Academic Editor
Contributions by role
Editor 4
Habib Khan
Gachon University, Republic of Korea
Summary
Edited Journals
ICCK Contributions

Free Access | Research Article | 31 December 2024 | Cited: 1
Vehicular Network Security Through Optimized Deep Learning Model with Feature Selection Techniques
ICCK Transactions on Sensing, Communication, and Control | Volume 1, Issue 2: 136-153, 2024 | DOI: 10.62762/TSCC.2024.626147
Abstract
In recent years, vehicular ad hoc networks (VANETs) have faced growing security concerns, particularly from Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks. These attacks flood the network with malicious traffic, disrupting services and compromising resource availability. While various techniques have been proposed to address these threats, this study presents an optimized framework leveraging advanced deep-learning models for improved detection accuracy. The proposed Intrusion Detection System (IDS) employs Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Deep Belief Networks (DBN) alongside robust feature selection techniques, Random Projecti... More >

Graphical Abstract
Vehicular Network Security Through Optimized Deep Learning Model with Feature Selection Techniques

Free Access | Review Article | 09 November 2024 | Cited: 1
Comprehensive Evaluation of Artificial Intelligence Applications in Forensic Odontology: A Systematic Review and Meta-Analysis
ICCK Transactions on Intelligent Systematics | Volume 1, Issue 3: 176-189, 2024 | DOI: 10.62762/TIS.2024.818917
Abstract
This systematic review and meta-analysis assesses the transformative effect of artificial intelligence (AI) on forensic odontology, concentrating on gains in identification accuracy and workflow efficiency. Traditionally, human identification in this specialty depends on meticulous comparison of dental charts and radiographs. The integration of AI-driven technologies—including machine-learning algorithms and image-recognition networks—has begun to expedite core tasks such as bite-mark interpretation, dental-age estimation and record reconciliation, while also limiting examiner bias and clerical error. Following PRISMA guidelines to ensure methodological rigour, we searched PubMed, Scienc... More >

Graphical Abstract
Comprehensive Evaluation of Artificial Intelligence Applications in Forensic Odontology: A Systematic Review and Meta-Analysis

Free Access | Research Article | 09 November 2024
In-depth Urdu Sentiment Analysis Through Multilingual BERT and Supervised Learning Approaches
ICCK Transactions on Intelligent Systematics | Volume 1, Issue 3: 161-175, 2024 | DOI: 10.62762/TIS.2024.585616
Abstract
Sentiment analysis is the process of identifying and categorizing opinions expressed in a piece of text. It has been extensively studied for languages like English and Chinese but still needs to be explored for languages such as Urdu and Hindi. This paper presents an in-depth analysis of Urdu text using state-of-the-art supervised learning techniques and a transformer-based technique. We manually annotated and preprocessed the dataset from various Urdu blog websites to categorize the sentiments into positive, neutral, and negative classes. We utilize five machine learning classifiers: Support Vector Machine (SVM), K-nearest neighbor (KNN), Naive Bayes, Multinomial Logistic Regression (MLR),... More >

Graphical Abstract
In-depth Urdu Sentiment Analysis Through Multilingual BERT and Supervised Learning Approaches

Free Access | Research Article | 29 October 2024 | Cited: 3
Enhancing Ocular Health Precision: Cataract Detection Using Fundus Images and ResNet-50
ICCK Transactions on Intelligent Systematics | Volume 1, Issue 3: 145-160, 2024 | DOI: 10.62762/TIS.2024.640345
Abstract
Cataracts are a leading cause of blindness in Pakistan, contributing to more than 54% of cases due to poor living condition, nutritional deficiencies, and limited healthcare access. Early detection is critical to avoid invasive treatments,but current diagnostic approaches often identify cataracts at advanced stages. This paper presents an advanced,automated cataract detection system using deep learning specifically the ResNet-50 architecture, to address this gap. The model processes fundus retinal images curated from diverse datasets, classified by ophthalmologic experts through a rigorous three-stage process. By leveraging the ResNet-50 model, cataracts are categorized into normal,moderate,... More >

Graphical Abstract
Enhancing Ocular Health Precision: Cataract Detection Using Fundus Images and ResNet-50