-
CiteScore
-
Impact Factor
Volume 1, Issue 1, International Journal of Thermo-Fluid Systems and Sustainable Energy
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
International Journal of Thermo-Fluid Systems and Sustainable Energy, Volume 1, Issue 1, 2025: 16-29

Open Access | Research Article | 21 August 2025
Parametric Analysis of Heat and Mass Transfer in Nanofluid Flow Through a Porous Channel with Brownian Motion and Thermophoresis Effects
1 Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia
2 School of Qilu Transportation, Shandong University, Jinan 250061, China
3 College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China
* Corresponding Author: Ghulam Rasool, [email protected]
Received: 17 July 2025, Accepted: 27 July 2025, Published: 21 August 2025  
Abstract
This study investigates the combined effects of porous medium properties, nanoparticle dynamics, and fluid characteristics on heat and mass transfer in nanofluid flow through a channel bounded by permeable walls. A comprehensive mathematical model is developed incorporating the Brinkman–Darcy momentum equation, energy and nanoparticle concentration equations, and key nanofluid transport mechanisms such as Brownian motion and thermophoresis. The resulting nonlinear boundary value problem is solved numerically using a robust BVP4C approach in MATLAB. Parametric analyses are conducted to assess the influence of the Schmidt number (Sc), porosity parameter (λ), Darcy number (Dc), Prandtl number (P r), and Brownian motion and thermophoresis parameters (N b and N t), on velocity, temperature, and concentration distributions. Results reveal that higher Sc and λ suppress both velocity and temperature fields, while increasing Dc, P r, and nanoparticle activity (N b, N t) enhance thermal and solutal transport. The findings provide valuable insights for optimizing nanofluid-based thermal systems and designing advanced porous channel configurations for improved heat and mass transfer performance.

Graphical Abstract
Parametric Analysis of Heat and Mass Transfer in Nanofluid Flow Through a Porous Channel with Brownian Motion and Thermophoresis Effects

Keywords
nanofluid
porous channel
brownian motion
thermophoresis
heat and mass transfer

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Turkyilmazoglu, M. (2022). Multiple exact solutions of free convection flows in saturated porous media with variable heat flux. Journal of Porous Media, 25(6).
    [CrossRef]   [Google Scholar]
  2. Mahbubul, I. M. (2019). Preparation of Nanofluid. In Preparation, Characterization, Properties and Application of Nanofluid (pp. 15–45). Elsevier. http://dx.doi.org/10.1016/b978-0-12-813245-6.00002-2
    [Google Scholar]
  3. Feng, Y., & Kleinstreuer, C. (2012). Thermal Nanofluid Property Model With Application to Nanofluid Flow in a Parallel Disk System—Part II: Nanofluid Flow Between Parallel Disks. Journal of Heat Transfer, 134(5). http://dx.doi.org/10.1115/1.4005633
    [Google Scholar]
  4. Turkyilmazoglu, M. (2010). Heat and Mass Transfer on the Unsteady Magnetohydrodynamic Flow Due to a Porous Rotating Disk Subject to a Uniform Outer Radial Flow. Journal of Heat Transfer, 132(6). http://dx.doi.org/10.1115/1.4000963
    [Google Scholar]
  5. Sohail, M., Rafique, E., Singh, A., & Tulu, A. (2024). Entropy generation with ion-slip influx on peristaltic transition of hyperbolic tangent nanofluid of motile gyrotactic microorganisms and modified Darcy-Forchheimer characteristic. Ain Shams Engineering Journal, 15(8), 102882. http://dx.doi.org/10.1016/j.asej.2024.102882
    [Google Scholar]
  6. Naseem, T., Shahzad, A., Sohail, M., & Askar, S. (2023). Axisymmetric Flow and Heat Transfer in TiO2/H2O Nanofluid over a Porous Stretching-Sheet with Slip Boundary Conditions via a Reliable Computational Strategy. Energies, 16(2), 681. http://dx.doi.org/10.3390/en16020681
    [Google Scholar]
  7. Goyal, K., & Srinivas, S. (2024). Pulsatile flow of Casson hybrid nanofluid between ternary-hybrid nanofluid and nanofluid in an inclined channel with temperature-dependent viscosity. Numerical Heat Transfer, Part A: Applications, 1–30. http://doi.org/10.1080/10407782.2024.2314735
    [Google Scholar]
  8. Turkyilmazoglu, M. (2023). A Two-Parameter Family of Basic State in Porous Media Leading to Darcy–Bénard Convection. Transport in Porous Media, 148(3), 519–533. http://dx.doi.org/10.1007/s11242-023-01957-x
    [Google Scholar]
  9. Rasool, G., Zhang, T., Chamkha, A. J., Shafiq, A., Tlili, I., & Shahzadi, G. (2019). Entropy Generation and Consequences of Binary Chemical Reaction on MHD Darcy–Forchheimer Williamson Nanofluid Flow Over Non-Linearly Stretching Surface. Entropy, 22(1), 18. http://dx.doi.org/10.3390/e22010018
    [Google Scholar]
  10. Hayat, T., Shafiq, A., & Alsaedi, A. (2016). Hydromagnetic boundary layer flow of Williamson fluid in the presence of thermal radiation and Ohmic dissipation. Alexandria Engineering Journal, 55(3), 2229–2240. http://dx.doi.org/10.1016/j.aej.2016.06.004
    [Google Scholar]
  11. Sheikholeslami, M., & Rokni, H. B. (2018). Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. Physics of Fluids, 30(1).
    [CrossRef]   [Google Scholar]
  12. Rasool, G., Shafiq, A., & Khan, M. I. (2025). Recent Theoretical Approaches to MHD Radiative Heat Transfer in Chemically Reactive Powell-Eyring Nanofluid Flow through Porous Media. http://doi.org/10.5772/intechopen.1011310
    [Google Scholar]
  13. Kalyan, S., Kandagal, M., Tawade, J. V., Satpute, N., Khan, M. I., Kulkarni, N., Kamolova, N., & Gupta, M. (2025). Exploring mixed convection in porous media: Thermal and flow behaviour. Partial Differential Equations in Applied Mathematics, 15, 101239. http://dx.doi.org/10.1016/j.padiff.2025.101239
    [Google Scholar]
  14. Khan, M., Rehman, G., Qamar, M., Alqahtani, A. S., & Malik, M. Y. (2025). Thermally Darcy-Forchheimer flow of tri-hybrid nanomaterials with temperature-dependent fluid characteristics. Journal of Radiation Research and Applied Sciences, 18(2), 101404. http://dx.doi.org/10.1016/j.jrras.2025.101404
    [Google Scholar]
  15. Munjam, S. R., Gopal, D., Kishan, N., Benabdallah, F., Karthik, K., Kallel, M., & Ijaz Khan, M. (2025). Curved Surface Induced Heat and Mass Transfer in Viscoelastic Nanofluid with MHD Effects. Journal of Multiscale Modelling, 16(01n02), 2550004.
    [CrossRef]   [Google Scholar]
  16. Marzougui, S., Bouabid, M., Mebarek-Oudina, F., Abu-Hamdeh, N., Magherbi, M., & Ramesh, K. (2021). A computational analysis of heat transport irreversibility phenomenon in a magnetized porous channel. International Journal of Numerical Methods for Heat & Fluid Flow, 31(7), 2197-2222.
    [CrossRef]   [Google Scholar]
  17. Nadeem, S., & Abbas, N. (2020). Effects of MHD on Modified Nanofluid Model with Variable Viscosity in a Porous Medium. In Nanofluid Flow in Porous Media. IntechOpen. http://dx.doi.org/10.5772/intechopen.84266
    [Google Scholar]
  18. Sheremet, M. A., Grosan, T., & Pop, I. (2014). Free Convection in a Square Cavity Filled with a Porous Medium Saturated by Nanofluid Using Tiwari and Das’ Nanofluid Model. Transport in Porous Media, 106(3), 595–610. http://dx.doi.org/10.1007/s11242-014-0415-3
    [Google Scholar]
  19. Kumar Pundir, S., Kumar, R., & Pundir, R. (2022). Double Diffusive Convection in a Layer of Saturated Rotating Couple-Stress Nanofluid in a Porous Medium. International Journal of Science and Research (IJSR), 11(5), 1866–1872. http://dx.doi.org/10.21275/sr22526125759
    [Google Scholar]
  20. Chamkha, A. J., & Ismael, M. A. (2014). Natural convection in differentially heated partially porous layered cavities filled with a Nanofluid. Numerical Heat Transfer; Part A: Applications, 65(11), 1089-1113. http://dx.doi.org/10.1080/10407782.2013.851560
    [Google Scholar]
  21. Beckermann, C., Viskanta, R., & Ramadhyani, S. (1986). A numerical study of non-Darcian natural convection in a vertical enclosure filled with a porous medium. Numerical heat transfer, 10(6), 557-570.
    [CrossRef]   [Google Scholar]
  22. Russell, T. W. F., Robinson, A. S., & Wagner, N. J. (2008). Mass and Heat Transfer: Analysis of Mass Contactors and Heat Exchangers. Cambridge: Cambridge University Press.
    [CrossRef]   [Google Scholar]
  23. Panigrahi, L., Panda, J., Swain, K., & Dash, G. C. (2020). Heat and mass transfer of MHD Casson nanofluid flow through a porous medium past a stretching sheet with Newtonian heating and chemical reaction. Karbala International Journal of Modern Science, 6(3), 11.
    [CrossRef]   [Google Scholar]
  24. Maiti, H., & Mukhopadhyay, S. (2024). Mixed convective nanofluid flow and heat transfer induced by a stretchable rotating disk in porous medium. Heat Transfer, 53(8), 4876–4899. http://dx.doi.org/10.1002/htj.23161
    [Google Scholar]
  25. Imtiaz, F., Ashraf, M., Rasool, G., Abbas, K., & Ali, S. (2025). Impact of Hybrid Nanofluid Convective Heat Transfer on Climate Change Adjacent to the Surface of the Tilted Hemisphere Placed in the Atmosphere. Journal of Porous Media, 28(10), 101–116. http://dx.doi.org/10.1615/jpormedia.2025056594
    [Google Scholar]
  26. Rauf, A., Hussain, F., Mushtaq, A., Ali Shah, N., & Ali, M. R. (2023). MHD mixed convection flow for Maxwell Hybrid nanofluid with Soret, Dufour and Morphology effects. Arabian Journal of Chemistry, 16(8), 104965. http://dx.doi.org/10.1016/j.arabjc.2023.104965
    [Google Scholar]
  27. Waseem, F., Sohail, M., Ilyas, N., Awwad, E. M., Sharaf, M., Khan, M. J., & Tulu, A. (2024). Entropy analysis of MHD hybrid nanoparticles with OHAM considering viscous dissipation and thermal radiation. Scientific Reports, 14(1), 1096. http://dx.doi.org/10.1038/s41598-023-50865-z
    [Google Scholar]
  28. Alhazmi, S. E., Wang, F., Nazir, U., Sohail, M., Ali, U., Thounthong, P., & Jamshed, W. (2022). Utilization of modified fluxes on thermal and mass transportation in Williamson material. Advances in Mechanical Engineering, 14(1). http://dx.doi.org/10.1177/16878140221075874
    [Google Scholar]
  29. Wang, F. Z., Sohail, M., Nazir, U., Awwad, E. M., & Sharaf, M. (2024). Utilization of the Crank-Nicolson technique to investigate thermal enhancement in 3D convective Walter-B fluid by inserting tiny nanoparticles on a circular cylinder. AIMS Mathematics, 9(4), 9059–9090. http://dx.doi.org/10.3934/math.2024441
    [Google Scholar]
  30. Sohail, M., Rafique, E., Singh, A., & Tulu, A. (2024). Engagement of modified heat and mass fluxes on thermally radiated boundary layer flow past over a stretched sheet via OHAM analysis. Discover Applied Sciences, 6(5), 240. http://dx.doi.org/10.1007/s42452-024-05833-1
    [Google Scholar]
  31. Sohail, M., Rafique, E., Singh, A., & Tulu, A. (2024). Investigation of heat generation and radiation effects on boundary layer flow of Prandtl liquid with Cattaneo–Christov double diffusion models. Discover Mechanical Engineering, 3(1), 35. http://dx.doi.org/10.1007/s44245-024-00069-0
    [Google Scholar]
  32. Enamul, S., & Ontela, S. (2024). Magnetohydrodynamic Darcy-Forchheimer flow of non-Newtonian second-grade hybrid nanofluid bounded by double-revolving disks with variable thermal conductivity: Entropy generation analysis. Hybrid Advances, 6, 100226. http://dx.doi.org/10.1016/j.hybadv.2024.100226
    [Google Scholar]
  33. Algehyne, E. A., Areshi, M., Saeed, A., Bilal, M., Kumam, W., & Kumam, P. (2022). Numerical simulation of bioconvective Darcy Forchhemier nanofluid flow with energy transition over a permeable vertical plate. Scientific Reports, 12(1), 3228.
    [CrossRef]   [Google Scholar]
  34. Algehyne, E. A., Areshi, M., Saeed, A., Bilal, M., Kumam, W., & Kumam, P. (2022). Numerical simulation of bioconvective Darcy Forchhemier nanofluid flow with energy transition over a permeable vertical plate. Scientific Reports, 12(1), 3228.
    [CrossRef]   [Google Scholar]
  35. Ashraf, M., Abbas, A., Oztop, H. F., Nisar, K. S., & Khan, I. (2021). Computations of mixed convection slip flow around the surface of a sphere: Effects of thermophoretic transportation and viscous dissipation. Heat Transfer, 50(7), 7349–7362. http://dx.doi.org/10.1002/htj.22232
    [Google Scholar]
  36. Turkyilmazoglu, M., & Alotaibi, A. (2025). On the viscous flow through a porous-walled pipe: asymptotic MHD effects. Microfluidics and Nanofluidics, 29(6), 33. http://dx.doi.org/10.1007/s10404-025-02808-5
    [Google Scholar]
  37. Jalili, B., Shateri, A., Akgül, A., Bariq, A., Asadi, Z., Jalili, P., & Ganji, D. D. (2023). An investigation into a semi-porous channel's forced convection of nano fluid in the presence of a magnetic field as a result of heat radiation. Scientific Reports, 13(1), 18505.
    [CrossRef]   [Google Scholar]
  38. Imran, N., Javed, M., Sohail, M., & Tlili, I. (2020). Utilization of modified Darcy's law in peristalsis with a compliant channel: applications to thermal science. Journal of Materials Research and Technology, 9(3), 5619-5629.
    [CrossRef]   [Google Scholar]
  39. Ijaz, M., & Ayub, M. (2019). Simulation of magnetic dipole and dual stratification in radiative flow of ferromagnetic Maxwell fluid. Heliyon, 5(4).
    [CrossRef]   [Google Scholar]
  40. Sarafraz, M. M., Safaei, M. R., Goodarzi, M., & Arjomandi, M. (2019). Experimental investigation and performance optimisation of a catalytic reforming micro-reactor using response surface methodology. Energy Conversion and Management, 199, 111983.
    [CrossRef]   [Google Scholar]
  41. Dave, T., Ahuja, V., & Krishnan, S. (2021). Economic analysis and experimental investigation of a direct absorption solar humidification-dehumidification system for decentralized water production. Sustainable Energy Technologies and Assessments, 46, 101306.
    [CrossRef]   [Google Scholar]
  42. Gabayan, R. C. M., Sulaimon, A. A., & Jufar, S. R. (2023). Application of Bio-Derived alternatives for the assured flow of waxy crude oil: A review. Energies, 16(9), 3652.
    [CrossRef]   [Google Scholar]
  43. Mujtaba, J., Liu, J., Dey, K. K., Li, T., Chakraborty, R., Xu, K., ... & Mei, Y. (2021). Micro‐bio‐chemo‐mechanical‐systems: Micromotors, microfluidics, and nanozymes for biomedical applications. Advanced Materials, 33(22), 2007465.
    [CrossRef]   [Google Scholar]
  44. Rumon, M. M. H., Akib, A. A., Sarkar, S. D., Khan, M. A. R., Uddin, M. M., Nasrin, D., & Roy, C. K. (2024). Polysaccharide-based hydrogels for advanced biomedical engineering applications. ACS Polymers Au, 4(6), 463-486.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Rasool, G., Islam, S., Hussain, S., & Sun, T. (2025). Parametric Analysis of Heat and Mass Transfer in Nanofluid Flow Through a Porous Channel with Brownian Motion and Thermophoresis Effects. International Journal of Thermo-Fluid Systems and Sustainable Energy, 1(1), 16–29. https://doi.org/10.62762/IJTSSE.2025.261546

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 143
PDF Downloads: 69

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
International Journal of Thermo-Fluid Systems and Sustainable Energy

International Journal of Thermo-Fluid Systems and Sustainable Energy

ISSN: 3069-1877 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/