-
CiteScore
-
Impact Factor
Volume 2, Issue 3, Agricultural Science and Food Processing
Volume 2, Issue 3, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Agricultural Science and Food Processing, Volume 2, Issue 3, 2025: 123-132

Open Access | Research Article | 26 September 2025
Modeling of Measured Physical Properties and Determination of Chemical Composition of Black Tamarind (Dialium Guineense) Seed
1 Department of Agricultural and Bioresources Engineering, Michael Okpara University of Agriculture, Umuahia 440109, Nigeria
2 Department of Mechanical Engineering, Michael Okpara University of Agriculture, Umuahia 440109, Nigeria
* Corresponding Author: James Chinaka Ehiem, [email protected]
Received: 08 July 2025, Accepted: 04 September 2025, Published: 26 September 2025  
Abstract
Modeling of physical properties and determination of the chemical composition of BTS were studied at 12.25% wet basis. Mass correlation with principal dimensions was modeled and evaluated using statistical parameters including chi-square ($\chi^2$), coefficient of determination (R$^2$), root mean square error (RMSE), and standard error (SE). Chemical properties were analyzed using standard techniques. Results showed mean values of seed mass, major, intermediate, and minor diameters of 0.18$\pm$0.02 g, 0.85$\pm$0.007 mm, 0.73$\pm$0.074 mm, and 0.38$\pm$0.046 mm, respectively. The seed was spherical (72.64%) with mean aspect ratio (1.17$\pm$0.124), ellipsoid ratio (2.27$\pm$0.31), and eccentricity (0.4768$\pm$0.16). The correlation of mass with intermediate diameter, and with the interaction of intermediate and minor diameters, produced the best non-linear regression models. The intermediate diameter model yielded the highest R² (98%) and lowest $\chi^2$ (2.4 $\times$ 10$^{-5}$). The interaction model achieved R² of 99% with the lowest RMSE (0.0032), $\chi^2$ (0.0029), and SE (1.04 $\times$ 10$^{-5}$) for predicting seed mass. Proximate and phytochemical compositions were not significantly different ($p>0.05$) from recommended levels by WHO and NAFDAC. This study provides a basis for developing standardized, cost-effective processing methods to enhance market value and ensure compliance with international quality standards.

Graphical Abstract
Modeling of Measured Physical Properties and Determination of Chemical Composition of Black Tamarind (Dialium Guineense) Seed

Keywords
modelling
seed
physical properties
measurement
composition

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Lock, M. (2005). Legumes of the World (Vol. 577). G. P. Lewis, B. Schrire, & B. Mackinder (Eds.). Kew: Royal Botanic Gardens.
    [Google Scholar]
  2. Purseglove, J. W. (1987). Tropical crops. Dicotyledons, Longria. Science and Technology, 204-206.
    [Google Scholar]
  3. Shankaracharya, N. B. (1998). Tamarind-chemistry, technology and uses-a critical appraisal.
    [Google Scholar]
  4. Feungchan, S., Yimsawat, T., Chindaprasert, S., & Kitpowsong, P. (1996). Evaluation of tamarind cultivars on the chemical composition of pulp. Thai Journal of Agricultural Science, special, (1), 28-33.
    [Google Scholar]
  5. Parvez, S. S., Parvez, M. M., Nishihara, E., Gemma, H., & Fujii, Y. (2003). Tamarindus indica L. leaf is a source of allelopathic substance. Plant Growth Regulation, 40(2), 107-115.
    [CrossRef]   [Google Scholar]
  6. Shahi-Gharahlar, A., Yavari, A. R., & Khanali, M. (2009). Mass and volume modeling of loquat (Eriobotrya japonica Lindl.) fruit based on physical characteristics. Journal of Fruit and Ornamental Plant Research, 17(2), 175-189.
    [Google Scholar]
  7. Seyedabadi, E., Khojastehpour, M., Sadrnia, H., & Saiedirad, M. H. (2011). Mass modeling of cantaloupe based on geometric attributes: A case study for Tile Magasi and Tile Shahri. Scientia Horticulturae, 130(1), 54-59.
    [CrossRef]   [Google Scholar]
  8. Shahbazi, F., & Rahmati, S. (2014). Mass modeling of persimmon fruit with some physical characteristics. Agricultural Engineering International: CIGR Journal, 16(1), 289-293.
    [Google Scholar]
  9. Sivabalan, K., Sunil, C. K., & Venkatachalapathy, N. (2019). Mass modeling of coconut (Cocos nucifera L.) with physical characteristics. International Journal of Chemical Studies, 7(3), 5067-5072.
    [Google Scholar]
  10. Panda, G., Vivek, K., & Mishra, S. (2020). Physical characterization and mass modeling of Kendu (Diospyros melanoxylon Roxb.) fruit. International Journal of Fruit Science, 20(sup3), S2005-S2017.
    [CrossRef]   [Google Scholar]
  11. Saraçoğlu, T. (2017). Mathematical models for estimating the mass of plum fruit by selected physical properties. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 34(3), 82-90.
    [CrossRef]   [Google Scholar]
  12. Mahawar, M. K., Bibwe, B., Jalgaonkar, K., & Ghodki, B. M. (2019). Mass modeling of kinnow mandarin based on some physical attributes. Journal of Food Process Engineering, 42(5), e13079.
    [CrossRef]   [Google Scholar]
  13. Pathak, S. S., Pradhan, R. C., & Mishra, S. (2019). Physical characterization and mass modeling of dried Terminalia chebula fruit. Journal of Food Process Engineering, 42(3), e12992.
    [CrossRef]   [Google Scholar]
  14. Khodabakhshian, R., & Emadi, B. (2016). Mass model of date fruit (cv. Mazafati) based on its physiological properties. International Food Research Journal, 23(5), 2070-2075.
    [Google Scholar]
  15. Azman, P. N. M. A., Shamsudin, R., Che Man, H., & Ya’acob, M. E. (2021). Mass modelling of pepper berries (Piper nigrum L.) with some physical properties. Food Research, 5(1), 80-84.
    [CrossRef]   [Google Scholar]
  16. Ghabel, R., Rajabipour, A., Ghasemi-Varnamkhasti, M., & Oveisi, M. (2010). Modeling the mass of Iranian export onion (Allium cepa L.) varieties using some physical characteristics. Research in Agricultural engineering, 56(1), 33-40.
    [CrossRef]   [Google Scholar]
  17. Hassan-Beygi, S. R., Ghanbarian, D., & Farahmand, M. (2010). Prediction of saffron crocus corm mass by geometrical attributes. Scientia horticulturae, 124(1), 109-115.
    [CrossRef]   [Google Scholar]
  18. Taheri-Garavand, A., & Nassiri, A. (2010). Study on some morphological and physical Characteristics of sweet lemon used in mass models. International Journal of Environmental Sciences, 1(4), 580-590.
    [Google Scholar]
  19. Murakonda, S., Patel, G., & Dwivedi, M. (2022). Characterization of engineering properties and modeling mass and fruit fraction of wood apple (Limonia acidissima) fruit for post-harvest processing.
    [CrossRef]   [Google Scholar]
  20. Mansouri, A., Mirzabe, A. H., & Raufi, A. (2017). Physical properties and mathematical modeling of melon (Cucumis melo L.) seeds and kernels. Journal of the Saudi Society of Agricultural Sciences, 16(3), 218-226.
    [CrossRef]   [Google Scholar]
  21. Mirzabe, A. H., Khazaei, J., & Chegini, G. R. (2012). Physical properties and modeling for sunflower seeds. Agricultural Engineering International: CIGR Journal, 14(3), 190-202.
    [Google Scholar]
  22. Mohsenin, N. N. (1986). Physical properties of plant and animal materials: structure, physical characteristics and mechanical properties.
    [Google Scholar]
  23. Ehiem, J. C., & Simonyan, K. J. (2012). Physical properties of wild mango fruit and nut. International Agrophysics, 26(1).
    [CrossRef]   [Google Scholar]
  24. Bhise, S. U. R. E. S. H., Kaur, A., & Manikantan, M. R. (2013). Moisture dependant physical properties of sunflower seed (PSH 569). International Journal of Engineering and Science, 2(8), 23-27.
    [Google Scholar]
  25. Sirisomboon, P., Pornchaloempong, P., & Romphophak, T. (2007). Physical properties of green soybean: criteria for sorting. Journal of food engineering, 79(1), 18-22.
    [CrossRef]   [Google Scholar]
  26. Lorestani, A. N., & Kazemi, A. (2012). Mass modeling of castor seed (Ricinus communis) with some geometrical attributes. International Journal of Agriculture and Forestry, 2(5), 235-238.
    [Google Scholar]
  27. Waksmundzka-Hajnos, M., Petruczynik, A., Dragan, A., Wianowska, D., Dawidowicz, A. L., & Sowa, I. (2004). Influence of the extraction mode on the yield of some furanocoumarins from Pastinaca sativa fruits. Journal of chromatography B, 800(1-2), 181-187.
    [CrossRef]   [Google Scholar]
  28. Ismail, B. P. (2024). Ash content determination. In Nielsen's Food Analysis Laboratory Manual (pp. 129-131). Cham: Springer International Publishing.
    [CrossRef]   [Google Scholar]
  29. Kirk, S., & Sawyer, R. (1991). Pearson's composition and analysis of foods (No. Ed. 9, pp. x+-708).
    [Google Scholar]
  30. Onwuka, G. I. (2005). Food analysis and instrumentation: theory and practice. Napthali prints.
    [Google Scholar]
  31. Asoiro, F. U., Ezeoha, S. L., Ezenne, G. I., & Ugwu, C. B. (2017). Chemical and mechanical properties of velvet tamarind fruit (Dialium guineense). Nigerian Journal of Technology, 36(1), 252-260.
    [CrossRef]   [Google Scholar]
  32. Osanaiye, F. G., Alabi, M. A., Sunday, R. M., Olowokere, T., Salami, E. T., Otunla, T. A., & Odiaka, S. C. (2013). Proximate composition of whole seeds and pulp of African black velvet tamarind (Dialium guineense). J Agri Vet Sci, 5, 49-52.
    [Google Scholar]
  33. James, C. S. (1995). Analytical chemistry of foods. In Analytical chemistry of foods (pp. 178-178).
    [Google Scholar]
  34. Ejikeme, C., Ezeonu, C. S., & Eboatu, A. N. (2014). Determination of Physical and Phytochemical Constituents of some Tropical Timbers Indigenous to nigerdelta area of nigeria. European Scientific Journal, 10(18), 247-270.
    [Google Scholar]
  35. Werby, R. A., & Mousa, A. (2016). Some physical and mechanical properties of Jatropha fruits. Misr Journal of Agricultural Engineering, 33(2), 475-490. http://doi.org/10.21608/mjae.2016.97971
    [Google Scholar]
  36. Achoba, I. I., Lori, J. A., Elegbede, J. A., & Kagbu, J. A. (1992). Nutrient composition of black (African) velvet tamarind (Dialium guineense Wild) seed and pulp from Nigeria. Journal of Food Biochemistry, 16(4), 229-233.
    [CrossRef]   [Google Scholar]
  37. Ogbuewu, I. P., Modisaojang-Mojanaga, M. M. C., Mokolopi, B. G., & Mbajiorgu, C. A. (2023). Nutritional and chemical composition of black velvet tamarind (Dialium guineense Willd) and its influence on animal production: A review. Open Agriculture, 8(1), 20220174.
    [CrossRef]   [Google Scholar]
  38. Okudu, H. O., Umoh, E. J., Ojinnaka, M. C., & Chianakwalam, O. F. (2017). Nutritional, functional and sensory attributes of jam from velvet tamarind pulp. African Journal of Food Science, 11(2), 44-49.
    [CrossRef]   [Google Scholar]
  39. Osanaiye, F. G., Alabi, M. A., Sunday, R. M., Olowokere, T., Salami, E. T., Otunla, T. A., & Odiaka, S. C. (2013). Proximate composition of whole seeds and pulp of African black velvet tamarind (Dialium guineense). J Agri Vet Sci, 5, 49-52.
    [Google Scholar]

Cite This Article
APA Style
Ehiem, J. C., Tosin, P., Igbozurike, A. O., Oduma, O., & Okoro, O. I. (2025). Modeling of Measured Physical Properties and Determination of Chemical Composition of Black Tamarind (Dialium Guineense) Seed. Agricultural Science and Food Processing, 2(3), 123–132. https://doi.org/10.62762/ASFP.2025.430476

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 17
PDF Downloads: 9

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Agricultural Science and Food Processing

Agricultural Science and Food Processing

ISSN: 3066-1579 (Online) | ISSN: 3066-1560 (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/