-
CiteScore
-
Impact Factor
Volume 1, Issue 1, International Journal of Thermo-Fluid Systems and Sustainable Energy
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
International Journal of Thermo-Fluid Systems and Sustainable Energy, Volume 1, Issue 1, 2025: 30-38

Open Access | Research Article | 22 August 2025
Three-Dimensional Nanofluid Flow with Convective and Slip Condition with Thermal Radiation Effect via Stretching/Shrinking Surface
1 Department of Mathematics, School of Liberal Arts and Sciences, Mohan Babu University, Sree Sainath Nagar, Tirupati, Andhra Pradesh 517502, India
2 Department of Mathematics, University College, Palamuru University, Mahabubnagar, Telangana 509001, India
3 Department of Mathematics, Government Degree College for Women, Wanaparthy, Nandi Hills, Wanaparthy, Telangana 509103, India
* Corresponding Author: Nainaru Tarakaramu, [email protected]
Received: 16 July 2025, Accepted: 30 July 2025, Published: 22 August 2025  
Abstract
A numerical technique for the nonlinear thermal radiation effect on 3D (“Three Dimensional”) nanofluid (NFs) motion through shrinking or stretching surface with convective boundary condition is examined. In this investigation we use the convective and velocity slip conditions. The governing equations were converted into a set of couple non-linear ODE’s by suitable similarity transformations. The converted nonlinear equations are obtained by applying R-K-F (“Range-Kutta-Fehlberg”) procedure along with shooting technique. The physical parameters are explained graphically on velocity, temperature and concentration. Moreover, we found the coefficient of skin friction, rate of heat transfer with various nanofluid parameters. It is very good agreement when compared with previous study.

Graphical Abstract
Three-Dimensional Nanofluid Flow with Convective and Slip Condition with Thermal Radiation Effect via Stretching/Shrinking Surface

Keywords
nanofluid
Magnetohydrodynamics
Shrinking/stretching surface
velocity slip
nonlinear thermal radiation

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Day, E. A. (1990). The no-slip condition of fluid dynamics. Erkenntnis, 33, 285–296.
    [CrossRef]   [Google Scholar]
  2. Beavers, G. S., & Joseph, D. D. (1967). Boundary conditions at a numerically permeable wall. Journal of Mechanics, 30, 197–207.
    [CrossRef]   [Google Scholar]
  3. Thompson, P. A., & Troian, S. M. A. (1997). A general boundary condition for liquid flow at solid surfaces. Nature, 389, 360–362.
    [CrossRef]   [Google Scholar]
  4. Madasu, K. P., Kaur, M., & Bucha, T. (2021). Slow motion past a spheroid implanted in a Brinkman medium: slip condition. International Journal of Applied and Computational Mathematics, 7(4), 162.
    [CrossRef]   [Google Scholar]
  5. Abbas, S. Z., Farooq, S., Chu, Y. M., Chammam, W., Khan, W. A., Riachi, A., Rebei, H. A., & Zaway, M. (2021). Numerical study of nanofluid transport subjected to the collective approach of generalized slip condition and radiative phenomenon. Arabian Journal for Science and Engineering, 46, 6049–6059.
    [CrossRef]   [Google Scholar]
  6. Malkin, A. Y., Patlazhan, S. A., & Kulichikhin, V. G. (2019). Physicochemical phenomena leading to slip of a fluid along a solid surface. Russian Chemical Reviews, 88(3), 319.
    [CrossRef]   [Google Scholar]
  7. Besthapu, P., Haq, R. U., Bandari, S., & Al-Mdallal, Q. M. (2019). Thermal radiation and slip effects on MHD stagnation point flow of non-Newtonian nanofluid over a convective stretching surface. Neural Computing and Applications, 31(1), 207-217.
    [CrossRef]   [Google Scholar]
  8. Nadeem, S., Ahmad, S., & Khan, M. N. (2020). Mixed convection flow of hybrid nanoparticle along a Riga surface with Thomson and Troian slip condition. Journal of Thermal Analysis and Calorimetry, 143, 2099–2109.
    [CrossRef]   [Google Scholar]
  9. Wang, K., Chai, Z., Hou, G., Chen, W., & Xu, S. (2018). Slip boundary condition for lattice Boltzmann modeling of liquid flows. Computers & Fluids, 161, 60–73.
    [CrossRef]   [Google Scholar]
  10. Mahabaleshwar, U. S., Anusha, T., Bég, O. A., Yadav, D., & Botmart, T. (2022). Impact of Navier’s slip and chemical reaction on the hydromagnetic hybrid nanofluid flow and mass transfer due to porous stretching sheet. Scientific Reports, 12(1), 10451.
    [CrossRef]   [Google Scholar]
  11. Aziz, A., & Jamshed, W. (2017). Unsteady MHD slip flow of non Newtonian power-law nanofluid over a moving surface with temperature dependent thermal conductivity. Discrete and Continuous Dynamical Systems-S, 11(4), 617-630.
    [CrossRef]   [Google Scholar]
  12. Abbas, Z., & Sheikh, M. (2017). Numerical study of homogeneous–heterogeneous reactions on stagnation point flow of ferrofluid with non-linear slip condition. Chinese Journal of Chemical Engineering, 25, 11–17.
    [CrossRef]   [Google Scholar]
  13. Nojoomizadeh, M., D'Orazio, A., Karimipour, A., Afrand, M., & Goodarzi, M. (2018). Investigation of permeability effect on slip velocity and temperature jump boundary conditions for FMWNT/Water nanofluid flow and heat transfer inside a microchannel filled by a porous media. Physica E: Low-Dimensional Systems and Nanostructures, 97, 226–238.
    [CrossRef]   [Google Scholar]
  14. Farooq, S., Hayat, T., Alsaedi, A., & Ahmad, B. (2017). Numerically framing the features of second order velocity slip in mixed convective flow of Sisko nanomaterial considering gyrotactic microorganisms. International Journal of Heat and Mass Transfer, 112, 521–532.
    [CrossRef]   [Google Scholar]
  15. Abd El-Aziz, M., & Afify, A. A. (2018). Influences of slip velocity and induced magnetic field on MHD stagnation‐point flow and heat transfer of Casson fluid over a stretching sheet. Mathematical Problems in Engineering, 2018(1), 9402836.
    [CrossRef]   [Google Scholar]
  16. Majeed, A., Zeeshan, A., & Hayat, T. (2019). Analysis of magnetic properties of nanoparticles due to applied magnetic dipole in aqueous medium with momentum slip condition. Neural Computing and Applications, 31(1), 189-197.
    [CrossRef]   [Google Scholar]
  17. Nayak, M. K., Shaw, S., Pandey, V. S., & Chamkha, A. J. (2018). Combined effects of slip and convective boundary condition on MHD 3D stretched flow of nanofluid through porous media inspired by non-linear thermal radiation. Indian Journal of Physics, 92(8), 1017–1028.
    [CrossRef]   [Google Scholar]
  18. Sharma, P. R., Choudhary, S., & Makinde, O. D. (2017). MHD slip flow and heat transfer over an exponentially stretching permeable sheet embedded in a porous medium with heat source. Frontiers in Heat and Mass Transfer, 9(18), 1–7.
    [Google Scholar]
  19. Ahmad, S., & Nadeem, S. (2021). Flow analysis by Cattaneo-Christov heat flux in the presence of Thomson and Troian slip condition. Applied Nanoscience, 10, 4673–4687.
    [CrossRef]   [Google Scholar]
  20. Tarakaramu, N., Satya Narayana, P. V., Sivajothi, R., Bhagya Lakshmi, K., Harish Babu, D., & Venkateswarlu, B. (2022). Three‐dimensional non‐Newtonian couple stress fluid flow over a permeable stretching surface with nonlinear thermal radiation and heat source effects. Heat Transfer, 51(6), 5348-5367.
    [CrossRef]   [Google Scholar]
  21. Noor, N. A. M., Shafie, S., & Admon, M. A. (2021). Impacts of chemical reaction on squeeze flow of MHD Jeffrey fluid in horizontal porous channel with slip condition. Physica Scripta, 96(3), 035216.
    [CrossRef]   [Google Scholar]
  22. Choi, S. U. S. (1995). Enhancing thermal conductivity of fluids with nanoparticles. In D. A. Singer & H. P. Wang (Eds.), Developments and applications of non-Newtonian flows (Vol. 231, pp. 99–105). American Society of Mechanical Engineers.
    [Google Scholar]
  23. Jagadeesh, S., krishna Reddy, M. C., Tarakaramu, N., Sivakumar, N., & Sivajothi, R. (2022). Nonlinear thermal radiation effect on 3D nanofluid flow with convective and slip condition via stretching/shrinking surface.
    [CrossRef]   [Google Scholar]
  24. de Faoite, D., Browne, D. J., Chang-Díaz, F. R., & Stanton, K. T. (2012). A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics. Journal of Materials Science, 47(10), 4211-4235.
    [CrossRef]   [Google Scholar]
  25. Hussain, A. R. J., Alahyari, A. A., Eastman, S. A., Thibaud-Erkey, C., Johnston, S., & Sobkowicz, M. J. (2017). Review of polymers for heat exchanger applications: Factors concerning thermal conductivity. Applied Thermal Engineering, 113, 1118-1127.
    [CrossRef]   [Google Scholar]
  26. Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., & Grulke, E. A. (2001). Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 79(14), 2252–2254.
    [CrossRef]   [Google Scholar]
  27. Sreedevi, P., & Reddy, P. S. (2020). Combined influence of Brownian motion and thermophoresis on Maxwell three-dimensional nanofluid flow over stretching sheet with chemical reaction and thermal radiation. Journal of Porous Media, 23(4).
    [CrossRef]   [Google Scholar]
  28. Eid, M. R., & Nafe, M. A. (2022). Thermal conductivity variation and heat generation effects on magneto-hybrid nanofluid flow in a porous medium with slip condition. Waves in random and complex media, 32(3), 1103-1127.
    [CrossRef]   [Google Scholar]
  29. Satya Narayana, P. V., Tarakaramu, N., & Harish Babu, D. (2022). Influence of chemical reaction on MHD couple stress nanoliquid flow over a bidirectional stretched sheet. International Journal of Ambient Energy, 43(1), 4928-4938.
    [CrossRef]   [Google Scholar]
  30. Jat, N., & Rajotia, D. (2014). Three-dimensional viscous flow and heat transfer due to a permeable shrinking sheet with heat generation/absorption. Indian Journal of Pure and Applied Physics, 52, 79–86.
    [Google Scholar]
  31. Bachok, N., Ishak, A., & Pop, I. (2010). Unsteady three-dimensional boundary layer flow due to a permeable shrinking sheet. Applied Mathematics and Mechanics (English Edition), 31(11), 1421–1428.
    [CrossRef]   [Google Scholar]
  32. Yao, S., Fang, T., & Zhong, Y. (2011). Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions. Communications in Nonlinear Science and Numerical Simulation, 16(2), 752–760.
    [CrossRef]   [Google Scholar]
  33. Bachok, N., Ishak, A., & Pop, I. (2012). Unsteady boundary-layer flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet. International Journal of Heat and Mass Transfer, 55(7–8), 2102–2109.
    [CrossRef]   [Google Scholar]
  34. Bhattacharyya, K., Uddin, M. S., & Layek, G. C. (2016). Exact solution for thermal boundary layer in Casson fluid flow over permeable shrinking sheet with variable wall temperature and thermal radiation. Alexandria Engineering Journal, 55(2), 1703–1712.
    [CrossRef]   [Google Scholar]
  35. Najib, N., Bachok, N., Arifin, N. M., & Ali, F. M. (2018). Stability analysis of stagnation-point flow in a nanofluid over a stretching/shrinking sheet with second-order slip, soret and dufour effects: A revised model. Applied Sciences, 8(4), 642.
    [CrossRef]   [Google Scholar]
  36. Khan, J. A., Mustafa, M., Hayat, T., & Alsaedi, A. (2014). On three-dimensional flow and heat transfer over a non-linearly stretching sheet: analytical and numerical solutions. PloS one, 9(9), e107287.
    [CrossRef]   [Google Scholar]
  37. Murtaza, M. G., Tzirtzilakis, E. E., & Ferdows, M. (2018). Numerical solution of three dimensional unsteady biomagnetic flow and heat transfer through stretching/shrinking sheet using temperature dependent magnetization. Archives of Mechanics, 70(2), 161–185.
    [Google Scholar]
  38. Jusoh, R., Nazar, R., & Pop, I. (2018). Magnetohydrodynamic rotating flow and heat transfer of ferrofluid due to an exponentially permeable stretching/shrinking sheet. Journal of Magnetism and Magnetic Materials, 465, 365–374.
    [CrossRef]   [Google Scholar]
  39. Wang, C. Y. (2008). Stagnation flow towards a shrinking sheet. International Journal of Non-Linear Mechanics, 43(5), 377–382.
    [CrossRef]   [Google Scholar]
  40. Bachok, N., Ishak, A., & Pop, I. (2012). Boundary layer stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid. International Journal of Heat and Mass Transfer, 55(25-26), 8122-8128.
    [CrossRef]   [Google Scholar]
  41. Zangooee, M. R., Hosseinzadeh, K., & Ganj, D. D. (2022). Investigation of three-dimensional hybrid nanofluid flow affected by nonuniform MHD over exponential stretching/shrinking plate. Nonlinear Engineering, 11(1), 143-155.
    [CrossRef]   [Google Scholar]
  42. Rahman, M. M., Roşca, A. V., & Pop, I. (2014). Boundary layer flow of a nanofluid past a permeable exponentially shrinking/stretching surface with second order slip using Buongiorno’s model. International Journal of Heat and Mass Transfer, 77, 1133-1143.
    [CrossRef]   [Google Scholar]
  43. Bachok, N., Ishak, A., & Pop, I. (2011). Stagnation-point flow over a stretching/shrinking sheet in a nanofluid. Nanoscale Research Letters, 6(623), 1–10.
    [Google Scholar]
  44. Rehman, F. U., Nadeem, S., Rehman, H. U., & Haq, R. U. (2018). Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface. Results in Physics, 8, 316–323.
    [CrossRef]   [Google Scholar]
  45. Thumma, T., Bég, O. A., & Kadir, A. (2017). Numerical study of heat source/sink effects on dissipative magnetic nanofluid flow from a non-linear inclined stretching/shrinking sheet. Journal of Molecular Liquids, 232, 159–173.
    [CrossRef]   [Google Scholar]
  46. Nayak, M. K., Akbar, N. S., Tripathi, D., & Pandey, V. S. (2017). Three dimensional MHD flow of nanofluid over an exponential porous stretching sheet with convective boundary conditions. Thermal Science and Engineering Progress, 3, 133–140.
    [CrossRef]   [Google Scholar]
  47. Brewster, M. Q. (1972). Thermal radiative transfer properties. Wiley.
    [Google Scholar]
  48. Sarah, I., Mondal, S., & Sibanda, P. (2015). Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions. Alexandria Engineering Journal, 55(2), 1025–1035.
    [CrossRef]   [Google Scholar]
  49. Nadeem, S., Haq, R. U., & Akbar, N. S. (2014). MHD three-dimensional boundary layer flow of Casson nanofluid past a linearly stretching sheet with convective boundary condition. IEEE Transactions on Nanotechnology, 13(1), 109–115.
    [CrossRef]   [Google Scholar]
  50. Gupta, S., & Sharma, K. (2017). Numerical simulation for magnetohydrodynamic three dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation. Engineering Computations, 34(8), 2698–2722.
    [CrossRef]   [Google Scholar]
  51. Ahmad, K., & Nazar, R. (2011). Magnetohydrodynamic three-dimensional flow and heat transfer over a stretching surface in a viscoelastic fluid is discussed. Journal of Science and Technology, 3(1), 1–14.
    [Google Scholar]

Cite This Article
APA Style
Tarakaramu, N., Madhu, M., & Lakshmi, G. Y. R. (2025). Three-Dimensional Nanofluid Flow with Convective and Slip Condition with Thermal Radiation Effect via Stretching/Shrinking Surface. International Journal of Thermo-Fluid Systems and Sustainable Energy, 1(1), 30–38. https://doi.org/10.62762/IJTSSE.2025.456595

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 64
PDF Downloads: 40

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
International Journal of Thermo-Fluid Systems and Sustainable Energy

International Journal of Thermo-Fluid Systems and Sustainable Energy

ISSN: 3069-1877 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/