-
CiteScore
-
Impact Factor
Volume 1, Issue 1, International Journal of Thermo-Fluid Systems and Sustainable Energy
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
International Journal of Thermo-Fluid Systems and Sustainable Energy, Volume 1, Issue 1, 2025: 39-45

Open Access | Research Article | 24 August 2025
Heat and Momentum Transfer in MHD Boundary Layer Flow with Radiation and Heat Source/Sink Effects
1 Department of Mathematics, Hindustan Institute of Technology and Science, Chennai, India
* Corresponding Author: Vediyappan Govindan, [email protected]
Received: 09 July 2025, Accepted: 27 July 2025, Published: 24 August 2025  
Abstract
The porosity parameter serves as a pivotal factor in determining the resistance exerted by a porous medium on fluid motion, especially in magnetohydrodynamic (MHD) flows. This study presents a novel numerical investigation of the coupled influence of porosity, viscous dissipation, and Joule heating on both momentum and thermal boundary layers over a porous surface. The results demonstrate that increasing porosity enhances medium permeability, thereby reducing hydrodynamic drag and intensifying the velocity gradient near the stagnation region. Conversely, lower porosity impedes fluid penetration, resulting in diminished velocity and a compressed boundary layer structure. While the direct impact of porosity on thermal transport is minimal, its interaction with dissipative effects leads to subtle modifications in temperature distribution. The graphical and quantitative findings underscore the importance of fine-tuning the porosity parameter to regulate flow resistance and thermal behaviour in advanced MHD systems. The methodology employed based on robust numerical simulations offers a comprehensive framework for analysing porous flow dynamics in engineering and energy applications, highlighting the novelty of integrating complex interdependencies between porosity and thermophysical mechanisms.

Graphical Abstract
Heat and Momentum Transfer in MHD Boundary Layer Flow with Radiation and Heat Source/Sink Effects

Keywords
porosity parameter
magnetohydrodynamic (MHD) flows
viscous dissipation
joule heating
numerical simulations

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The author declares no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Crane, L. J. (1970). Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 21(4), 645–647.
    [CrossRef]   [Google Scholar]
  2. Carragher, P., & Crane, L. (1982). Heat transfer on a continuous stretching sheet. Zeitschrift für Angewandte Mathematik und Mechanik, 62(10), 564–565.
    [CrossRef]   [Google Scholar]
  3. Zhu, A., Ali, H., Ishaq, M., Junaid, M. S., Raza, J., & Amjad, M. (2022). Numerical study of heat and mass transfer for Williamson nanofluid over stretching/shrinking sheet along with Brownian and thermophoresis effects. Energies, 15(16), 5926.
    [CrossRef]   [Google Scholar]
  4. Siddheshwar, P. G., & Mahabaleswar, U. S. (2005). Effects of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet. International Journal of Non-Linear Mechanics, 40(6), 807–820.
    [CrossRef]   [Google Scholar]
  5. Hayat, T., Qayyum, S., Alsaedi, A., & Shafiq, A. (2016). Inclined magnetic field and heat source/sink aspects in flow of nanofluid with nonlinear thermal radiation. International Journal of Heat and Mass Transfer, 103, 99–107.
    [CrossRef]   [Google Scholar]
  6. Makinde, O. D., Mabood, F., & Ibrahim, M. S. (2018). Chemically reacting on MHD boundary-layer flow of nanofluids over a non-linear stretching sheet with heat source/sink and thermal radiation. Thermal Science, 22(1B), 495–506.
    [CrossRef]   [Google Scholar]
  7. Abel, M. S., & Nandeppanavar, M. M. (2009). Heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with non-uniform heat source/sink. Communications in Nonlinear Science and Numerical Simulation, 14(5), 2120–2131.
    [CrossRef]   [Google Scholar]
  8. Damala, C. K., Bhumarapu, V., & Makinde, O. D. (2021). Radiative MHD Walter’s liquid-B flow past a semi-infinite vertical plate in the presence of viscous dissipation with a heat source. Engineering Transactions, 69(4), 373–401.
    [CrossRef]   [Google Scholar]
  9. Salahuddin, T., Malik, M. Y., Hussain, A., Bilal, S., & Awais, M. (2015). Effects of transverse magnetic field with variable thermal conductivity on tangent hyperbolic fluid with exponentially varying viscosity. AIP Advances, 5(12), 127103.
    [CrossRef]   [Google Scholar]
  10. Khader, M. M. (2019). The numerical solution for BVP of the liquid film flow over an unsteady stretching sheet with thermal radiation and magnetic field using the finite element method. International Journal of Modern Physics C, 30(11), 1950080.
    [CrossRef]   [Google Scholar]
  11. Farooq, U., Tahir, M., Waqas, H., Muhammad, T., Alshehri, A., & Imran, M. (2022). Investigation of 3D flow of magnetized hybrid nanofluid with heat source/sink over a stretching sheet. Scientific Reports, 12, 12254.
    [CrossRef]   [Google Scholar]
  12. Vijayaragavan, R., & Karthikeyan, S. (2017). Joule heating and thermal radiation effects on chemically reacting Casson fluid past a vertical plate with variable magnetic field. Research Journal of Engineering and Technology, 8(4), 393–404.
    [CrossRef]   [Google Scholar]
  13. Seth, G. S., Sharma, R., Kumbhakar, B., & Tripathi, R. (2017). MHD stagnation point flow over exponentially stretching sheet with exponentially moving free-stream, viscous dissipation, thermal radiation and non-uniform heat source/sink. Diffusion foundations, 11, 182-190.
    [CrossRef]   [Google Scholar]
  14. Thiagarajan, M., & Kumar, M. D. (2019). Heat source/sink and chemical reaction effects on MHD and heat transfer flow of radiative nanofluid over a porous exponentially stretching sheet with viscous dissipation and ohmic heating. Int. J. Basic Sci. Appl. Comput, 2, 5-12.
    [Google Scholar]
  15. Shateyi, S., & Marewo, G. T. (2014). On a new numerical analysis of the Hall effect on MHD flow and heat transfer over an unsteady stretching permeable surface in the presence of thermal radiation and heat source/sink. Boundary Value Problems, 2014(1), 170.
    [CrossRef]   [Google Scholar]
  16. Krishnaiah, M., Rajendar, P., Laxmi, T. V., & Reddy, M. C. K. (2017). Influence of non-uniform heat source/sink on stagnation point flow of a MHD Casson nanofluid flow over an exponentially stretching surface. Global Journal of Pure and Applied Mathematics, 13(10), 7009–7033.
    [Google Scholar]
  17. Mishra, S. R., Baag, S., Dash, G. C., & Acharya, M. R. (2020). Numerical approach to MHD flow of power-law fluid on a stretching sheet with non-uniform heat source. Nonlinear Engineering, 9(1), 81–93.
    [CrossRef]   [Google Scholar]
  18. Kumar, S. G., Varma, S. V. K., Prasad, P. D., Raju, C. S. K., Makinde, O. D., & Sharma, R. (2018). MHD reacting and radiating 3-D flow of Maxwell fluid past a stretching sheet with heat source/sink and Soret effects in a porous medium. Defect and Diffusion Forum, 387, 145–156.
    [CrossRef]   [Google Scholar]
  19. Guled, C. N., Tawade, J. V., Nandeppanavar, M. M., & Saraf, A. R. (2022). MHD slip flow and heat transfer of UCM fluid with the effect of suction/injection due to stretching sheet: OHAM solution. Heat Transfer, 51(5), 3201–3218.
    [CrossRef]   [Google Scholar]
  20. Benal, S. S., Tawade, J. V., Biradar, M. M., & Allasi, H. L. (2022). Effects of the magnetohydrodynamic flow within the boundary layer of a jeffery fluid in a porous medium over a shrinking/stretching sheet. Mathematical Problems in Engineering, 2022(1), 7326504.
    [CrossRef]   [Google Scholar]
  21. Mahabaleshwar, U. S., Vinay Kumar, P. N., & Sheremet, M. (2016). Magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction. SpringerPlus, 5(1), 1901.
    [CrossRef]   [Google Scholar]
  22. Anwar, T., Kumam, P., Khan, I., & Thounthong, P. (2022). Thermal analysis of MHD convective slip transport of fractional Oldroyd-B fluid over a plate. Mechanics of Time-Dependent Materials, 26(2), 431-462.
    [CrossRef]   [Google Scholar]
  23. Siva, T., Dubey, D., & Jangili, S. (2024). Rotational flow dynamics of electroosmotic transport of couple stress fluid in a microfluidic channel under electromagnetohydrodynamic and slip-dependent zeta potential effects. Physics of Fluids, 36(9).
    [CrossRef]   [Google Scholar]
  24. Zhang, W., Zhu, Q., Zhan, H., Huang, G., & Wang, Q. (2020). A critical review of non-Darcian flow and future challenges. Earth and Space Science Open Archive ESSOAr.
    [CrossRef]   [Google Scholar]
  25. Huang, H., & Ayoub, J. (2008). Applicability of the Forchheimer equation for non-Darcy flow in porous media. Spe Journal, 13(01), 112-122.
    [CrossRef]   [Google Scholar]
  26. Pal, D., & Mondal, H. (2011). The influence of thermal radiation on hydromagnetic Darcy-Forchheimer mixed convection flow past a stretching sheet embedded in a porous medium. Meccanica, 46(4), 739-753.
    [CrossRef]   [Google Scholar]
  27. Babaelahi, M., & Sadri, S. (2024). Magneto-Hydro-Dynamic Generator with Joule Heating and Viscous Dissipation: An Analytic Investigation of Mixed Convection Flow. Arabian Journal for Science and Engineering, 49(8), 11445-11455.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Govindan, V. (2025). Heat and Momentum Transfer in MHD Boundary Layer Flow with Radiation and Heat Source/Sink Effects. International Journal of Thermo-Fluid Systems and Sustainable Energy, 1(1), 39–45. https://doi.org/10.62762/IJTSSE.2025.817838

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 51
PDF Downloads: 28

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
International Journal of Thermo-Fluid Systems and Sustainable Energy

International Journal of Thermo-Fluid Systems and Sustainable Energy

ISSN: 3069-1877 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/