-
CiteScore
-
Impact Factor
Volume 2, Issue 4, Chinese Journal of Information Fusion
Volume 2, Issue 4, 2025
Submit Manuscript Edit a Special Issue
Academic Editor
Deqiang Han
Deqiang Han
Xi'an Jiaotong University, China
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Chinese Journal of Information Fusion, Volume 2, Issue 4, 2025: 313-339

Open Access | Review Article | 10 November 2025
A Systematic Review on Real-time Detection of Small Obstacles Based on Multidimensional Information Fusion
1 College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
2 Guangdong Provincial Key Laboratory of Intelligent Information Processing, Shenzhen 518060, China
3 Dongguan New-Generation Artificial Intelligence Industry Technology Research Institute, Dongguan 523000, China
* Corresponding Author: Junyan Cai, [email protected]
Received: 05 June 2025, Accepted: 23 October 2025, Published: 10 November 2025  
Abstract
Real-time detection of small obstacles is a critical challenge for autonomous systems such as self-driving vehicles, unmanned aerial vehicles (UAVs), and mobile robots. These small obstacles (e.g., road debris, fallen branches, cables) pose significant safety risks due to their low visibility and irregular appearances. This paper presents a comprehensive systematic review of 117 technical articles published between 2016 and 2025, focusing on the techniques and deployment strategies for real-time small obstacle detection using fused multidimensional information. We summarize and analyze developments in small obstacle definitions, sensing hardware, detection algorithms, fusion methods, and real-time optimization techniques. Our findings reveal a growing trend toward integrating multiscale learning, multimodal fusion, and lightweight models for deployment in resource-constrained environments. However, challenges such as performance consistency across platforms, lack of standard definitions, and insufficient deployment practices persist. This review identifies future research opportunities and provides recommendations to guide further advances in robust, scalable, and deployable small obstacle detection systems.

Graphical Abstract
A Systematic Review on Real-time Detection of Small Obstacles Based on Multidimensional Information Fusion

Keywords
small obstacle detection
real-time detection
multidimensional information
multimodal fusion
lightweight models

Data Availability Statement
Not applicable.

Funding
This work was supported by the Project of Shenzhen Science and Technology Plan under Grant KJZD20230923114405012 and Guangdong Provincial Key Laboratory under Grant 2023B1212060076.

Conflicts of Interest
Yong Zhang is an employee of Guangdong Provincial Key Laboratory of Intelligent Information Processing, Shenzhen 518060, China, Junyan Cai is an employee of Dongguan New-Generation Artificial Intelligence Industry Technology Research Institute, Dongguan 523000, China. The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Khan, M., LeMaster, D., & Najm, W. G. (2024). Understanding Safety Challenges of Vehicles Equipped with Automated Driving Systems (ADS): Analysis of ADS Disengagements. US Department of Transportation, Highly Automated Systems Safety Center of Excellence, 2024-08.
    [Google Scholar]
  2. Werfelman, L. (2019, October 30). Study: Two-thirds of manned aircraft pilots failed to spot nearby drones. Flight Safety Foundation. Retrieved from https://flightsafety.org/study-two-thirds-of-manned-aircraft-pilots-failed-to-spot-nearby-drones/
    [Google Scholar]
  3. Song, J., Zhao, L., & Skinner, K. A. (2024). Lirafusion: Deep adaptive lidar-radar fusion for 3d object detection. In 2024 IEEE International Conference on Robotics and Automation (ICRA) (pp. 18250-18257). IEEE.
    [CrossRef]   [Google Scholar]
  4. Laga, H., Jospin, L. V., Boussaid, F., & Bennamoun, M. (2020). A survey on deep learning techniques for stereo-based depth estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(4), 1738-1764.
    [CrossRef]   [Google Scholar]
  5. Drews, F., Feng, D., Faion, F., & Glaser, C. (2022). Deepfusion: A robust and modular 3d object detector for lidars, cameras and radars. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 560-567). IEEE.
    [CrossRef]   [Google Scholar]
  6. Zhao, C., Song, Y., Yang, X., & Chen, Z. (2023). Target detection based on multi-scale feature fusion and cross-channel interactive attention mechanism. In Journal of Physics: Conference Series (Vol. 2562, No. 1, p. 012046). IOP Publishing.
    [CrossRef]   [Google Scholar]
  7. Deng, Y., Hu, X., Li, B., & Liu, Y. (2023). Multi-scale self-attention-based feature enhancement for detection of targets with small image sizes. Pattern Recognition Letters, 166, 46-52.
    [CrossRef]   [Google Scholar]
  8. Bosquet, B., Mucientes, M., & Brea, V. M. (2020). STDnet: Exploiting high resolution feature maps for small object detection. Engineering Applications of Artificial Intelligence, 91, 103615.
    [CrossRef]   [Google Scholar]
  9. Krishna, H., & Jawahar, C. V. (2017, November). Improving small object detection. In 2017 4th IAPR Asian conference on pattern recognition (ACPR) (pp. 340-345). IEEE.
    [CrossRef]   [Google Scholar]
  10. Pinggera, P., Ramos, S., Gehrig, S., Franke, U., Rother, C., & Mester, R. (2016, October). Lost and found: detecting small road hazards for self-driving vehicles. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1099-1106). IEEE.
    [CrossRef]   [Google Scholar]
  11. Tong, K., & Wu, Y. (2022). Deep learning-based detection from the perspective of small or tiny objects: A survey. Image and Vision Computing, 123, 104471.
    [CrossRef]   [Google Scholar]
  12. Liu, Y., Sun, P., Wergeles, N., & Shang, Y. (2021). A survey and performance evaluation of deep learning methods for small object detection. Expert Systems with Applications, 172, 114602.
    [CrossRef]   [Google Scholar]
  13. Muzammul, M., & Li, X. (2021). A survey on deep domain adaptation and tiny object detection challenges, techniques and datasets. arXiv preprint arXiv:2107.07927.
    [Google Scholar]
  14. Lu, L., Fasano, G., Carrio, A., Lei, M., Bavle, H., & Campoy, P. (2023). A comprehensive survey on non‐cooperative collision avoidance for micro aerial vehicles: Sensing and obstacle detection. Journal of Field Robotics, 40(6), 1697-1720.
    [CrossRef]   [Google Scholar]
  15. Yadikar, N., & Ubul, K. (2023). A review of knowledge distillation in object detection. IEEE Access.
    [CrossRef]   [Google Scholar]
  16. Badrloo, S., Varshosaz, M., Pirasteh, S., & Li, J. (2022). Image-based obstacle detection methods for the safe navigation of unmanned vehicles: A review. Remote Sensing, 14(15), 3824.
    [CrossRef]   [Google Scholar]
  17. Iqra, Giri, K. J., & Javed, M. (2024). Small object detection in diverse application landscapes: a survey. Multimedia Tools and Applications, 83(41), 88645-88680.
    [CrossRef]   [Google Scholar]
  18. Ristić-Durrant, D., Franke, M., & Michels, K. (2021). A review of vision-based on-board obstacle detection and distance estimation in railways. Sensors, 21(10), 3452.
    [CrossRef]   [Google Scholar]
  19. Wei, Z., Zhang, F., Chang, S., Liu, Y., Wu, Q., & Li, Z. (2022). Mmwave radar and vision fusion for object detection in autonomous driving: A review. Sensors, 22(7), 2542.
    [CrossRef]   [Google Scholar]
  20. Mirzaei, B., Nezamabadi-Pour, H., Raoof, A., & Lee, M. (2023). Small object detection and tracking: a comprehensive review. Sensors, 23(15), 6887.
    [CrossRef]   [Google Scholar]
  21. Popov, A., Gebhardt, P., Chen, K., & Feng, S. (2023). Nvradarnet: Real-time radar obstacle and free space detection for autonomous driving. In 2023 IEEE International Conference on Robotics and Automation (ICRA) (pp. 6958-6964). IEEE.
    [CrossRef]   [Google Scholar]
  22. Haris, M., & Hou, J. (2020). Obstacle Detection and Safely Navigate the Autonomous Vehicle from Unexpected Obstacles on the Driving Lane. Sensors, 20(17), 4719.
    [CrossRef]   [Google Scholar]
  23. Sun, L., Yang, K., Hu, X., Hu, W., & Wang, K. (2020). Real-time fusion network for RGB-D semantic segmentation incorporating unexpected obstacle detection for road-driving images. IEEE robotics and automation letters, 5(4), 5558-5565.
    [CrossRef]   [Google Scholar]
  24. Chandran, N. K., Sultan, M. T. H., Łukaszewicz, A., Shahar, F. S., Holovatyy, A., & Giernacki, W. (2023). Review on Type of Sensors and Detection Method of Anti-Collision System of Unmanned Aerial Vehicle. Sensors, 23(15), 6810.
    [CrossRef]   [Google Scholar]
  25. Merei, A., Mcheick, H., Ghaddar, A., & Al-Fuqaha, A. (2025). A Survey on Obstacle Detection and Avoidance Methods for UAVs. Drones, 9(3), 203.
    [CrossRef]   [Google Scholar]
  26. Du, Z., Feng, X., Li, F., & Zhang, Y. (2024). A Lightweight UAV Visual Obstacle Avoidance Algorithm Based on Improved YOLOv8. Computers, Materials & Continua, 81(2).
    [CrossRef]   [Google Scholar]
  27. Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, C. L. (2014, September). Microsoft coco: Common objects in context. In European conference on computer vision (pp. 740-755). Cham: Springer International Publishing.
    [CrossRef]   [Google Scholar]
  28. Du, D., Zhu, P., Wen, L., Bian, X., Lin, H., Hu, Q., ... & Liu, Z. (2019, October). VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results. In 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW) (pp. 213-226). IEEE.
    [CrossRef]   [Google Scholar]
  29. Du, D., Qi, Y., Yu, H., Yang, Y., Duan, K., Li, G., ... & Lyu, S. (2018). The unmanned aerial vehicle benchmark: Object detection and tracking. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 370-386).
    [CrossRef]   [Google Scholar]
  30. Xia, G. S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., ... & Zhang, L. (2018). DOTA: A large-scale dataset for object detection in aerial images. In 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1-10).
    [CrossRef]   [Google Scholar]
  31. Geiger, A., Lenz, P., & Urtasun, R. (2012, June). Are we ready for autonomous driving? the kitti vision benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition (pp. 3354-3361). IEEE.
    [CrossRef]   [Google Scholar]
  32. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., ... & Schiele, B. (2016, June). The Cityscapes Dataset for Semantic Urban Scene Understanding. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3213-3223). IEEE.
    [CrossRef]   [Google Scholar]
  33. Bhadoriya, A. S., Vegamoor, V., & Rathinam, S. (2022). Vehicle detection and tracking using thermal cameras in adverse visibility conditions. Sensors, 22(12), 4567.
    [CrossRef]   [Google Scholar]
  34. Song, T. J., Jeong, J., & Kim, J. H. (2022). End-to-end real-time obstacle detection network for safe self-driving via multi-task learning. IEEE Transactions on Intelligent Transportation Systems, 23(9), 16318-16329.
    [CrossRef]   [Google Scholar]
  35. Rawlley, O., Gupta, S., Mahajan, K., & Kumar, S. (2024). Green-EMulTO: a next generation edge-assisted multi-level traffic orchestrator for green computing in consumer autonomous vehicles. IEEE Transactions on Consumer Electronics.
    [CrossRef]   [Google Scholar]
  36. Wu, J., Jing, R., Bai, Y., & Liu, Y. (2024). Small insulator defects detection based on multiscale feature interaction transformer for UAV-assisted power IoVT. IEEE Internet of Things Journal, 11(13), 23410-23427.
    [CrossRef]   [Google Scholar]
  37. Min, X., Zhou, W., Hu, R., Wu, Y., Pang, Y., & Yi, J. (2024). Lwuavdet: A lightweight uav object detection network on edge devices. IEEE Internet of Things Journal, 11(13), 24013-24023.
    [CrossRef]   [Google Scholar]
  38. Wang, J., Zhu, M., Sun, D., Wang, B., Gao, W., & Wei, H. (2019). MCF3D: Multi-Stage Complementary Fusion for Multi-Sensor 3D Object Detection. IEEE Access, 7, 90801-90814.
    [CrossRef]   [Google Scholar]
  39. Yang, J., Xie, X., & Yang, W. (2019). Effective Contexts for UAV Vehicle Detection. IEEE Access, 7, 85042-85054.
    [CrossRef]   [Google Scholar]
  40. Ma, W., Wu, Y., Cen, F., & Wang, G. (2020). MDFN: Multi-scale deep feature learning network for object detection. Pattern Recognition, 100, 107149.
    [CrossRef]   [Google Scholar]
  41. Sun, L., Yang, K., Hu, X., Hu, W., & Wang, K. (2020). Real-Time Fusion Network for RGB-D Semantic Segmentation Incorporating Unexpected Obstacle Detection for Road-Driving Images. IEEE Robotics and Automation Letters, 5, 5558-5565.
    [CrossRef]   [Google Scholar]
  42. Zhang, H., Qin, L., Li, J., Guo, Y., Zhou, Y., Zhang, J., & Xu, Z. (2020). Real-Time Detection Method for Small Traffic Signs Based on Yolov3. IEEE Access, 8, 64145-64156.
    [CrossRef]   [Google Scholar]
  43. Anand, B., Senapati, M., Barsaiyan, V., & Rajalakshmi, P. (2021). LiDAR-INS/GNSS-Based Real-Time Ground Removal, Segmentation, and Georeferencing Framework for Smart Transportation. IEEE Transactions on Instrumentation and Measurement, 70, 1-11.
    [CrossRef]   [Google Scholar]
  44. Li, Q., Garg, S., Nie, J., Li, X., Liu, R. W., Cao, Z., & Hossain, M. S. (2020). A highly efficient vehicle taillight detection approach based on deep learning. IEEE transactions on intelligent transportation systems, 22(7), 4716-4726.
    [CrossRef]   [Google Scholar]
  45. Li, Z., Liu, X., Zhao, Y., Liu, B., Huang, Z., & Hong, R. (2021). A lightweight multi-scale aggregated model for detecting aerial images captured by UAVs. Journal of Visual Communication and Image Representation, 77, 103058.
    [CrossRef]   [Google Scholar]
  46. Li, Z., Zhou, A., Pu, J., & Yu, J. (2021). Multi-Modal Neural Feature Fusion for Automatic Driving Through Perception-Aware Path Planning. IEEE Access, 9, 142782-142794.
    [CrossRef]   [Google Scholar]
  47. Sun, C., Wen, M., Zhang, K., Meng, P., & Cui, R. (2021). Traffic sign detection algorithm based on feature expression enhancement. Multimedia Tools and Applications, 80(25), 33593-33614.
    [CrossRef]   [Google Scholar]
  48. Tao, Y., Zongyang, Z., Jun, Z., Xinghua, C., & Fuqiang, Z. (2021). Low-altitude small-sized object detection using lightweight feature-enhanced convolutional neural network. Journal of Systems Engineering and Electronics, 32, 841-853.
    [CrossRef]   [Google Scholar]
  49. Wu, Y., Jiang, X., Fang, Z., Gao, Y., & Fujita, H. (2021). Multi-modal 3D object detection by 2D-guided precision anchor proposal and multi-layer fusion. Applied Soft Computing, 108, 107405.
    [CrossRef]   [Google Scholar]
  50. Zeng, T., Wang, J., Cui, B., Wang, X., Wang, D., & Zhang, Y. (2021). The equipment detection and localization of large-scale construction jobsite by far-field construction surveillance video based on improving YOLOv3 and grey wolf optimizer improving extreme learning machine. Construction and Building Materials, 291, 123268.
    [CrossRef]   [Google Scholar]
  51. Chen, T. H., & Chang, T. S. (2022). RangeSeg: Range-Aware Real Time Segmentation of 3D LiDAR Point Clouds. IEEE Transactions on Intelligent Vehicles, 7, 93-101.
    [CrossRef]   [Google Scholar]
  52. Chen, X., Li, Y., & Nakatoh, Y. (2022). Pyramid attention object detection network with multi-scale feature fusion. Computers and Electrical Engineering, 104, 108436.
    [CrossRef]   [Google Scholar]
  53. Junos, M. H., Khairuddin, A. S. M., & Dahari, M. (2022). Automated object detection on aerial images for limited capacity embedded device using a lightweight CNN model. Alexandria Engineering Journal, 61(8), 6023-6041.
    [CrossRef]   [Google Scholar]
  54. Liu, X., Leng, C., Niu, X., Pei, Z., Cheng, I., & Basu, A. (2022). Find Small Objects in UAV Images by Feature Mining and Attention. IEEE Geoscience and Remote Sensing Letters, 19, 1-5.
    [CrossRef]   [Google Scholar]
  55. Wang, K., Wang, Y., Zhang, S., Tian, Y., & Li, D. (2022). SLMS-SSD: Improving the balance of semantic and spatial information in object detection. Expert Systems with Applications, 206, 117682.
    [CrossRef]   [Google Scholar]
  56. Ye, T., Zhang, J., Li, Y., Zhang, X., Zhao, Z., & Li, Z. (2022). CT-Net: An Efficient Network for Low-Altitude Object Detection Based on Convolution and Transformer. IEEE Transactions on Instrumentation and Measurement, 71, 1-12.
    [CrossRef]   [Google Scholar]
  57. Yuan, S., Zhang, Q., Zhu, L., Wang, S., Zang, Y., & Zhao, X. (2022). Multi-level object detection by multi-sensor perception of traffic scenes. Neurocomputing, 514, 486-499.
    [CrossRef]   [Google Scholar]
  58. Yuan, Y., Cheng, H., & Sester, M. (2022). Keypoints-based deep feature fusion for cooperative vehicle detection of autonomous driving. IEEE Robotics and Automation Letters, 7(2), 3054-3061.
    [CrossRef]   [Google Scholar]
  59. Zhang, Q., Tang, J., Zheng, H., & Lin, C. (2022). Efficient object detection method based on aerial optical sensors for remote sensing. Displays, 75, 102328.
    [CrossRef]   [Google Scholar]
  60. Zhang, Y., Zhang, Y., Fu, R., Shi, Z., Zhang, J., Liu, D., & Du, J. (2022). Learning Nonlocal Quadrature Contrast for Detection and Recognition of Infrared Rotary-Wing UAV Targets in Complex Background. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-19.
    [CrossRef]   [Google Scholar]
  61. Zhou, Y., Wen, S., Wang, D., Meng, J., Mu, J., & Irampaye, R. (2022). MobileYOLO: Real-time object detection algorithm in autonomous driving scenarios. Sensors, 22(9), 3349.
    [CrossRef]   [Google Scholar]
  62. Cao, Y., Li, C., Peng, Y., & Ru, H. (2023). MCS-YOLO: A Multiscale Object Detection Method for Autonomous Driving Road Environment Recognition. IEEE Access, 11, 22342-22354.
    [CrossRef]   [Google Scholar]
  63. Cui, M., Gong, G., Chen, G., Wang, H., Jin, M., Mao, W., & Lu, H. (2023). LC-YOLO: A lightweight model with efficient utilization of limited detail features for small object detection. Applied Sciences, 13(5), 3174.
    [CrossRef]   [Google Scholar]
  64. Dong, Y., Ma, Y., Li, Y., & Li, Z. (2023). High-precision real-time UAV target recognition based on improved YOLOv4. Computer Communications, 206, 124-132.
    [CrossRef]   [Google Scholar]
  65. Wang, J., Zhang, F., Zhang, Y., Liu, Y., & Cheng, T. (2023). Lightweight object detection algorithm for uav aerial imagery. Sensors, 23(13), 5786.
    [CrossRef]   [Google Scholar]
  66. Kim, S., Hong, S. H., Kim, H., Lee, M., & Hwang, S. (2023). Small object detection (SOD) system for comprehensive construction site safety monitoring. Automation in Construction, 156, 105103.
    [CrossRef]   [Google Scholar]
  67. Li, Z., Pang, C., Dong, C., & Zeng, X. (2023). R-YOLOv5: A Lightweight Rotational Object Detection Algorithm for Real-Time Detection of Vehicles in Dense Scenes. IEEE Access, 11, 61546-61559.
    [CrossRef]   [Google Scholar]
  68. Liang, B., Su, J., Feng, K., Liu, Y., & Hou, W. (2023). Cross-Layer Triple-Branch Parallel Fusion Network for Small Object Detection in UAV Images. IEEE Access, 11, 39738-39750.
    [CrossRef]   [Google Scholar]
  69. Liu, Y., Li, C., Huang, J., & Gao, M. (2023). Minesds: A unified framework for small object detection and drivable area segmentation for open-pit mining scenario. Sensors, 23(13), 5977.
    [CrossRef]   [Google Scholar]
  70. Ma, C., Fu, Y., Wang, D., Guo, R., Zhao, X., & Fang, J. (2023). YOLO-UAV: Object Detection Method of Unmanned Aerial Vehicle Imagery Based on Efficient Multi-Scale Feature Fusion. IEEE Access, 11, 126857-126878.
    [CrossRef]   [Google Scholar]
  71. Mahaur, B., Mishra, K. K., & Kumar, A. (2023). An improved lightweight small object detection framework applied to real-time autonomous driving. Expert Systems with Applications, 234, 121036.
    [CrossRef]   [Google Scholar]
  72. She, F., Hong, Z., Zeng, Z., & Yu, W. (2023). Improved Traffic Sign Detection Model Based on YOLOv7-Tiny. IEEE Access, 11, 126555-126567.
    [CrossRef]   [Google Scholar]
  73. Song, T., Zhang, X., Yang, D., Ye, Y., Liu, C., Zhou, J., & Song, Y. (2023). Lightweight detection network based on receptive-field feature enhancement convolution and three dimensions attention for images captured by UAVs. Image and Vision Computing, 140, 104855.
    [CrossRef]   [Google Scholar]
  74. Wang, X., He, N., Hong, C., Wang, Q., & Chen, M. (2023). Improved YOLOX-X based UAV aerial photography object detection algorithm. Image and Vision Computing, 135, 104697.
    [CrossRef]   [Google Scholar]
  75. Ye, T., Qin, W., Zhao, Z., Gao, X., Deng, X., & Ouyang, Y. (2023). Real-Time Object Detection Network in UAV-Vision Based on CNN and Transformer. IEEE Transactions on Instrumentation and Measurement, 72, 1-13.
    [CrossRef]   [Google Scholar]
  76. Zhang, Y., Wu, C., Guo, W., Zhang, T., & Li, W. (2023). CFANet: Efficient Detection of UAV Image Based on Cross-Layer Feature Aggregation. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-11.
    [CrossRef]   [Google Scholar]
  77. Zheng, Y., Zhan, Y., Huang, X., & Ji, G. (2023). YOLOv5s FMG: An Improved Small Target Detection Algorithm Based on YOLOv5 in Low Visibility. IEEE Access, 11, 75782-75793.
    [CrossRef]   [Google Scholar]
  78. Bai, J., Hu, H., Liu, X., Zhuang, S., & Wang, Z. (2024). UAV image object detection based on self-attention guidance and global feature fusion. Image and Vision Computing, 151, 105262.
    [CrossRef]   [Google Scholar]
  79. Dong, C., Jiang, X., Hu, Y., Du, Y., & Pan, L. (2024). EL-Net: An efficient and lightweight optimized network for object detection in remote sensing images. Expert Systems with Applications, 255, 124661.
    [CrossRef]   [Google Scholar]
  80. Du, Y., & Jiang, X. (2024). A Real-Time Small Target Vehicle Detection Algorithm with an Improved YOLOv5m Network Model. Computers, Materials and Continua, 78(1), 303-327.
    [CrossRef]   [Google Scholar]
  81. Fang, H., Ding, L., Wang, X., Chang, Y., Yan, L., Liu, L., & Fang, J. (2024). SCINet: Spatial and Contrast Interactive Super-Resolution Assisted Infrared UAV Target Detection. IEEE Transactions on Geoscience and Remote Sensing, 62, 1-22.
    [CrossRef]   [Google Scholar]
  82. Fu, Q., Zheng, Q., & Yu, F. (2024). LMANet: A Lighter and More Accurate Multiobject Detection Network for UAV Remote Sensing Imagery. IEEE Geoscience and Remote Sensing Letters, 21, 1-5.
    [CrossRef]   [Google Scholar]
  83. Gu, C., Miao, X., & Zuo, C. (2024). TFDNet: A triple focus diffusion network for object detection in urban congestion with accurate multi-scale feature fusion and real-time capability. Journal of King Saud University-Computer and Information Sciences, 36(9), 102223.
    [CrossRef]   [Google Scholar]
  84. He, A., Li, X., Wu, X., Su, C., Chen, J., Xu, S., & Guo, X. (2024). ALSS-YOLO: An Adaptive Lightweight Channel Split and Shuffling Network for TIR Wildlife Detection in UAV Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17, 17308-17326.
    [CrossRef]   [Google Scholar]
  85. Hoanh, N., & Pham, T. V. (2024). A Multi-Task Framework for Car Detection From High-Resolution UAV Imagery Focusing on Road Regions. IEEE Transactions on Intelligent Transportation Systems, 25, 17160-17173.
    [CrossRef]   [Google Scholar]
  86. Hu, M., Pi, S., Zhou, J., Wan, X., & Liu, Q. (2024). High-Performance YOLOv5s: Traffic Sign Detection Algorithm for Small Target. IEEE Access, 12, 191527-191536.
    [CrossRef]   [Google Scholar]
  87. Hui, Y., Wang, J., & Li, B. (2024). STF-YOLO: A small target detection algorithm for UAV remote sensing images based on improved SwinTransformer and class weighted classification decoupling head. Measurement, 224, 113936.
    [CrossRef]   [Google Scholar]
  88. Khan, M. U., Dil, M., Alam, M. Z., Orakazi, F. A., Almasoud, A. M., Kaleem, Z., & Yuen, C. (2024). SafeSpace MFNet: Precise and Efficient MultiFeature Drone Detection Network. IEEE Transactions on Vehicular Technology, 73, 3106-3118.
    [CrossRef]   [Google Scholar]
  89. Kong, Y., Shang, X., & Jia, S. (2024). Drone-DETR: Efficient small object detection for remote sensing image using enhanced RT-DETR model. Sensors, 24(17), 5496.
    [CrossRef]   [Google Scholar]
  90. Li, J., Cheang, C. F., Liu, S., Tang, S., Li, T., & Cheng, Q. (2024). Dynamic-TLD: A Traffic Light Detector Based on Dynamic Strategies. IEEE Sensors Journal, 24, 6677-6686.
    [CrossRef]   [Google Scholar]
  91. Li, S., Liu, C., Tang, K., Meng, F., Zhu, Z., Zhou, L., & Chen, F. (2024). Improved YOLOv5s Algorithm for Small Target Detection in UAV Aerial Photography. IEEE Access, 12, 9784-9791.
    [CrossRef]   [Google Scholar]
  92. Liu, B., & Jiang, W. (2024). LA-YOLO: Bidirectional Adaptive Feature Fusion Approach for Small Object Detection of Insulator Self-Explosion Defects. IEEE Transactions on Power Delivery, 39, 3387-3397.
    [CrossRef]   [Google Scholar]
  93. Ning, T., Wu, W., & Zhang, J. (2024). Small object detection based on YOLOv8 in UAV perspective. Pattern Analysis and Applications, 27(3), 103.
    [CrossRef]   [Google Scholar]
  94. Ou, K., Dong, C., Liu, X., Zhai, Y., Li, Y., Huang, W., Qiu, W., Wang, Y., & Wang, C. (2024). Drone-TOOD: A Lightweight Task-Aligned Object Detection Algorithm for Vehicle Detection in UAV Images. IEEE Access, 12, 41999-42016.
    [CrossRef]   [Google Scholar]
  95. Qian, R., & Ding, Y. (2024). An efficient UAV image object detection algorithm based on global attention and multi-scale feature fusion. Electronics, 13(20), 3989.
    [CrossRef]   [Google Scholar]
  96. Qiu, X., Chen, Y., Sun, C., Li, J., & Niu, M. (2024). DMFF-YOLO: YOLOv8 Based on Dynamic Multiscale Feature Fusion for Object Detection on UAV Aerial Photography. IEEE Access, 12, 125160-125169.
    [CrossRef]   [Google Scholar]
  97. Song, G., Du, H., Zhang, X., Bao, F., & Zhang, Y. (2024). Small object detection in unmanned aerial vehicle images using multi-scale hybrid attention. Engineering Applications of Artificial Intelligence, 128, 107455.
    [CrossRef]   [Google Scholar]
  98. Sun, F., He, N., Li, R., Wang, X., & Xu, S. (2024). GD-PAN: a multiscale fusion architecture applied to object detection in UAV aerial images. Multimedia Systems, 30(3), 143.
    [CrossRef]   [Google Scholar]
  99. Sun, S., Mo, B., Xu, J., Li, D., Zhao, J., & Han, S. (2024). Multi-YOLOv8: An infrared moving small object detection model based on YOLOv8 for air vehicle. Neurocomputing, 588, 127685.
    [CrossRef]   [Google Scholar]
  100. Sun, T., Chen, H., Liu, H., Deng, L., Liu, L., & Li, S. (2024). DS-YOLOv7: Dense Small Object Detection Algorithm for UAV. IEEE Access, 12, 75865-75872.
    [CrossRef]   [Google Scholar]
  101. Tang, X., Ruan, C., Li, X., Li, B., & Fu, C. (2024). MSC-YOLO: Improved YOLOv7 Based on Multi-Scale Spatial Context for Small Object Detection in UAV-View. Computers, Materials and Continua, 79(1), 983-1003.
    [CrossRef]   [Google Scholar]
  102. Tian, D., Wang, C., Zhou, D., Yan, X., & Zeng, L. (2024). NFE-YOLO: A Lightweight and Efficient Detection Network for Low, Slow, and Small Drones. IEEE Access, 12, 175458-175471.
    [CrossRef]   [Google Scholar]
  103. Tian, D., Yan, X., Zhou, D., Wang, C., & Zhang, W. (2024). IV-YOLO: A lightweight Dual-Branch object detection network. Sensors, 24(19), 6181.
    [CrossRef]   [Google Scholar]
  104. Wang, X., Wang, X., Zhou, Z., & Song, Y. (2024). A Deep-Learning Method Based on the Multistage Fusion of Radar and Camera in UAV Obstacle Avoidance. IEEE Transactions on Aerospace and Electronic Systems, 60(5), 6734-6751.
    [CrossRef]   [Google Scholar]
  105. Wang, Y., Zhang, J., & Zhou, J. (2024). Urban traffic tiny object detection via attention and multi-scale feature driven in UAV-vision. Scientific Reports, 14(1), 20614.
    [CrossRef]   [Google Scholar]
  106. Wu, W., Liu, A., Hu, J., Mo, Y., Xiang, S., Duan, P., & Liang, Q. (2024). EUAVDet: An efficient and lightweight object detector for UAV aerial images with an edge-based computing platform. Drones, 8(6), 261.
    [CrossRef]   [Google Scholar]
  107. Xu, H., Ling, Z., Yuan, X., & Wang, Y. (2024). A video object detector with Spatio-Temporal Attention Module for micro UAV detection. Neurocomputing, 597, 127973.
    [CrossRef]   [Google Scholar]
  108. Xu, L., Zhao, Y., Zhai, Y., Huang, L., & Ruan, C. (2024). Small object detection in UAV images based on Yolov8n. International Journal of Computational Intelligence Systems, 17(1), 223.
    [CrossRef]   [Google Scholar]
  109. Xue, C., Xia, Y., Wu, M., Chen, Z., Cheng, F., & Yun, L. (2024). EL-YOLO: An efficient and lightweight low-altitude aerial objects detector for onboard applications. Expert Systems with Applications, 256, 124848.
    [CrossRef]   [Google Scholar]
  110. Yang, Y., Feng, F., Liu, G., & Di, J. (2024). MEL-YOLO: A Novel YOLO Network With Multi-Scale, Effective, and Lightweight Methods for Small Object Detection in Aerial Images. IEEE Access, 12, 194280-194295.
    [CrossRef]   [Google Scholar]
  111. Yang, Y., Yin, H., Chong, A. X., Wan, J., & Liu, Q. Y. (2023). SACINet: Semantic-aware cross-modal interaction network for real-time 3D object detection. IEEE Transactions on Intelligent Vehicles, 9(2), 3917-3927.
    [CrossRef]   [Google Scholar]
  112. Yao, Z., Hu, Z., Tian, P., & Sun, J. (2024). Adaptation of Object Detection Algorithms for Road Indicator Lights in Complex Scenes. Applied Sciences, 14(21), 10012.
    [CrossRef]   [Google Scholar]
  113. Yu, B., Li, Z., Cao, Y., Wu, C., Qi, J., & Wu, L. (2024). YOLO-MPAM: Efficient real-time neural networks based on multi-channel feature fusion. Expert Systems with Applications, 252, 124282.
    [CrossRef]   [Google Scholar]
  114. Yu, Q., Huang, T., Zhang, W., Xu, J., & He, Y. (2024). Improving real-time small objects detection by fusion features of spatial coordinates. Signal, Image and Video Processing, 18, 789-798.
    [CrossRef]   [Google Scholar]
  115. Yuan, Z., Gong, J., Guo, B., Wang, C., Liao, N., Song, J., & Wu, Q. (2024). Small object detection in uav remote sensing images based on intra-group multi-scale fusion attention and adaptive weighted feature fusion mechanism. Remote Sensing, 16(22), 4265.
    [CrossRef]   [Google Scholar]
  116. Zhang, H., Gong, Y., Yao, F., & Zhang, Q. (2024). Research on Real-Time Detection Algorithm for Pedestrian and Vehicle in Foggy Weather Based on Lightweight XM-YOLOViT. IEEE Access, 12, 7864-7883.
    [CrossRef]   [Google Scholar]
  117. Zhang, H., Li, G., Wan, D., Wang, Z., Dong, J., Lin, S., ... & Liu, H. (2024). DS-YOLO: A dense small object detection algorithm based on inverted bottleneck and multi-scale fusion network. Biomimetic Intelligence and Robotics, 4(4), 100190.
    [CrossRef]   [Google Scholar]
  118. Zhang, W., Shi, H., Zhao, Y., Feng, Z., & Lovreglio, R. (2024). MMAF-Net: Multi-view multi-stage adaptive fusion for multi-sensor 3D object detection. Expert Systems with Applications, 242, 122716.
    [CrossRef]   [Google Scholar]
  119. Zhang, Y., Li, B., Shang, J., Huang, X., Zhai, P., & Geng, C. (2024). DSA-Net: An Attention-Guided Network for Real-Time Defect Detection of Transmission Line Dampers Applied to UAV Inspections. IEEE Transactions on Instrumentation and Measurement, 73, 1-22.
    [CrossRef]   [Google Scholar]
  120. Zheng, W., Xu, H., Li, P., Wang, R., & Shao, X. (2024). SAC-RSM: A High-Performance UAV-Side Road Surveillance Model Based on Super-Resolution Assisted Learning. IEEE Internet of Things Journal, 11, 36066-36083.
    [CrossRef]   [Google Scholar]
  121. Zhou, W., Wang, X., Fan, Y., Yang, Y., Wen, Y., Li, Y., ... & Wang, J. (2024). KDSMALL: A lightweight small object detection algorithm based on knowledge distillation. Computer Communications, 219, 271-281.
    [CrossRef]   [Google Scholar]
  122. Zhu, J., Ma, C., Rong, J., & Cao, Y. (2024). Bird and UAVs Recognition Detection and Tracking Based on Improved YOLOv9-DeepSORT. IEEE Access, 12, 147942-147957.
    [CrossRef]   [Google Scholar]
  123. Ahmad, I., Lu, W., Chen, S. B., Tang, J., & Luo, B. (2025). Lightweight oriented object detection with Dynamic Smooth Feature Fusion Network. Neurocomputing, 628, 129725.
    [CrossRef]   [Google Scholar]
  124. Bai, C., Zhang, K., Jin, H., Qian, P., Zhai, R., & Lu, K. (2025). SFFEF-YOLO: Small object detection network based on fine-grained feature extraction and fusion for unmanned aerial images. Image and Vision Computing, 156, 105469.
    [CrossRef]   [Google Scholar]
  125. Chen, X., & Lin, C. (2025). EVMNet: Eagle visual mechanism-inspired lightweight network for small object detection in UAV aerial images. Digital Signal Processing, 158, 104957.
    [CrossRef]   [Google Scholar]
  126. Chen, Y., & Liu, Z. (2025). DFTD-YOLO: Lightweight Multi-Target Detection From Unmanned Aerial Vehicle Viewpoints. IEEE Access, 13, 24672-24680.
    [CrossRef]   [Google Scholar]
  127. Chen, Y., Mu, Y., Ni, R., & Yang, B. (2025). 3D pedestrian detection based on hybrid multi-scale cascade fusion network. Computers and Electrical Engineering, 123, 110139.
    [CrossRef]   [Google Scholar]
  128. Fan, Q., Li, Y., Deveci, M., Zhong, K., & Kadry, S. (2025). LUD-YOLO: A novel lightweight object detection network for unmanned aerial vehicle. Information Sciences, 686, 121366.
    [CrossRef]   [Google Scholar]
  129. Feng, F., Yang, L., Zhou, Q., & Li, W. (2025). YOLO‐Tiny: A lightweight small object detection algorithm for UAV aerial imagery. IET Image Processing, 19(1), e13314.
    [CrossRef]   [Google Scholar]
  130. Hu, J., Pang, T., Peng, B., Shi, Y., & Li, T. (2025). A small object detection model for drone images based on multi-attention fusion network. Image and Vision Computing, 155, 105436.
    [CrossRef]   [Google Scholar]
  131. Kim, S., Kim, C., & Kim, S. (2025). Improving Performance of Real-Time Object Detection in Edge Device Through Concurrent Multi-Frame Processing. IEEE Access, 13, 1522-1533.
    [CrossRef]   [Google Scholar]
  132. Liang, X., Li, M., Lin, Y. E., & Fang, X. (2025). GACFNet: A global attention cross-level feature fusion network for aerial image object detection. Computers and Electrical Engineering, 123, 110042.
    [CrossRef]   [Google Scholar]
  133. Liu, Y., Huang, Z., Song, Q., & Bai, K. (2025). PV-YOLO: A lightweight pedestrian and vehicle detection model based on improved YOLOv8. Digital Signal Processing, 156, 104857.
    [CrossRef]   [Google Scholar]
  134. Liu, Y., & Shi, Y. (2025). VRU-YOLO: A Small Object Detection Algorithm for Vulnerable Road Users in Complex Scenes. IEEE Access, 13, 19996-20015.
    [CrossRef]   [Google Scholar]
  135. Mushtaq, H., Deng, X., Alizadehsani, R., Iqbal, M. S., Khan, T., & Abbasi, A. A. (2025). SC3D: Semantic-guided and Class-adaptive cross-domain fusion for 3D object detection in autonomous vehicles. Expert Systems with Applications, 268, 126359.
    [CrossRef]   [Google Scholar]
  136. Muzammul, M., Assam, M., & Qahmash, A. (2025). Quantum-Inspired Multi-Scale Object Detection in UAV Imagery: Advancing Ultra-Small Object Accuracy and Efficiency for Real-Time Applications. IEEE Access, 13, 2173-2186.
    [CrossRef]   [Google Scholar]
  137. Nghiem, V. Q., Nguyen, H. H., & Hoang, M. S. (2025). LEAF-YOLO: Lightweight Edge-Real-Time Small Object Detection on Aerial Imagery. Intelligent Systems with Applications, 25, 200484.
    [CrossRef]   [Google Scholar]
  138. Niu, Y., Lin, C., Jiang, X., & Qu, Z. (2025). VSTDet: A lightweight small object detection network inspired by the ventral visual pathway. Applied Soft Computing, 171, 112775.
    [CrossRef]   [Google Scholar]
  139. Pan, W., & Yang, Z. (2025). A lightweight enhanced YOLOv8 algorithm for detecting small objects in UAV aerial photography. The Visual Computer, 1-17.
    [CrossRef]   [Google Scholar]
  140. Qu, J., Li, Q., Pan, J., Sun, M., Lu, X., Zhou, Y., & Zhu, H. (2025). SS-YOLOv8: small-size object detection algorithm based on improved YOLOv8 for UAV imagery. Multimedia Systems, 31(1), 42.
    [CrossRef]   [Google Scholar]
  141. Wang, G., Jiang, Q., Jin, X., Wozniak, M., Wang, P., & Yao, S. (2024). RTM-UAVDet: a real-time multimodal UAV detector. IEEE Transactions on Aerospace and Electronic Systems, 61(1), 473-489.
    [CrossRef]   [Google Scholar]
  142. Wang, S., Li, G., He, B., Cheng, B., Ding, Y., & Li, W. (2025). LUMF-YOLO: a lightweight object detection network integrating UAV motion features. Computing, 107(1), 25.
    [CrossRef]   [Google Scholar]
  143. Xue, R., Hua, S., & Xu, H. (2025). FECI-RTDETR a Lightweight Unmanned Aerial Vehicle Infrared Small Target Detector Algorithm Based on RT-DETR. IEEE Access, 13, 9578-9591.
    [CrossRef]   [Google Scholar]
  144. Yan, Z., Chen, C., Wu, S., Wang, Z., Li, L., Sun, S., Yang, B., & Fu, J. (2025). RF-DET: Refocusing on the small-scale objects using aggregated context for accurate power transmitting components detection on UAV oblique imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 220, 692-711.
    [CrossRef]   [Google Scholar]
  145. Yang, H., Wang, J., Bo, Y., & Wang, J. (2025). ISTD-DETR: A deep learning algorithm based on DETR and Super-resolution for infrared small target detection. Neurocomputing, 621, 129289.
    [CrossRef]   [Google Scholar]
  146. Yang, W., He, Q., & Li, Z. (2025). A lightweight multidimensional feature network for small object detection on UAVs. Pattern Analysis and Applications, 28(1), 29.
    [CrossRef]   [Google Scholar]
  147. Yang, Y., Liu, Z., Chen, J., Gao, H., & Wang, T. (2025). Railway Foreign Object Intrusion Detection Using UAV Images and YOLO-UAT. IEEE Access, 13, 18498-18509.
    [CrossRef]   [Google Scholar]
  148. Zhang, F., Leong, L. V., Yen, K. S., & Zhang, Y. (2025). An enhanced lightweight model for small-scale pedestrian detection based on YOLOv8s. Digital Signal Processing, 156, 104866.
    [CrossRef]   [Google Scholar]
  149. Zhang, H., Xiao, P., Yao, F., Zhang, Q., & Gong, Y. (2025). Fusion of multi-scale attention for aerial images small-target detection model based on PARE-YOLO. Scientific Reports, 15.
    [CrossRef]   [Google Scholar]
  150. Zhang, L., Yang, K., Han, Y., Li, J., Wei, W., Tan, H., Yu, P., Zhang, K., & Yang, X. (2025). TSD-DETR: A lightweight real-time detection transformer of traffic sign detection for long-range perception of autonomous driving. Engineering Applications of Artificial Intelligence, 139, 109536.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Zhang, Y., Qian, Z., & Cai, J. (2025). A Systematic Review on Real-time Detection of Small Obstacles Based on Multidimensional Information Fusion. Chinese Journal of Information Fusion, 2(4), 313–339. https://doi.org/10.62762/CJIF.2025.500710

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 161
PDF Downloads: 26

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Chinese Journal of Information Fusion

Chinese Journal of Information Fusion

ISSN: 2998-3371 (Online) | ISSN: 2998-3363 (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/