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Zhang, X., Chai, J., Zhan, Y., Cui, D., Wang, X., & Gao, L. (2025). Design, Fabrication, and Application of Large-Area Flexible Pressure and Strain Sensor Arrays: A Review. Micromachines, 16(3), 330.
    [CrossRef]   [Google Scholar]
  2. Lv, R., Cao, X., Zhang, T., Ji, W., Muhammad, U., Chen, J., & Wei, Y. (2025). A highly stretchable, self-healing, self-adhesive polyacrylic acid/chitosan multifunctional composite hydrogel for flexible strain sensors. Carbohydrate Polymers, 351, 123111.
    [CrossRef]   [Google Scholar]
  3. Fu, Q., Tang, J., Wang, W., & Wang, R. (2025). Biocomposite polyvinyl alcohol/ferritin hydrogels with enhanced stretchability and conductivity for flexible strain sensors. Gels, 11(1), 59.
    [CrossRef]   [Google Scholar]
  4. Min, S., An, J., Lee, J. H., Kim, J. H., Joe, D. J., Eom, S. H., ... & Lee, K. J. (2025). Wearable blood pressure sensors for cardiovascular monitoring and machine learning algorithms for blood pressure estimation. Nature Reviews Cardiology, 1-20.
    [CrossRef]   [Google Scholar]
  5. Li, X., Huang, X., Yang, L., Jung, S., Wang, J., & Zhao, H. (2025). Implantable physical sensors for in vivo organ monitoring. Med-X, 3(1), 1–32.
    [CrossRef]   [Google Scholar]
  6. Li, S., Wang, H., Ma, W., Qiu, L., Xia, K., Zhang, Y., ... & Zhang, Y. (2023). Monitoring blood pressure and cardiac function without positioning via a deep learning–assisted strain sensor array. Science advances, 9(32), eadh0615.
    [CrossRef]   [Google Scholar]
  7. Wu, Z., Zhang, L., Wang, M., Zang, D., Long, H., Weng, L., ... & Xu, B. B. (2025). A wearable ionic hydrogel strain sensor with double cross-linked network for human–machine interface. Advanced Composites and Hybrid Materials, 8(1), 17.
    [CrossRef]   [Google Scholar]
  8. Zhou, L., Zhao, B., Liang, J., Lu, F., Yang, W., Xu, J., ... & Liu, Z. (2024). Low hysteresis, water retention, anti-freeze multifunctional hydrogel strain sensor for human–machine interfacing and real-time sign language translation. Materials Horizons, 11(16), 3856-3866.
    [CrossRef]   [Google Scholar]
  9. Chen, C., Pang, X., Li, Y., & Yu, X. (2024). Ultrafast self‐healing, superstretchable, and ultra‐strong polymer cluster‐based adhesive based on aromatic acid cross‐linkers for excellent hydrogel strain sensors. Small, 20(19), 2305875.
    [CrossRef]   [Google Scholar]
  10. Sun, F., Liu, L., Liu, T., Wang, X., Qi, Q., Hang, Z., ... & Fu, J. (2023). Vascular smooth muscle-inspired architecture enables soft yet tough self-healing materials for durable capacitive strain-sensor. Nature communications, 14(1), 130.
    [CrossRef]   [Google Scholar]
  11. Liu, L., Guo, X., Liu, W., & Lee, C. (2021). Recent progress in the energy harvesting technology—from self-powered sensors to self-sustained IoT, and new applications. Nanomaterials, 11(11), 2975.
    [CrossRef]   [Google Scholar]
  12. Khalid, M. A. U., & Chang, S. H. (2022). Flexible strain sensors for wearable applications fabricated using novel functional nanocomposites: A review. Composite Structures, 284, 115214.
    [CrossRef]   [Google Scholar]
  13. Wang, R., Sun, L., Zhu, X., Ge, W., Li, H., Li, Z., ... & Lan, H. (2023). Carbon nanotube‐based strain sensors: Structures, fabrication, and applications. Advanced Materials Technologies, 8(1), 2200855.
    [CrossRef]   [Google Scholar]
  14. Choi, Y. K., Park, T., Lee, D. H. D., Ahn, J., Kim, Y. H., Jeon, S., ... & Oh, S. J. (2022). Wearable anti-temperature interference strain sensor with metal nanoparticle thin film and hybrid ligand exchange. Nanoscale, 14(24), 8628-8639.
    [CrossRef]   [Google Scholar]
  15. Gu, X., Sun, J., Yuan, Y., Tian, X., Ding, Y., & Qin, W. (2025). Flexible, stretchable MXene/polydopamine@ Natural rubber-based strain sensor with core-shell structures. Sensors and Actuators A: Physical, 386, 116350.
    [CrossRef]   [Google Scholar]
  16. Dang, X., Fu, Y., & Wang, X. (2024). A temperature and pressure dual-responsive, stretchable, healable, adhesive, and biocompatible carboxymethyl cellulose-based conductive hydrogels for flexible wearable strain sensor. Biosensors and Bioelectronics, 246, 115893.
    [CrossRef]   [Google Scholar]
  17. Lee, J. H., Bae, J. Y., Kim, Y. N., Chae, M., Lee, W. J., Lee, J., ... & Kang, S. K. (2024). A Fully Biodegradable and Ultra‐Sensitive Crack‐Based Strain Sensor for Biomechanical Signal Monitoring. Advanced Functional Materials, 34(41), 2406035.
    [CrossRef]   [Google Scholar]
  18. Ding, H., Liu, J., Wang, B., Yang, X., Yin, B., Liang, T., ... & Shen, X. (2025). Tough and recyclable polyvinyl alcohol/carboxymethyl chitosan hydrogels with high strength, low modulus and fast self-recovery as flexible strain sensors. International Journal of Biological Macromolecules, 143430.
    [CrossRef]   [Google Scholar]
  19. Yao, W., Lin, X., Zhang, Z., Sun, Q., & Yang, H. (2024). Pursuing superhydrophobic flexible strain sensors: From design to applications. Advanced Materials Technologies, 9(9), 2301983.
    [CrossRef]   [Google Scholar]
  20. Truby, R. L., Wehner, M., Grosskopf, A. K., Vogt, D. M., Uzel, S. G., Wood, R. J., & Lewis, J. A. (2018). Soft somatosensitive actuators via embedded 3D printing. Advanced materials, 30(15), 1706383.
    [CrossRef]   [Google Scholar]
  21. Furqan, C. M., Khan, M. U., Awais, M., Jiang, F., Bae, J., Hassan, A., & Kwok, H. S. (2021). Humidity sensor based on Gallium Nitride for real time monitoring applications. Scientific reports, 11(1), 11088.
    [CrossRef]   [Google Scholar]
  22. Yu, Y., Nassar, J., Xu, C., Min, J., Yang, Y., Dai, A., ... & Gao, W. (2020). Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Science robotics, 5(41), eaaz7946.
    [CrossRef]   [Google Scholar]
  23. Cao, M., Leng, M., Pan, W., Wang, Y., Tan, S., Jiao, Y., ... & Su, J. (2023). 3D wearable piezoresistive sensor with waterproof and antibacterial activity for multimodal smart sensing. Nano Energy, 112, 108492.
    [CrossRef]   [Google Scholar]
  24. Zang, Y., Zhang, F., Di, C. A., & Zhu, D. (2015). Advances of flexible pressure sensors toward artificial intelligence and health care applications. Materials Horizons, 2(2), 140-156.
    [CrossRef]   [Google Scholar]
  25. Zhou, X., Zhao, X., Wang, Y., Wang, P., Jiang, X., Song, Z., ... & Xu, W. (2023). Gel-based strain/pressure sensors for underwater sensing: Sensing mechanisms, design strategies and applications. Composites Part B: Engineering, 255, 110631.
    [CrossRef]   [Google Scholar]
  26. Kim, Y., & Oh, J. H. (2020). Recent progress in pressure sensors for wearable electronics: From design to applications. Applied Sciences, 10(18), 6403.
    [CrossRef]   [Google Scholar]
  27. Khoshnoud, F., & De Silva, C. W. (2012). Recent advances in MEMS sensor technology-mechanical applications. IEEE Instrumentation & Measurement Magazine, 15(2), 14-24.
    [CrossRef]   [Google Scholar]
  28. Wang, D., Ma, G., Zhang, X., Zheng, K., Zhang, J., Ma, Z., ... & Ren, L. (2025). Flexible Pressure Sensor Composed of Multi-Layer Textile Materials for Human–Machine Interaction Applications. ACS sensors, 10(1), 350-359.
    [CrossRef]   [Google Scholar]
  29. Han, R., Liu, Y., Mo, Y., Xu, H., Yang, Z., Bao, R., & Pan, C. (2023). High anti‐jamming flexible capacitive pressure sensors based on core–shell structured AgNWs@ TiO2. Advanced Functional Materials, 33(51), 2305531.
    [CrossRef]   [Google Scholar]
  30. Lv, C., Tian, C., Jiang, J., Dang, Y., Liu, Y., Duan, X., ... & Xie, M. (2023). Ultrasensitive linear capacitive pressure sensor with wrinkled microstructures for tactile perception. Advanced Science, 10(14), 2206807.
    [CrossRef]   [Google Scholar]
  31. Wang, Q., Li, Y., Xu, Q., Yu, H., Zhang, D., Zhou, Q., ... & Yao, Z. (2023). Finger–coding intelligent human–machine interaction system based on all–fabric ionic capacitive pressure sensors. Nano Energy, 116, 108783.
    [CrossRef]   [Google Scholar]
  32. Yao, H., Yu, Z., Huang, F., Pan, T., Tang, C., & Zhang, H. (2023). A flexible piezoresistive pressure sensor comprising a microstructure printed with poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) copolymers@ graphene hybrid ink. Journal of Materials Chemistry C, 11(39), 13324-13334.
    [CrossRef]   [Google Scholar]
  33. Cao, W., Luo, Y., Dai, Y., Wang, X., Wu, K., Lin, H., ... & Zhu, J. (2023). Piezoresistive pressure sensor based on a conductive 3D sponge network for motion sensing and human–machine interface. ACS Applied Materials & Interfaces, 15(2), 3131-3140.
    [CrossRef]   [Google Scholar]
  34. Su, X., Wu, X., Chen, S., Nedumaran, A. M., Stephen, M., Hou, K., ... & Leong, W. L. (2022). A highly conducting polymer for self‐healable, printable, and stretchable organic electrochemical transistor arrays and near hysteresis‐free soft tactile sensors. Advanced Materials, 34(19), 2200682.
    [CrossRef]   [Google Scholar]
  35. He, T., Shi, Q., Wang, H., Wen, F., Chen, T., Ouyang, J., & Lee, C. (2019). Beyond energy harvesting-multi-functional triboelectric nanosensors on a textile. Nano Energy, 57, 338-352.
    [CrossRef]   [Google Scholar]
  36. Korotcenkov, G. (2019). Handbook of humidity measurement, volume 2: Electronic and electrical humidity sensors. CRC Press.
    [Google Scholar]
  37. Kumar, A., Gupta, G., Bapna, K., & Shivagan, D. D. (2023). Semiconductor-metal-oxide-based nano-composites for humidity sensing applications. Materials Research Bulletin, 158, 112053.
    [CrossRef]   [Google Scholar]
  38. Aggarwal, A., Dautta, M., Ayala‐Cardona, L. F., Wudaru, A., & Javey, A. (2023). Wearable humidity sensor for continuous sweat rate monitoring. Advanced Materials Technologies, 8(17), 2300385.
    [CrossRef]   [Google Scholar]
  39. Lee, C. Y., & Lee, G. B. (2005). Humidity sensors: A review. Sensor Letters, 3(1-2), 1-2.
    [CrossRef]   [Google Scholar]
  40. Zhou, C., Zhang, X., Tang, N., Fang, Y., Zhang, H., & Duan, X. (2020). Rapid response flexible humidity sensor for respiration monitoring using nano-confined strategy. Nanotechnology, 31(12), 125302.
    [CrossRef]   [Google Scholar]
  41. Fernandes, L. C., Correia, D. M., Pereira, N., Tubio, C. R., & Lanceros-Mendez, S. (2019). Highly sensitive humidity sensor based on ionic liquid–polymer composites. ACS Applied Polymer Materials, 1(10), 2723-2730.
    [CrossRef]   [Google Scholar]
  42. Parthasarathy, P. (2023). Graphene/polypyrrole/carbon black nanocomposite material ink-based screen-printed low-cost, flexible humidity sensor. Emergent Materials, 6(6), 2053-2060.
    [CrossRef]   [Google Scholar]
  43. Liu, X., Wang, L., Lei, Y., Li, X., Cheng, C., Yang, L., ... & Cheng, B. (2025). Highly sensitivity and wide-range flexible humidity sensor based on LiCl/cellulose nanofiber membrane by one-step electrospinning. Chemical Engineering Journal, 503, 158018.
    [CrossRef]   [Google Scholar]
  44. Lu, J., Xu, X., Zhang, H. W., Huang, M. L., Wang, Y. S., Feng, Z. S., & Wang, Y. (2025). All-printed MXene/WS2-based flexible humidity sensor for multi-scenario applications. Sensors and Actuators B: Chemical, 422, 136605.
    [CrossRef]   [Google Scholar]
  45. Yao, S., Swetha, P., & Zhu, Y. (2018). Nanomaterial‐enabled wearable sensors for healthcare. Advanced healthcare materials, 7(1), 1700889.
    [CrossRef]   [Google Scholar]
  46. Chen, Y., Lu, B., Chen, Y., & Feng, X. (2015). Breathable and stretchable temperature sensors inspired by skin. Scientific reports, 5(1), 11505.
    [CrossRef]   [Google Scholar]
  47. Descent, P., Izquierdo, R., & Fayomi, C. (2018, May). Printing of temperature and humidity sensors on flexible substrates for biomedical applications. In 2018 IEEE international symposium on circuits and systems (ISCAS) (pp. 1-4). IEEE.
    [CrossRef]   [Google Scholar]
  48. Blasdel, N. J., Wujcik, E. K., Carletta, J. E., Lee, K. S., & Monty, C. N. (2014). Fabric nanocomposite resistance temperature detector. IEEE Sensors Journal, 15(1), 300-306.
    [CrossRef]   [Google Scholar]
  49. Kuzubasoglu, B. A., & Bahadir, S. K. (2020). Flexible temperature sensors: A review. Sensors and Actuators A: Physical, 315, 112282.
    [CrossRef]   [Google Scholar]
  50. Li, M., Chen, J., Zhong, W., Luo, M., Wang, W., Qing, X., ... & Wang, D. (2020). Large-area, wearable, self-powered pressure–temperature sensor based on 3D thermoelectric spacer fabric. ACS sensors, 5(8), 2545-2554.
    [CrossRef]   [Google Scholar]
  51. Sultana, A., Alam, M. M., Middya, T. R., & Mandal, D. (2018). A pyroelectric generator as a self-powered temperature sensor for sustainable thermal energy harvesting from waste heat and human body heat. Applied Energy, 221, 299-307.
    [CrossRef]   [Google Scholar]
  52. Majumder, S., Mondal, T., & Deen, M. J. (2017). Wearable sensors for remote health monitoring. Sensors, 17(1), 130.
    [CrossRef]   [Google Scholar]
  53. Prajapati, H., & Deshmukh, N. N. (2019). Design and development of thin wire sensor for transient temperature measurement. Measurement, 140, 582-589.
    [CrossRef]   [Google Scholar]
  54. Huang, L., Zhang, H., Leng, S., Li, M., & Li, Z. (2023). Electrical properties of NiO-based composite ceramics modified by La2 M O4 (M= Cu or Ni) for NTC thermistors. Journal of Materials Science: Materials in Electronics, 34(14), 1137.
    [CrossRef]   [Google Scholar]
  55. Wang, P., Yu, W., Li, G., Meng, C., & Guo, S. (2023). Printable, flexible, breathable and sweatproof bifunctional sensors based on an all-nanofiber platform for fully decoupled pressure–temperature sensing application. Chemical Engineering Journal, 452, 139174.
    [CrossRef]   [Google Scholar]
  56. Zhao, R., Shao, G., Cao, Y., An, L., & Xu, C. (2014). Temperature sensor made of polymer-derived ceramics for high-temperature applications. Sensors and Actuators A: Physical, 219, 58-64.
    [CrossRef]   [Google Scholar]
  57. Li, F., Lin, X., Xue, H., Wang, J., Li, J., Fei, T., ... & Zhang, T. (2024). Ultrasensitive Flexible Temperature Sensors Based on Thermal-Mediated Ions Migration Dynamics in Asymmetrical Polymer Bilayers. ACS nano, 18(10), 7521-7531.
    [CrossRef]   [Google Scholar]
  58. Lu, Y., Zhang, H., Zhao, Y., Liu, H., Nie, Z., Xu, F., ... & Huang, W. (2024). Robust fiber‐shaped flexible temperature sensors for safety monitoring with ultrahigh sensitivity. Advanced Materials, 36(18), 2310613.
    [CrossRef]   [Google Scholar]
  59. Zhang, J., Yan, K., Huang, J., Sun, X., Li, J., Cheng, Y., ... & Pan, L. (2024). Mechanically robust, flexible, fast responding temperature sensor and high‐resolution array with ionically conductive double cross‐linked hydrogel. Advanced Functional Materials, 34(21), 2314433.
    [CrossRef]   [Google Scholar]
  60. Zhang, Z., Li, Q., Xu, L., Tian, W., & Li, Z. (2024). High-performance flexible temperature sensors based on laser-irradiated Ag-MWCNTs/PEDOT: PSS. ACS Applied Materials & Interfaces, 16(5), 6078-6087.
    [CrossRef]   [Google Scholar]
  61. Liu, S., Shuai, L., Zhu, Q., Cao, L., Gu, F., Fan, L., & Xiong, S. (2025). All-aerosol-jet-printed Fe3+ modified bilayers polyaniline flexible room temperature sensor with enhanced ammonia sensing properties. Talanta, 287, 127684.
    [CrossRef]   [Google Scholar]
  62. Ben Atitallah, B., Rajendran, D., Hu, Z., Ramalingame, R., Quijano Jose, R. B., da Veiga Torres, R., ... & Kanoun, O. (2021). Piezo-resistive pressure and strain sensors for biomedical and tele-manipulation applications. Advanced Sensors for Biomedical Applications, 47-65.
    [CrossRef]   [Google Scholar]
  63. Kannichankandy, D., Pataniya, P. M., Narayan, S., Patel, V., Sumesh, C. K., Patel, K. D., ... & Pathak, V. M. (2021). Flexible piezo-resistive pressure sensor based on conducting PANI on paper substrate. Synthetic Metals, 273, 116697.
    [CrossRef]   [Google Scholar]
  64. Jheng, W. W., Su, Y. S., Hsieh, Y. L., Lin, Y. J., Tzeng, S. D., Chang, C. W., ... & Kuo, W. (2021). Gold nanoparticle thin film-based strain sensors for monitoring human pulse. ACS Applied Nano Materials, 4(2), 1712-1718.
    [CrossRef]   [Google Scholar]
  65. Mokhtari, F., Cheng, Z., Raad, R., Xi, J., & Foroughi, J. (2020). Piezofibers to smart textiles: A review on recent advances and future outlook for wearable technology. Journal of Materials Chemistry A, 8(19), 9496-9522.
    [CrossRef]   [Google Scholar]
  66. Huang, Y., Zhang, J., Pu, J., Guo, X., Qiu, J., Ma, Y., ... & Yang, X. (2018). Resistive pressure sensor for high-sensitivity e-skin based on porous sponge dip-coated CB/MWCNTs/SR conductive composites. Materials Research Express, 5(6), 065701.
    [CrossRef]   [Google Scholar]
  67. Gong, S., Lai, D. T., Wang, Y., Yap, L. W., Si, K. J., Shi, Q., ... & Cheng, W. (2015). Tattoolike polyaniline microparticle-doped gold nanowire patches as highly durable wearable sensors. ACS applied materials & interfaces, 7(35), 19700-19708.
    [CrossRef]   [Google Scholar]
  68. Cao, M., Su, J., Fan, S., Qiu, H., Su, D., & Li, L. (2021). Wearable piezoresistive pressure sensors based on 3D graphene. Chemical Engineering Journal, 406, 126777.
    [CrossRef]   [Google Scholar]
  69. Li, Q., Liu, Y., Chen, D., Miao, J., Lin, S., & Cui, D. (2021). Highly sensitive and flexible piezoresistive pressure sensors based on 3D reduced graphene oxide aerogel. IEEE Electron Device Letters, 42(4), 589-592.
    [CrossRef]   [Google Scholar]
  70. Wu, J., Wang, H., Su, Z., Zhang, M., Hu, X., Wang, Y., ... & Xing, S. G. (2017). Highly flexible and sensitive wearable E-skin based on graphite nanoplatelet and polyurethane nanocomposite films in mass industry production available. ACS applied materials & interfaces, 9(44), 38745-38754.
    [CrossRef]   [Google Scholar]
  71. Shin, Y. E., Sohn, S. D., Han, H., Park, Y., Shin, H. J., & Ko, H. (2020). Self-powered triboelectric/pyroelectric multimodal sensors with enhanced performances and decoupled multiple stimuli. Nano Energy, 72, 104671.
    [CrossRef]   [Google Scholar]
  72. Pu, X., An, S., Tang, Q., Guo, H., & Hu, C. (2021). Wearable triboelectric sensors for biomedical monitoring and human-machine interface. Iscience, 24(1).
    [CrossRef]   [Google Scholar]
  73. Luo, J., Gao, W., & Wang, Z. L. (2021). The triboelectric nanogenerator as an innovative technology toward intelligent sports. Advanced materials, 33(17), 2004178.
    [CrossRef]   [Google Scholar]
  74. Jiang, X. Z., Sun, Y. J., Fan, Z., & Zhang, T. Y. (2016). Integrated flexible, waterproof, transparent, and self-powered tactile sensing panel. ACS nano, 10(8), 7696-7704.
    [CrossRef]   [Google Scholar]
  75. Wang, Z., Sun, S., Li, N., Yao, T., & Lv, D. (2020). Triboelectric self-powered three-dimensional tactile sensor. IEEE Access, 8, 172076-172085.
    [CrossRef]   [Google Scholar]
  76. Wang, X., Dong, L., Zhang, H., Yu, R., Pan, C., & Wang, Z. L. (2015). Recent progress in electronic skin. Advanced Science, 2(10), 1500169.
    [CrossRef]   [Google Scholar]
  77. Chen, H., Song, Y., Cheng, X., & Zhang, H. (2019). Self-powered electronic skin based on the triboelectric generator. Nano energy, 56, 252-268.
    [CrossRef]   [Google Scholar]
  78. Xu, Z., Wang, Z., Wang, J., Li, K., Liu, Y., Ji, X., ... & Zhang, D. (2025). A multi-indicator pulse monitoring system based on an ultra-sensitive and stable self-powered wearable triboelectric sensor with assistance of personalized deep learning. Nano Energy, 111039.
    [CrossRef]   [Google Scholar]
  79. Chen, X., Peng, X., Wei, C., Wang, Z., He, J., Sheng, H., ... & Dong, K. (2025). A Moisture‐Proof, Anti‐Fouling, and Low Signal Attenuation All‐Nanofiber Triboelectric Sensor for Self‐Powered Respiratory Health Monitoring. Advanced Functional Materials, 35(7), 2415421.
    [CrossRef]   [Google Scholar]
  80. Yang, J., Hong, K., Hao, Y., Zhu, X., Su, J., Su, W., ... & Li, X. (2024). Mica/nylon composite nanofiber film based wearable triboelectric sensor for object recognition. Nano Energy, 129, 110056.
    [CrossRef]   [Google Scholar]
  81. Rivadeneyra, A., Marin-Sanchez, A., Wicklein, B., Salmeron, J. F., Castillo, E., Bobinger, M., & Salinas-Castillo, A. (2021). Cellulose nanofibers as substrate for flexible and biodegradable moisture sensors. Composites Science and Technology, 208, 108738.
    [CrossRef]   [Google Scholar]
  82. Yang, J., Wang, M., Meng, Y., Niu, Z., Hao, Y., Liu, H., ... & Li, X. (2024). High-performance flexible wearable triboelectric nanogenerator sensor by $\beta$-phase polyvinylidene fluoride polarization. ACS Applied Electronic Materials, 6(2), 1385-1395.
    [CrossRef]   [Google Scholar]
  83. Liu, P., Pan, W., Liu, Y., Liu, J., Xu, W., Guo, X., ... & Huang, Y. (2018). Fully flexible strain sensor from core-spun elastic threads with integrated electrode and sensing cell based on conductive nanocomposite. Composites Science and Technology, 159, 42-49.
    [CrossRef]   [Google Scholar]
  84. Cai, Y., Shen, J., Ge, G., Zhang, Y., Jin, W., Huang, W., ... & Dong, X. (2018). Stretchable Ti3C2T x MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS nano, 12(1), 56-62.
    [CrossRef]   [Google Scholar]
  85. Qiu, A., Li, P., Yang, Z., Yao, Y., Lee, I., & Ma, J. (2019). A path beyond metal and silicon: polymer/nanomaterial composites for stretchable strain sensors. Advanced Functional Materials, 29(17), 1806306.
    [CrossRef]   [Google Scholar]
  86. Han, S. T., Peng, H., Sun, Q., Venkatesh, S., Chung, K. S., Lau, S. C., ... & Roy, V. A. L. (2017). An overview of the development of flexible sensors. Advanced materials, 29(33), 1700375.
    [CrossRef]   [Google Scholar]
  87. Han, F., Li, M., Ye, H., & Zhang, G. (2021). Materials, electrical performance, mechanisms, applications, and manufacturing approaches for flexible strain sensors. Nanomaterials, 11(5), 1220.
    [CrossRef]   [Google Scholar]
  88. Zhou, K., Dai, K., Liu, C., & Shen, C. (2020). Flexible conductive polymer composites for smart wearable strain sensors. SmartMat, 1(1), e1010.
    [CrossRef]   [Google Scholar]
  89. Her, S. C., & Liang, Y. M. (2022). Carbon-based nanomaterials thin film deposited on a flexible substrate for strain sensing application. Sensors, 22(13), 5039.
    [CrossRef]   [Google Scholar]
  90. Stoppa, M., & Chiolerio, A. (2014). Wearable electronics and smart textiles: A critical review. sensors, 14(7), 11957-11992.
    [CrossRef]   [Google Scholar]
  91. Amjadi, M., Kyung, K. U., Park, I., & Sitti, M. (2016). Stretchable, skin‐mountable, and wearable strain sensors and their potential applications: a review. Advanced Functional Materials, 26(11), 1678-1698.
    [CrossRef]   [Google Scholar]
  92. Liu, X., Tang, C., Du, X., Xiong, S., Xi, S., Liu, Y., ... & Kim, J. K. (2017). A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. Materials Horizons, 4(3), 477-486.
    [CrossRef]   [Google Scholar]
  93. Huang, L., Huang, X., Bu, X., Wang, S., & Zhang, P. (2023). Flexible strain sensor based on PU film with three-dimensional porous network. Sensors and Actuators A: Physical, 359, 114508.
    [CrossRef]   [Google Scholar]
  94. Zhang, X., Sun, H., Zhang, J., & Wang, Z. (2025). A highly sensitive and stable MXene/bacterial cellulose double network hydrogel flexible strain sensor for human activities monitoring. Journal of Applied Polymer Science, 142(6), e56468.
    [CrossRef]   [Google Scholar]
  95. Wang, Z., Cong, Y., & Fu, J. (2020). Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. Journal of Materials Chemistry B, 8(16), 3437-3459.
    [CrossRef]   [Google Scholar]
  96. Zhao, Z., Li, X., Yan, S., Tian, K., Wang, X., Zhao, H., ... & Wang, P. (2024). Sensitivity-enhanced strain sensor based on a shape-modulated multimode fiber. Optics Letters, 49(5), 1329-1332.
    [CrossRef]   [Google Scholar]
  97. Li, H., Tan, Z., Yuan, L., Li, J., Chen, X., Ji, D., ... & Li, L. (2021). Eggshell-inspired membrane—shell strategy for simultaneously improving the sensitivity and detection range of strain sensors. Science China Materials, 64(3), 717-726.
    [CrossRef]   [Google Scholar]
  98. Afsarimanesh, N., Nag, A., Sarkar, S., Sabet, G. S., Han, T., & Mukhopadhyay, S. C. (2020). A review on fabrication, characterization and implementation of wearable strain sensors. Sensors and Actuators A: Physical, 315, 112355.
    [CrossRef]   [Google Scholar]
  99. Tao, X. Y., Zhu, K. H., Chen, H. M., Ye, S. F., Cui, P. X., Dou, L. Y., ... & Feng, P. Z. (2023). Recyclable, anti-freezing and anti-drying silk fibroin-based hydrogels for ultrasensitive strain sensors and all-hydrogel-state super-capacitors. Materials Today Chemistry, 32, 101624.
    [CrossRef]   [Google Scholar]
  100. Shi, X., Liu, S., Sun, Y., Liang, J., & Chen, Y. (2018). Lowering internal friction of 0D–1D–2D ternary nanocomposite‐based strain sensor by fullerene to boost the sensing performance. Advanced Functional Materials, 28(22), 1800850.
    [CrossRef]   [Google Scholar]
  101. Wang, Z., Bi, P., Yang, Y., Ma, H., Lan, Y., Sun, X., ... & Xiong, R. (2021). Star-nose-inspired multi-mode sensor for anisotropic motion monitoring. Nano Energy, 80, 105559.
    [CrossRef]   [Google Scholar]
  102. Huang, T., He, P., Wang, R., Yang, S., Sun, J., Xie, X., & Ding, G. (2019). Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors. Advanced Functional Materials, 29(45), 1903732.
    [CrossRef]   [Google Scholar]
  103. Yang, Z., Li, H., Zhang, L., Lai, X., & Zeng, X. (2020). Highly stretchable, transparent and room-temperature self-healable polydimethylsiloxane elastomer for bending sensor. Journal of colloid and interface science, 570, 1-10.
    [CrossRef]   [Google Scholar]
  104. Qi, M., Yang, R., Wang, Z., Liu, Y., Zhang, Q., He, B., ... & Chen, M. (2023). Bioinspired self‐healing soft electronics. Advanced Functional Materials, 33(17), 2214479.
    [CrossRef]   [Google Scholar]
  105. Benight, S. J., Wang, C., Tok, J. B., & Bao, Z. (2013). Stretchable and self-healing polymers and devices for electronic skin. Progress in Polymer Science, 38(12), 1961-1977.
    [CrossRef]   [Google Scholar]
  106. Wang, Y., & Zhang, X. (2023). Self‐Healing Stress Sensors: Coupling Stress‐Sensing Performance with Dynamic Chemistry. Advanced Sensor Research, 2(8), 2200093.
    [CrossRef]   [Google Scholar]
  107. Su, G., Yin, S., Guo, Y., Zhao, F., Guo, Q., Zhang, X., ... & Yu, G. (2021). Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Materials Horizons, 8(6), 1795-1804.
    [CrossRef]   [Google Scholar]
  108. Lu, Y., Liu, Z., Yan, H., Peng, Q., Wang, R., Barkey, M. E., ... & Wujcik, E. K. (2019). Ultrastretchable conductive polymer complex as a strain sensor with a repeatable autonomous self-healing ability. ACS applied materials & interfaces, 11(22), 20453-20464.
    [CrossRef]   [Google Scholar]
  109. Priyadarsini, M., Sahoo, D. R., & Biswal, T. (2021). A new generation self-healing composite materials. Materials Today: Proceedings, 47, 1229–1233.
    [CrossRef]   [Google Scholar]
  110. Chen, D., Wang, D., Yang, Y., Huang, Q., Zhu, S., & Zheng, Z. (2017). Self‐healing materials for next‐generation energy harvesting and storage devices. Advanced Energy Materials, 7(23), 1700890.
    [CrossRef]   [Google Scholar]
  111. Zhang, J., Wang, Y., Wei, Q., Wang, Y., Lei, M., Li, M., ... & Wu, Y. (2021). Self-healing mechanism and conductivity of the hydrogel flexible sensors: A review. Gels, 7(4), 216.
    [CrossRef]   [Google Scholar]
  112. Li, Q., Liu, C., Wen, J., Wu, Y., Shan, Y., & Liao, J. (2017). The design, mechanism and biomedical application of self-healing hydrogels. Chinese Chemical Letters, 28(9), 1857-1874.
    [CrossRef]   [Google Scholar]
  113. Wang, J., Tang, J., Chen, D., Xing, S., Liu, X., & Hao, J. (2023). Intrinsic and extrinsic self‐healing fiber‐reinforced polymer composites: a review. Polymer Composites, 44(10), 6304-6323.
    [CrossRef]   [Google Scholar]
  114. Yang, Y., Ding, X., & Urban, M. W. (2015). Chemical and physical aspects of self-healing materials. Progress in Polymer Science, 49, 34-59.
    [CrossRef]   [Google Scholar]
  115. Dai, X., Huang, L. B., Du, Y., Han, J., & Kong, J. (2021). Self-healing flexible strain sensors based on dynamically cross-linked conductive nanocomposites. Composites Communications, 24, 100654.
    [CrossRef]   [Google Scholar]
  116. Hang, C. Z., Zhao, X. F., Xi, S. Y., Shang, Y. H., Yuan, K. P., Yang, F., ... & Lu, H. L. (2020). Highly stretchable and self-healing strain sensors for motion detection in wireless human-machine interface. Nano Energy, 76, 105064.
    [CrossRef]   [Google Scholar]
  117. Zhang, L. M., He, Y., Cheng, S., Sheng, H., Dai, K., Zheng, W. J., ... & Suo, Z. (2019). Self‐healing, adhesive, and highly stretchable ionogel as a strain sensor for extremely large deformation. Small, 15(21), 1804651.
    [CrossRef]   [Google Scholar]
  118. Ling, Q., Fan, X., Ling, M., Liu, J., Zhao, L., & Gu, H. (2023). Collagen-based organohydrogel strain sensor with self-healing and adhesive properties for detecting human motion. ACS Applied Materials & Interfaces, 15(9), 12350-12362.
    [CrossRef]   [Google Scholar]
  119. Yang, G., Luo, H., Ding, Y., Yang, J., Li, Y., Ma, C., ... & Zhuang, X. (2023). Hierarchically structured carbon nanofiber-enabled skin-like strain sensors with full-range human motion monitoring and autonomous self-healing capability. ACS Applied Materials & Interfaces, 15(5), 7380-7391.
    [CrossRef]   [Google Scholar]
  120. Zhao, R., Gao, M., Zhao, Z., & Song, S. (2024). Ultra-stretchable, high conductive, fatigue resistance, and self-healing strain sensor based on mussel-inspired adhesive hydrogel for human motion monitoring. European Polymer Journal, 211, 113024.
    [CrossRef]   [Google Scholar]
  121. Ke, T., Zhao, L., Fan, X., & Gu, H. (2023). Rapid self-healing, self-adhesive, anti-freezing, moisturizing, antibacterial and multi-stimuli-responsive PVA/starch/tea polyphenol-based composite conductive organohydrogel as flexible strain sensor. Journal of Materials Science & Technology, 135, 199-212.
    [CrossRef]   [Google Scholar]
  122. Cong, C., Wang, R., Zhu, W., Zheng, X., Sun, F., Wang, X., ... & Li, X. (2025). Self-powered strain sensing devices with wireless transmission: DIW-printed conductive hydrogel electrodes featuring stretchable and self-healing properties. Journal of Colloid and Interface Science, 678, 588-598.
    [CrossRef]   [Google Scholar]
  123. Wu, Z., Rong, L., Yang, J., Wei, Y., Tao, K., Zhou, Y., ... & Wu, J. (2021). Ion‐conductive hydrogel‐based stretchable, self‐healing, and transparent NO2 sensor with high sensitivity and selectivity at room temperature. Small, 17(52), 2104997.
    [CrossRef]   [Google Scholar]
  124. Zhang, Q., Liu, X., Duan, L., & Gao, G. (2020). Nucleotide-driven skin-attachable hydrogels toward visual human–machine interfaces. Journal of Materials Chemistry A, 8(8), 4515-4523.
    [CrossRef]   [Google Scholar]
  125. Kirang, A., Hikmaturokhman, A., & Ni'amah, K. (2023). 5G NR Network Planning Analysis using 700 Mhz and 2.3 Ghz Frequency in The Jababeka Industrial Area. Journal of Informatics and Telecommunication Engineering, 6(2), 403-413.
    [CrossRef]   [Google Scholar]
  126. Zhao, L., Ren, Z., Liu, X., Ling, Q., Li, Z., & Gu, H. (2021). A multifunctional, self-healing, self-adhesive, and conductive sodium alginate/poly (vinyl alcohol) composite hydrogel as a flexible strain sensor. ACS Applied Materials & Interfaces, 13(9), 11344-11355.
    [CrossRef]   [Google Scholar]
  127. Zhang, Y., Liu, H., Wang, P., Yu, Y., Zhou, M., Xu, B., ... & Wang, Q. (2023). Stretchable, transparent, self-adhesive, anti-freezing and ionic conductive nanocomposite hydrogels for flexible strain sensors. European Polymer Journal, 186, 111824.
    [CrossRef]   [Google Scholar]
  128. Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D. N., & Hata, K. (2011). A stretchable carbon nanotube strain sensor for human-motion detection. Nature nanotechnology, 6(5), 296-301.
    [CrossRef]   [Google Scholar]
  129. Cai, L., Song, L., Luan, P., Zhang, Q., Zhang, N., Gao, Q., ... & Xie, S. (2013). Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Scientific reports, 3(1), 3048.
    [CrossRef]   [Google Scholar]
  130. Souri, H., & Bhattacharyya, D. (2018). Highly sensitive, stretchable and wearable strain sensors using fragmented conductive cotton fabric. Journal of Materials Chemistry C, 6(39), 10524-10531.
    [CrossRef]   [Google Scholar]
  131. Xu, L., Liu, Z., Zhai, H., Chen, X., Sun, R., Lyu, S., ... & Ye, T. T. (2020). Moisture-resilient graphene-dyed wool fabric for strain sensing. ACS applied materials & interfaces, 12(11), 13265-13274.
    [CrossRef]   [Google Scholar]
  132. Zhang, M., Wang, C., Wang, H., Jian, M., Hao, X., & Zhang, Y. (2017). Carbonized cotton fabric for high‐performance wearable strain sensors. Advanced Functional Materials, 27(2), 1604795.
    [CrossRef]   [Google Scholar]
  133. Wang, C., Zhang, M., Xia, K., Gong, X., Wang, H., Yin, Z., ... & Zhang, Y. (2017). Intrinsically stretchable and conductive textile by a scalable process for elastic wearable electronics. ACS Applied Materials & Interfaces, 9(15), 13331-13338.
    [CrossRef]   [Google Scholar]
  134. Hwangbo, Y., Nam, H. J., & Choa, S. H. (2023). Highly stretchable strain sensor with a high and broad sensitivity composed of carbon nanotube and EcoFlex composite. Korean Journal of Metals and Materials, 61(7), 500-508. http://dx.doi.org/10.3365/KJMM.2023.61.7.500
    [Google Scholar]
  135. Long, W., Yao, Y., Ye, Y., Zhang, C., Xu, J., Zhong, D., ... & Xia, L. (2025). Flexible strain sensor based on carbonized corn stalk with three-dimensional network. Industrial Crops and Products, 225, 120496.
    [CrossRef]   [Google Scholar]
  136. Pei, L., He, L., Yang, Z., & Li, R. (2025). Highly Flexible and Stretchable TPU/PDA/MWCNTs/GO Flexible Strain Sensors for Human Motion Detection. Fibers and Polymers, 1-11.
    [CrossRef]   [Google Scholar]
  137. Meena, J. S., Xiang, L. L. Y., & Lim, Y. K. (2025). Highly Stretchable, Sensitive, and Robust Wearable Strain Sensor Based on CNTs/AgNWs Nanocomposite for Health and Fitness Monitoring. IEEE Sensors Letters.
    [CrossRef]   [Google Scholar]
  138. Zheng, Y., Cui, T., Wang, J., Chen, Y., Ou, M., He, H., ... & Gui, Z. (2025). Highly stretchable, low-hysteresis, and robust polymeric gels enabled by solvent engineering for wireless sensing and encrypted communication. Chemical Engineering Journal, 163610.
    [CrossRef]   [Google Scholar]
  139. Hassan, H., Khan, M., Shah, L. A., & Yoo, H. M. (2025). CNC-mediated functionalized MWCNT-reinforced double-network conductive hydrogels as smart, flexible strain and epidermic sensors for human motion monitoring. Journal of Materials Chemistry B, 13(16), 4796-4808.
    [CrossRef]   [Google Scholar]
  140. Xiang, D., Chen, X., Li, J., Wu, Y., Zhao, C., Li, H., ... & Wang, J. (2023). Flexible strain sensors with high sensitivity and large working range prepared from biaxially stretched carbon nanotubes/polyolefin elastomer nanocomposites. Journal of Applied Polymer Science, 140(4), e53371.
    [CrossRef]   [Google Scholar]
  141. Escobedo, P., Bhattacharjee, M., Nikbakhtnasrabadi, F., & Dahiya, R. (2020). Smart bandage with wireless strain and temperature sensors and batteryless NFC tag. IEEE Internet of Things Journal, 8(6), 5093-5100.
    [CrossRef]   [Google Scholar]
  142. Karipoth, P., Christou, A., Pullanchiyodan, A., & Dahiya, R. (2022). Bioinspired inchworm‐and earthworm‐like soft robots with intrinsic strain sensing. Advanced Intelligent Systems, 4(2), 2100092.
    [CrossRef]   [Google Scholar]
  143. Duan, L., D'hooge, D. R., & Cardon, L. (2020). Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application. Progress in Materials Science, 114, 100617.
    [CrossRef]   [Google Scholar]
  144. Yang, G., Liu, L., & Wu, Z. (2019). Improved strain sensing capability of nano-carbon free-standing buckypapers based strain gauges. Smart Materials and Structures, 28(6), 065009.
    [CrossRef]   [Google Scholar]
  145. Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S., & Park, I. (2014). Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS nano, 8(5), 5154-5163.
    [CrossRef]   [Google Scholar]
  146. Kim, H. J., Thukral, A., & Yu, C. (2018). Highly sensitive and very stretchable strain sensor based on a rubbery semiconductor. ACS applied materials & interfaces, 10(5), 5000-5006.
    [CrossRef]   [Google Scholar]
  147. Amjadi, M., Yoon, Y. J., & Park, I. (2015). Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites. Nanotechnology, 26(37), 375501.
    [CrossRef]   [Google Scholar]
  148. Shintake, J., Piskarev, Y., Jeong, S. H., & Floreano, D. (2018). Ultrastretchable strain sensors using carbon black‐filled elastomer composites and comparison of capacitive versus resistive sensors. Advanced Materials Technologies, 3(3), 1700284.
    [CrossRef]   [Google Scholar]
  149. Kang, D., Pikhitsa, P. V., Choi, Y. W., Lee, C., Shin, S. S., Piao, L., ... & Choi, M. (2014). Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature, 516(7530), 222-226.
    [CrossRef]   [Google Scholar]
  150. Xiao, Y., Jiang, S., Zhao, X., Jiang, H., & Zhang, W. (2018). Crack-enhanced mechanosensitivity of cost-effective piezoresistive flexible strain sensors suitable for motion detection. Smart Materials and Structures, 27(10), 105049.
    [CrossRef]   [Google Scholar]
  151. Xu, F., & Zhu, Y. (2012). Highly conductive and stretchable silver nanowire conductors. Advanced materials, 24(37), 5117-5122.
    [CrossRef]   [Google Scholar]
  152. Yao, S., & Zhu, Y. (2014). Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale, 6(4), 2345-2352.
    [CrossRef]   [Google Scholar]
  153. Hu, X., Yang, F., Wu, M., Sui, Y., Guo, D., Li, M., ... & Liu, J. (2022). A super‐stretchable and highly sensitive carbon nanotube capacitive strain sensor for wearable applications and soft robotics. Advanced Materials Technologies, 7(3), 2100769.
    [CrossRef]   [Google Scholar]
  154. Xiao, X., Yuan, L., Zhong, J., Ding, T., Liu, Y., Cai, Z., ... & Wang, Z. L. (2011). High‐Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films. Advanced Materials, 23(45), 5440-5444.
    [CrossRef]   [Google Scholar]
  155. Migliorini, L., Santaniello, T., Falqui, A., & Milani, P. (2023). Super-stretchable resistive strain sensor based on Ecoflex–gold nanocomposites. ACS Applied Nano Materials, 6(10), 8999-9007.
    [CrossRef]   [Google Scholar]
  156. Li, W., Zhou, Y., Wang, Y., Jiang, L., Ma, J., Chen, S., & Zhou, F. L. (2021). Core–sheath fiber‐based wearable strain sensor with high stretchability and sensitivity for detecting human motion. Advanced Electronic Materials, 7(1), 2000865.
    [CrossRef]   [Google Scholar]
  157. Bhattacharjee, M., Soni, M., Escobedo, P., & Dahiya, R. (2020). PEDOT: PSS microchannel‐based highly sensitive stretchable strain sensor. Advanced Electronic Materials, 6(8), 2000445.
    [CrossRef]   [Google Scholar]
  158. Yan, W., Fuh, H. R., Lv, Y., Chen, K. Q., Tsai, T. Y., Wu, Y. R., ... & Wu, H. C. (2021). Giant gauge factor of Van der Waals material based strain sensors. Nature communications, 12(1), 2018.
    [CrossRef]   [Google Scholar]
  159. Verma, R. P., Sahu, P. S., Rathod, M., Mohapatra, S. S., Lee, J., & Saha, B. (2022). Ultra‐Sensitive and highly stretchable strain sensors for monitoring of human physiology. Macromolecular Materials and Engineering, 307(3), 2100666.
    [CrossRef]   [Google Scholar]
  160. Zhang, D., Ren, B., Zhang, Y., Xu, L., Huang, Q., He, Y., ... & Zheng, J. (2020). From design to applications of stimuli-responsive hydrogel strain sensors. Journal of Materials Chemistry B, 8(16), 3171-3191.
    [CrossRef]   [Google Scholar]
  161. Tadakaluru, S., Thongsuwan, W., & Singjai, P. (2014). Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber. Sensors, 14(1), 868-876.
    [CrossRef]   [Google Scholar]
  162. Ma, C., Ma, M. G., Si, C., Ji, X. X., & Wan, P. (2021). Flexible MXene‐based composites for wearable devices. Advanced Functional Materials, 31(22), 2009524.
    [CrossRef]   [Google Scholar]
  163. Pan, X., Guo, D., & He, H. (2019, August). Investigation on Nonlinear Electromechanical Behavior of Conductive Polymer Composites-based Flexible Strain Sensor. In 2019 20th International Conference on Electronic Packaging Technology (ICEPT) (pp. 1-5). IEEE.
    [CrossRef]   [Google Scholar]
  164. Gong, S., & Zhu, Z. H. (2014). On the mechanism of piezoresistivity of carbon nanotube polymer composites. Polymer, 55(16), 4136-4149.
    [CrossRef]   [Google Scholar]
  165. Yuan, H., Li, P., Wang, X., Yu, C., Wang, X., & Sun, J. (2024). Stretchable, ultrasensitive strain sensor with high-linearity by constructing crack-based dual conductive network. Chemical Engineering Journal, 480, 148102.
    [CrossRef]   [Google Scholar]
  166. Nur, R., Matsuhisa, N., Jiang, Z., Nayeem, M. O. G., Yokota, T., & Someya, T. (2018). A highly sensitive capacitive-type strain sensor using wrinkled ultrathin gold films. Nano letters, 18(9), 5610-5617.
    [CrossRef]   [Google Scholar]
  167. Seyedin, S., Zhang, P., Naebe, M., Qin, S., Chen, J., Wang, X., & Razal, J. M. (2019). Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Materials Horizons, 6(2), 219-249.
    [CrossRef]   [Google Scholar]
  168. Shajari, S. (2020). Development of multifunctional polymer nanocomposites with hybrid structures for fabrication of stretchable strain sensing and wearable electronic devices. Development, 2020, 06-25.
    [Google Scholar]
  169. Fu, X. (2019). Stretchable strain sensors made of multi-wall carbon nanotube-based composite. Auckland University of Technology.
    [Google Scholar]
  170. Xu, H., Lv, Y., Qiu, D., Zhou, Y., Zeng, H., & Chu, Y. (2019). An ultra-stretchable, highly sensitive and biocompatible capacitive strain sensor from an ionic nanocomposite for on-skin monitoring. Nanoscale, 11(4), 1570-1578.
    [CrossRef]   [Google Scholar]
  171. Ibrahim, Z., Asif, A., Hassan, G., & Shuja, A. (2025). Fabrication of UV-curable and self-adhesive strain sensor based on 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone and PVA composite for biomedical applications. Sensors and Actuators A: Physical, 116754.
    [CrossRef]   [Google Scholar]
  172. Wu, Z., Liu, X., Xu, Q., Zhang, L., Abdou, S. N., Ibrahim, M. M., ... & Guo, Z. (2024). Poly (vinyl alcohol)/polyacrylamide double‐network ionic conductive hydrogel strain sensor with high sensitivity and high elongation at break. Journal of Polymer Science, 62(20), 4599-4611.
    [CrossRef]   [Google Scholar]
  173. Li, H., Chen, J., Chang, X., Xu, Y., Zhao, G., Zhu, Y., & Li, Y. (2021). A highly stretchable strain sensor with both an ultralow detection limit and an ultrawide sensing range. Journal of Materials Chemistry A, 9(3), 1795-1802.
    [CrossRef]   [Google Scholar]
  174. Zhang, M., Wang, M., Zhang, M., Qiu, L., Liu, Y., Zhang, W., ... & Wu, G. (2019). Flexible and highly sensitive humidity sensor based on sandwich-like Ag/Fe3O4 nanowires composite for multiple dynamic monitoring. Nanomaterials, 9(10), 1399.
    [CrossRef]   [Google Scholar]
  175. Zhou, C. G., Sun, W. J., Jia, L. C., Xu, L., Dai, K., Yan, D. X., & Li, Z. M. (2019). Highly stretchable and sensitive strain sensor with porous segregated conductive network. ACS applied materials & interfaces, 11(40), 37094-37102.
    [CrossRef]   [Google Scholar]
  176. Asif, A., Bibi, M., Hassan, G., Shuja, A., Ahmad, H., Alam, S., & Ibrahim, Z. (2024). Highly sensitive strain sensor based on ZnO nanofiber mat for medical applications. Journal of Materials Science: Materials in Electronics, 35(18), 1227.
    [CrossRef]   [Google Scholar]
  177. Liu, M. Y., Hang, C. Z., Wu, X. Y., Zhu, L. Y., Wen, X. H., Wang, Y., ... & Lu, H. L. (2022). Investigation of stretchable strain sensor based on CNT/AgNW applied in smart wearable devices. Nanotechnology, 33(25), 255501.
    [CrossRef]   [Google Scholar]
  178. Lu, Y., Biswas, M. C., Guo, Z., Jeon, J. W., & Wujcik, E. K. (2019). Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosensors and bioelectronics, 123, 167-177.
    [CrossRef]   [Google Scholar]
  179. Amjadi, M. (2019). Functional nanomaterial composites for soft sensing and actuation. ETH Zurich.
    [Google Scholar]
  180. Guo, X., Hong, W., Zhao, Y., Zhu, T., Liu, L., Li, H., ... & Xing, G. (2023). Bioinspired dual‐mode stretchable strain sensor based on magnetic nanocomposites for strain/magnetic discrimination. Small, 19(1), 2205316.
    [CrossRef]   [Google Scholar]
  181. Chen, S., Wei, Y., Yuan, X., Lin, Y., & Liu, L. (2016). A highly stretchable strain sensor based on a graphene/silver nanoparticle synergic conductive network and a sandwich structure. Journal of Materials Chemistry C, 4(19), 4304-4311.
    [CrossRef]   [Google Scholar]
  182. Zheng, Y., Li, Y., Dai, K., Wang, Y., Zheng, G., Liu, C., & Shen, C. (2018). A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Composites Science and Technology, 156, 276-286.
    [CrossRef]   [Google Scholar]
  183. Tan, X., & Zheng, J. (2022). A novel porous PDMS-AgNWs-PDMS (PAP)-sponge-based capacitive pressure sensor. Polymers, 14(8), 1495.
    [CrossRef]   [Google Scholar]
  184. Zhou, X., Wang, G., Li, D., Wang, Q., Zhu, K., Hao, Y., ... & Li, N. (2024). Shape-memory polyurethane elastomer originated from waste PET plastic and their composites with carbon nanotube for sensitive and stretchable strain sensor. Composites Part A: Applied Science and Manufacturing, 177, 107920.
    [CrossRef]   [Google Scholar]
  185. Li, Q., Wang, Y., Jiang, S., Li, T., Ding, X., Tao, X., & Wang, X. (2020). Investigation into tensile hysteresis of polyurethane-containing textile substrates for coated strain sensors. Materials & Design, 188, 108451.
    [CrossRef]   [Google Scholar]
  186. Nankali, M., Nouri, N. M., Navidbakhsh, M., Malek, N. G., Amindehghan, M. A., Shahtoori, A. M., ... & Amjadi, M. (2020). Highly stretchable and sensitive strain sensors based on carbon nanotube–elastomer nanocomposites: the effect of environmental factors on strain sensing performance. Journal of Materials Chemistry C, 8(18), 6185-6195.
    [CrossRef]   [Google Scholar]
  187. Wang, X., Deng, Y., Jiang, P., Chen, X., & Yu, H. (2022). Low-hysteresis, pressure-insensitive, and transparent capacitive strain sensor for human activity monitoring. Microsystems & Nanoengineering, 8(1), 113.
    [CrossRef]   [Google Scholar]
  188. Choi, D. Y., Kim, M. H., Oh, Y. S., Jung, S. H., Jung, J. H., Sung, H. J., ... & Lee, H. M. (2017). Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring. ACS applied materials & interfaces, 9(2), 1770-1780.
    [CrossRef]   [Google Scholar]
  189. Xia, Q., Wang, S., Zhai, W., Shao, C., Xu, L., Yan, D., ... & Shen, C. (2021). Highly linear and low hysteresis porous strain sensor for wearable electronic skins. Composites Communications, 26, 100809.
    [CrossRef]   [Google Scholar]
  190. Shen, Z., Zhang, Z., Zhang, N., Li, J., Zhou, P., Hu, F., ... & Gu, G. (2022). High‐stretchability, ultralow‐hysteresis conductingpolymer hydrogel strain sensors for soft machines. Advanced Materials, 34(32), 2203650.
    [CrossRef]   [Google Scholar]
  191. Zhang, Y., Zhu, X., Liu, Y., Liu, L., Xu, Q., Liu, H., ... & Chen, L. (2021). Ultra‐stretchable monofilament flexible sensor with low hysteresis and linearity based on MWCNTs/Ecoflex composite materials. Macromolecular Materials and Engineering, 306(8), 2100113.
    [CrossRef]   [Google Scholar]
  192. Liu, J., Chen, X., Sun, B., Guo, H., Guo, Y., Zhang, S., ... & Tang, J. (2022). Stretchable strain sensor of composite hydrogels with high fatigue resistance and low hysteresis. Journal of Materials Chemistry A, 10(48), 25564-25574.
    [CrossRef]   [Google Scholar]
  193. Cohen, D. J., Mitra, D., Peterson, K., & Maharbiz, M. M. (2012). A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano letters, 12(4), 1821-1825.
    [CrossRef]   [Google Scholar]
  194. Wang, R., Xu, W., Shen, W., Shi, X., Huang, J., & Song, W. (2019). A highly stretchable and transparent silver nanowire/thermoplastic polyurethane film strain sensor for human motion monitoring. Inorganic Chemistry Frontiers, 6(11), 3119-3124.
    [CrossRef]   [Google Scholar]
  195. Wu, G., Li, S., Hu, J., Dong, M., Dong, K., Hou, X., & Xiao, X. (2021). A capacitive sensor using resin thermoplastic elastomer and carbon fibers for monitoring pressure distribution. Pigment & Resin Technology, 50(5), 437-443.
    [CrossRef]   [Google Scholar]
  196. Dorsey, K. L. (2019, April). Reconfigurable soft capacitive sensor with variable stiffness ring. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) (pp. 378-383). IEEE.
    [CrossRef]   [Google Scholar]
  197. Shi, H., Al‐Rubaiai, M., Holbrook, C. M., Miao, J., Pinto, T., Wang, C., & Tan, X. (2019). Screen‐printed soft capacitive sensors for spatial mapping of both positive and negative pressures. Advanced Functional Materials, 29(23), 1809116.
    [CrossRef]   [Google Scholar]
  198. Alsharif, B., Alalwany, E., Ibrahim, A., Mahgoub, I., & Ilyas, M. (2025). Real-Time American Sign Language Interpretation Using Deep Learning and Keypoint Tracking. Sensors, 25(7), 2138.
    [CrossRef]   [Google Scholar]
  199. Lee, C. J., Park, J. K., Piao, C., Seo, H. E., Choi, J., & Chun, J. H. (2018). Mutual capacitive sensing touch screen controller for ultrathin display with extended signal passband using negative capacitance. Sensors, 18(11), 3637.
    [CrossRef]   [Google Scholar]
  200. Shang, Y., Zhang, B., Liu, J., Xia, C., Yang, X., Yan, D., & Sun, J. (2023). Facile and economical fabrication of superhydrophobic flexible resistive strain sensors for human motion detection. Nanomanufacturing and Metrology, 6(1), 2.
    [CrossRef]   [Google Scholar]
  201. Yun, G., Tang, S. Y., Lu, H., Zhang, S., Dickey, M. D., & Li, W. (2021). Hybrid‐filler stretchable conductive composites: from fabrication to application. Small Science, 1(6), 2000080.
    [CrossRef]   [Google Scholar]
  202. Kim, S. R., Kim, J. H., & Park, J. W. (2017). Wearable and transparent capacitive strain sensor with high sensitivity based on patterned Ag nanowire networks. ACS applied materials & interfaces, 9(31), 26407-26416.
    [CrossRef]   [Google Scholar]
  203. Huang, J., Zhou, R., Chen, Z., Wang, Y., Li, Z., Mo, X., ... & Pan, C. (2023). Highly stable and reliable capacitive strain sensor for wearable electronics based on anti-dry hydrogel electrode. Materials Today Physics, 35, 101123.
    [CrossRef]   [Google Scholar]
  204. Xue, F., Peng, Q., Ding, R., Li, P., Zhao, X., Zheng, H., ... & He, X. (2024). Ultra-sensitive, highly linear, and hysteresis-free strain sensors enabled by gradient stiffness sliding strategy. npj Flexible Electronics, 8(1), 14.
    [CrossRef]   [Google Scholar]
  205. Liu, H., Li, Q., Zhang, S., Yin, R., Liu, X., He, Y., ... & Guo, Z. (2018). Electrically conductive polymer composites for smart flexible strain sensors: a critical review. Journal of Materials Chemistry C, 6(45), 12121-12141.
    [CrossRef]   [Google Scholar]
  206. Wang, C., Xia, K., Wang, H., Liang, X., Yin, Z., & Zhang, Y. (2019). Advanced carbon for flexible and wearable electronics. Advanced materials, 31(9), 1801072.
    [CrossRef]   [Google Scholar]
  207. Li, J., Fang, L., Sun, B., Li, X., & Kang, S. H. (2020). Recent progress in flexible and stretchable piezoresistive sensors and their applications. Journal of the Electrochemical Society, 167(3), 037561.
    [CrossRef]   [Google Scholar]
  208. Lou, Z., Wang, L., & Shen, G. (2018). Recent advances in smart wearable sensing systems. Advanced Materials Technologies, 3(12), 1800444.
    [CrossRef]   [Google Scholar]
  209. Shang, Y., Zhang, B., Liu, J., Xia, C., Yang, X., Yan, D., & Sun, J. (2023). Facile and economical fabrication of superhydrophobic flexible resistive strain sensors for human motion detection. Nanomanufacturing and Metrology, 6(1), 2.
    [CrossRef]   [Google Scholar]
  210. Mehmood, A., Mubarak, N. M., Khalid, M., Walvekar, R., Abdullah, E. C., Siddiqui, M. T. H., ... & Mazari, S. (2020). Graphene based nanomaterials for strain sensor application—a review. Journal of Environmental Chemical Engineering, 8(3), 103743.
    [CrossRef]   [Google Scholar]
  211. Zhu, Y., Chen, X., Chu, K., Wang, X., Hu, Z., & Su, H. (2022). Carbon black/PDMS based flexible capacitive tactile sensor for multi-directional force sensing. Sensors, 22(2), 628.
    [CrossRef]   [Google Scholar]
  212. Zhang, W., Liu, Q., & Chen, P. (2018). Flexible strain sensor based on carbon black/silver nanoparticles composite for human motion detection. Materials, 11(10), 1836.
    [CrossRef]   [Google Scholar]
  213. Wang, H., Cao, H., Wu, H., Zhang, Q., Mao, X., Wei, L., ... & Liu, C. (2023). Environmentally friendly and sensitive strain sensor based on multiwalled carbon nanotubes/lignin-based carbon nanofibers. ACS Applied Nano Materials, 6(15), 14165-14176.
    [CrossRef]   [Google Scholar]
  214. Zhu, W., Zhang, C., Lin, J., Pan, S., Wang, Q., Liao, N., ... & Zhang, M. (2023). Flexible strain sensor based on copper/graphene composite films. ACS Applied Nano Materials, 7(1), 358-369.
    [CrossRef]   [Google Scholar]
  215. He, J., Li, A., Wang, W., Cui, C., Jiang, S., Chen, M., ... & Guo, R. (2023). Multifunctional Wearable Device Based on an Antibacterial and Hydrophobic Silver Nanoparticles/Ti3C2T x MXene/Thermoplastic Polyurethane Fibrous Membrane for Electromagnetic Shielding and Strain Sensing. Industrial & Engineering Chemistry Research, 62(23), 9221-9232.
    [CrossRef]   [Google Scholar]
  216. De, A., & Kalita, D. (2023). Bio-fabricated gold and silver nanoparticle based plasmonic sensors for detection of environmental pollutants: an overview. Critical Reviews in Analytical Chemistry, 53(3), 672-688.
    [CrossRef]   [Google Scholar]
  217. Gao, X., Bao, Y., Chen, Z., Lu, J., Su, T., Zhang, L., & Ouyang, J. (2023). Bioelectronic applications of intrinsically conductive polymers. Advanced Electronic Materials, 9(10), 2300082.
    [CrossRef]   [Google Scholar]
  218. Li, C., Mu, J., Song, Y., Chen, S., & Xu, F. (2023). Highly aligned cellulose/polypyrrole composite nanofibers via electrospinning and in situ polymerization for anisotropic flexible strain sensor. ACS applied materials & interfaces, 15(7), 9820-9829.
    [CrossRef]   [Google Scholar]
  219. Sabry, F. (2022). Conductive polymer: The medical industry is revolutionized for tissue engineering and biosensors, to restore whole organs, or diagnose infectious diseases (Vol. 4). One Billion Knowledgeable.
    [Google Scholar]
  220. Wang, K., Zhang, Y., Hu, J., Li, M., & Wu, B. (2025). Flexible Strain Sensor Based on a Dual Crosslinked Network of PAMgA/GL/PANI Antifreeze Conductive Hydrogel. Macromolecular Chemistry and Physics, 226(2), 2400341.
    [CrossRef]   [Google Scholar]
  221. Choi, S., Han, S. I., Kim, D., Hyeon, T., & Kim, D. H. (2019). High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chemical Society Reviews, 48(6), 1566-1595.
    [CrossRef]   [Google Scholar]
  222. Hu, X., Feng, J., Zhang, H., Ma, J., Wu, Z., Wen, J., ... & Tian, Y. (2023). Electrohydrodynamic Printing of High‐Resolution Self‐Reduced Soldered Silver Nanowire Pattern for Wearable Flexible Strain Sensors. Advanced Materials Technologies, 8(19), 2300759.
    [CrossRef]   [Google Scholar]
  223. Zhao, S., Meng, X., Liu, L., Bo, W., Xia, M., Zhang, R., ... & Ahn, J. H. (2021). Polypyrrole-coated copper nanowire-threaded silver nanoflowers for wearable strain sensors with high sensing performance. Chemical Engineering Journal, 417, 127966.
    [CrossRef]   [Google Scholar]
  224. Cheng, L., Ruan, D., He, Y., Yang, J., Qian, W., Zhu, L., ... & Liu, A. (2023). A highly stretchable and sensitive strain sensor for lip-reading extraction and speech recognition. Journal of Materials Chemistry C, 11(25), 8413-8422.
    [CrossRef]   [Google Scholar]
  225. Chen, J., Zheng, J., Gao, Q., Zhang, J., Zhang, J., Omisore, O. M., ... & Li, H. (2018). Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications. Applied Sciences, 8(3), 345.
    [CrossRef]   [Google Scholar]
  226. Hassan, G., Bae, J., Hassan, A., Ali, S., Lee, C. H., & Choi, Y. (2018). Ink-jet printed stretchable strain sensor based on graphene/ZnO composite on micro-random ridged PDMS substrate. Composites Part A: Applied Science and Manufacturing, 107, 519-528.
    [CrossRef]   [Google Scholar]
  227. Zhang, Y., Anderson, N., Bland, S., Nutt, S., Jursich, G., & Joshi, S. (2017). All-printed strain sensors: Building blocks of the aircraft structural health monitoring system. Sensors and Actuators A: Physical, 253, 165-172.
    [CrossRef]   [Google Scholar]
  228. Azrak, E., Michaud, L., Richy, J., Reinhardt, A., Tardif, S., Eymery, J., ... & Montmeat, P. (2023). Large scale integration of functional radio‐frequency flexible MEMS under large mechanical strain. Advanced Functional Materials, 33(4), 2205404.
    [CrossRef]   [Google Scholar]
  229. Qi, X., Matteini, P., Hwang, B., & Lim, S. (2023). Roll stamped Ni/MWCNT composites for highly reliable cellulose paper-based strain sensor. Cellulose, 30(3), 1543-1552.
    [CrossRef]   [Google Scholar]
  230. Kubicek, R., Babaei, M., Weber, A. I., & Bergbreiter, S. (2023, May). A new sensation: Digital strain sensing for disturbance detection in flapping wing micro aerial vehicles. In 2023 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3390-3396). IEEE.
    [CrossRef]   [Google Scholar]
  231. Paşahan, A. (2012). Sensor applications of polyimides. High Performance Polymers–Polyimides Based–From Chemistry to Applications. InTech: Croatia, Rijeka, 199-214.
    [Google Scholar]
  232. Dagdeviren, C., Su, Y., Joe, P., Yona, R., Liu, Y., Kim, Y. S., ... & Rogers, J. A. (2014). Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nature communications, 5(1), 4496.
    [CrossRef]   [Google Scholar]
  233. Aabid, A., Parveez, B., Raheman, M. A., Ibrahim, Y. E., Anjum, A., Hrairi, M., ... & Mohammed Zayan, J. (2021, May). A review of piezoelectric material-based structural control and health monitoring techniques for engineering structures: Challenges and opportunities. In Actuators (Vol. 10, No. 5, p. 101). MDPI.
    [CrossRef]   [Google Scholar]
  234. Jat, A. S., & Grønli, T. M. (2023, August). Harnessing the digital revolution: a comprehensive review of mHealth applications for remote monitoring in transforming healthcare delivery. In International Conference on Mobile Web and Intelligent Information Systems (pp. 55-67). Cham: Springer Nature Switzerland.
    [CrossRef]   [Google Scholar]
  235. Lu, T., Ji, S., Jin, W., Yang, Q., Luo, Q., & Ren, T. L. (2023). Biocompatible and long-term monitoring strategies of wearable, ingestible and implantable biosensors: reform the next generation healthcare. Sensors, 23(6), 2991.
    [CrossRef]   [Google Scholar]
  236. Morgenthal, G., Eick, J. F., Rau, S., & Taraben, J. (2019). Wireless sensor networks composed of standard microcomputers and smartphones for applications in structural health monitoring. Sensors, 19(9), 2070.
    [CrossRef]   [Google Scholar]
  237. Lu, N., Lu, C., Yang, S., & Rogers, J. (2012). Highly sensitive skin‐mountable strain gauges based entirely on elastomers. Advanced Functional Materials, 22(19), 4044-4050.
    [CrossRef]   [Google Scholar]
  238. Shi, G., Liu, T., Kopecki, Z., Cowin, A., Lee, I., Pai, J. H., ... & Zhong, Y. L. (2019). A multifunctional wearable device with a graphene/silver nanowire nanocomposite for highly sensitive strain sensing and drug delivery. C, 5(2), 17.
    [CrossRef]   [Google Scholar]
  239. You, I., Kim, B., Park, J., Koh, K., Shin, S., Jung, S., & Jeong, U. J. A. M. (2016). Stretchable E-Skin Apexcardiogram Sensor. Advanced Materials (Deerfield Beach, Fla.), 28(30), 6359-6364.
    [CrossRef]   [Google Scholar]
  240. Zhang, Q., Bossuyt, F. M., Adam, N. C., Zambrano, B. L., Stauffer, F., Rennhard, P., ... & Smith, C. R. (2023). A stretchable strain sensor system for wireless measurement of musculoskeletal soft tissue strains. Advanced Materials Technologies, 8(12), 2202041.
    [CrossRef]   [Google Scholar]
  241. You, S. S., Schober, M., Ben‐Ayed, S., Babaee, S., Owyang, S., Jenkins, J., ... & Traverso, G. (2025). Personalized Kirigami Strain Sensors for in vivo Applications. Advanced Intelligent Systems, 2400886.
    [CrossRef]   [Google Scholar]
  242. Hu, C., Wang, L., Liu, S., Sheng, X., & Yin, L. (2024). Recent development of implantable chemical sensors utilizing flexible and biodegradable materials for biomedical applications. ACS nano, 18(5), 3969-3995.
    [CrossRef]   [Google Scholar]
  243. Khan, S. R., Bernassau, A. L., & Desmulliez, M. P. (2024). Passive and battery-free RFID-based wireless healthcare and medical devices: A review. IEEE Journal of Radio Frequency Identification.
    [CrossRef]   [Google Scholar]
  244. Chen, H., Wang, H., Yu, P., & Yang, X. (2023). Wearable strain sensors and their applications. In SHS Web of Conferences (Vol. 157, p. 03029). EDP Sciences.
    [CrossRef]   [Google Scholar]
  245. Zhang, J., Cao, Y., Qiao, M., Ai, L., Sun, K., Mi, Q., ... & Wang, Q. (2018). Human motion monitoring in sports using wearable graphene-coated fiber sensors. Sensors and Actuators A: Physical, 274, 132-140.
    [CrossRef]   [Google Scholar]
  246. Li, Z., Hu, F., Chen, Z., Huang, J., Chen, G., Chen, R., ... & Luo, J. (2021). Fiber-junction design for directional bending sensors. npj Flexible Electronics, 5(1), 4.
    [CrossRef]   [Google Scholar]
  247. Lim, G. H., Lee, N. E., & Lim, B. (2016). Highly sensitive, tunable, and durable gold nanosheet strain sensors for human motion detection. Journal of Materials Chemistry C, 4(24), 5642-5647.
    [CrossRef]   [Google Scholar]
  248. Liu, Y., Wang, H., Zhao, W., Zhang, M., Qin, H., & Xie, Y. (2018). Flexible, stretchable sensors for wearable health monitoring: sensing mechanisms, materials, fabrication strategies and features. Sensors, 18(2), 645.
    [CrossRef]   [Google Scholar]
  249. Lim, H. R., Kim, H. S., Qazi, R., Kwon, Y. T., Jeong, J. W., & Yeo, W. H. (2020). Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Advanced Materials, 32(15), 1901924.
    [CrossRef]   [Google Scholar]
  250. Kim, K. K., Suh, Y., & Ko, S. H. (2021). Smart stretchable electronics for advanced human–machine interface. Advanced Intelligent Systems, 3(2), 2000157.
    [CrossRef]   [Google Scholar]
  251. Cheraghi Bidsorkhi, H., D’Aloia, A. G., Tamburrano, A., De Bellis, G., & Sarto, M. S. (2021). Waterproof graphene-pvdf wearable strain sensors for movement detection in smart gloves. Sensors, 21(16), 5277.
    [CrossRef]   [Google Scholar]
  252. Dong, W., Yang, L., & Fortino, G. (2020). Stretchable human machine interface based on smart glove embedded with PDMS-CB strain sensors. IEEE Sensors Journal, 20(14), 8073-8081.
    [CrossRef]   [Google Scholar]
  253. Wu, Y., Zhou, Y., Asghar, W., Liu, Y., Li, F., Sun, D., ... & Yang, H. (2021). Liquid metal‐based strain sensor with ultralow detection limit for human–machine interface applications. Advanced Intelligent Systems, 3(10), 2000235.
    [CrossRef]   [Google Scholar]
  254. Qiu, H., Chen, Z., Chen, Y., Yang, C., Wu, S., Li, F., & Xie, L. (2024). A Real-Time Hand Gesture Recognition System for Low-Latency HMI via Transient HD-SEMG and In-Sensor Computing. IEEE Journal of Biomedical and Health Informatics, 28(9), 5156-5167.
    [CrossRef]   [Google Scholar]
  255. Wu, Y., Karakurt, I., Beker, L., Kubota, Y., Xu, R., Ho, K. Y., ... & Lin, L. (2018). Piezoresistive stretchable strain sensors with human machine interface demonstrations. Sensors and Actuators A: Physical, 279, 46-52.
    [CrossRef]   [Google Scholar]
  256. Yang, H., Ding, S., Wang, J., Sun, S., Swaminathan, R., Ng, S. W. L., ... & Ho, G. W. (2024). Computational design of ultra-robust strain sensors for soft robot perception and autonomy. Nature Communications, 15(1), 1636.
    [CrossRef]   [Google Scholar]
  257. Li, X., Wen, R., Shen, Z., Wang, Z., Luk, K. D. K., & Hu, Y. (2018). A wearable detector for simultaneous finger joint motion measurement. IEEE transactions on biomedical circuits and systems, 12(3), 644-654.
    [CrossRef]   [Google Scholar]
  258. Khan, H., Razmjou, A., Ebrahimi Warkiani, M., Kottapalli, A., & Asadnia, M. (2018). Sensitive and flexible polymeric strain sensor for accurate human motion monitoring. Sensors, 18(2), 418.
    [CrossRef]   [Google Scholar]
  259. Sun, Z., Zhu, M., & Lee, C. (2021). Progress in the triboelectric human–machine interfaces (HMIs)-moving from smart gloves to AI/haptic enabled HMI in the 5G/IoT era. Nanoenergy Advances, 1(1).
    [CrossRef]   [Google Scholar]
  260. Wang, H., Totaro, M., & Beccai, L. (2018). Toward perceptive soft robots: Progress and challenges. Advanced science, 5(9), 1800541.
    [CrossRef]   [Google Scholar]
  261. Xue, Z., Song, H., Rogers, J. A., Zhang, Y., & Huang, Y. (2020). Mechanically‐guided structural designs in stretchable inorganic electronics. Advanced Materials, 32(15), 1902254.
    [CrossRef]   [Google Scholar]
  262. Silva, C. A., Lv, J., Yin, L., Jeerapan, I., Innocenzi, G., Soto, F., ... & Wang, J. (2020). Liquid metal based island‐bridge architectures for all printed stretchable electrochemical devices. Advanced Functional Materials, 30(30), 2002041.
    [CrossRef]   [Google Scholar]
  263. Chen, P., Li, Y., Gao, H., Zhang, X., Du, H., & Ren, T. (2025). Novel static decoupling algorithm for the multi-axis wheel force sensor based on the Informer network. Measurement, 241, 115766.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Bibi, M., Hassan, G., Asif, A., Shuja, A., Ahmed, H., Mushtaq, B., & Sajid, M. (2025). Strain Sensing Technologies: Recent Developments in Materials, Performance, and Applications. ICCK Transactions on Sensing, Communication, and Control, 2(3), 168–199. https://doi.org/10.62762/TSCC.2025.665257

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 110
PDF Downloads: 0

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
Institute of Central Computation and Knowledge (ICCK) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ICCK Transactions on Sensing, Communication, and Control

ICCK Transactions on Sensing, Communication, and Control

ISSN: pending (Online) | ISSN: pending (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/