-
CiteScore
-
Impact Factor
Volume 1, Issue 2, Journal of Artificial Intelligence in Bioinformatics
Volume 1, Issue 2, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Journal of Artificial Intelligence in Bioinformatics, Volume 1, Issue 2, 2025: 51-57

Open Access | Perspective | 26 September 2025
The Future of DNA Storage in Revolutionizing Biological Data Management
1 The Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
2 School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
* Corresponding Author: Xue Li, [email protected]
Received: 06 September 2025, Accepted: 17 September 2025, Published: 26 September 2025  
Abstract
Compared with traditional storage media, biological data storage has advanced more rapidly in capacity, diversity, and lifespan, and it also enables continuous data retention. The DNA molecule, as Nature's own archival medium, provides unparalleled density, longevity, and passive durability, making it a compelling foundation for the next generation of "cold" and "deeply cold" archives. Since 2019, progress across the stack—coding for insertion–deletion–missing channels, large-scale random access, enzyme writing, nanopore-native retrieval, and chemically robust expansion—has transformed DNA storage from provocative demonstrations into mature technologies with early end-to-end prototypes. From this perspective, we believe biological data management (BDM) is the first area where DNA storage can have practical impact, including raw sequencing archives, microscopic images, clinical omics data, and compliance-driven retention of de-identified records. We synthesize the latest technology levels, highlight what is actually working in today's labs, distinguish challenges from bottlenecks (particularly write costs/latencies and standardization), and propose a 2025–2030 roadmap with specific milestones in coding, writing, access, and media preservation. Finally, this paper proposes guidelines for integrating DNA archives into biological institutes, biobanks, and hospital systems as a supplementary layer to tape/object storage, and outlines a research agenda covering privacy, chain of custody, and sustainability.

Graphical Abstract
The Future of DNA Storage in Revolutionizing Biological Data Management

Keywords
DNA storage
biological data management

Data Availability Statement
Not applicable.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Li, X., Wang, B., Lv, H., Yin, Q., Zhang, Q., & Wei, X. (2020). Constraining DNA sequences with a triplet-bases unpaired. IEEE transactions on nanobioscience, 19(2), 299-307.
    [CrossRef]   [Google Scholar]
  2. Cao, B., Li, X., Wang, B., He, T., Zheng, Y., Zhang, X., & Zhang, Q. (2025). Achieving handle-level random access in an encrypted DNA archival storage system via frequency dictionary mapping coding. Patterns.
    [CrossRef]   [Google Scholar]
  3. Cao, B., Zheng, Y., Shao, Q., Liu, Z., Xie, L., Zhao, Y., ... & Wei, X. (2024). Efficient data reconstruction: The bottleneck of large-scale application of DNA storage. Cell Reports, 43(4).
    [CrossRef]   [Google Scholar]
  4. Carmean, D., Ceze, L., Seelig, G., Stewart, K., Strauss, K., & Willsey, M. (2018). DNA data storage and hybrid molecular–electronic computing. Proceedings of the IEEE, 107(1), 63-72.
    [CrossRef]   [Google Scholar]
  5. Choi, Y., Bae, H. J., Lee, A. C., Choi, H., Lee, D., Ryu, T., ... & Kwon, S. (2020). DNA micro‐disks for the management of DNA‐based data storage with index and write‐once–read‐many (WORM) memory features. Advanced Materials, 32(37), 2001249.
    [CrossRef]   [Google Scholar]
  6. Church, G. M., Gao, Y., & Kosuri, S. (2012). Next-generation digital information storage in DNA. Science, 337(6102), 1628-1628.
    [CrossRef]   [Google Scholar]
  7. Erlich, Y., & Zielinski, D. (2017). DNA Fountain enables a robust and efficient storage architecture. Science, 355(6328), 950-954.
    [CrossRef]   [Google Scholar]
  8. Grass, R. N., Heckel, R., Puddu, M., Paunescu, D., & Stark, W. J. (2015). Robust chemical preservation of digital information on DNA in silica with error‐correcting codes. Angewandte Chemie International Edition, 54(8), 2552-2555.
    [CrossRef]   [Google Scholar]
  9. Koch, J., Gantenbein, S., Masania, K., Stark, W. J., Erlich, Y., & Grass, R. N. (2020). A DNA-of-things storage architecture to create materials with embedded memory. Nature biotechnology, 38(1), 39-43.
    [CrossRef]   [Google Scholar]
  10. Bee, C., Chen, Y. J., Queen, M., Ward, D., Liu, X., Organick, L., ... & Ceze, L. (2021). Molecular-level similarity search brings computing to DNA data storage. Nature communications, 12(1), 4764.
    [CrossRef]   [Google Scholar]
  11. Ma, J., Yang, Y., Pei, B., Mi, S., Xiong, Z., & Ouyang, L. (2025). Primer‐Disk‐Enabled DNA Data Storage System with Index and Record‐Many‐Read‐Many Features. Advanced Science, e02367.
    [CrossRef]   [Google Scholar]
  12. Organick, L., Ang, S. D., Chen, Y. J., Lopez, R., Yekhanin, S., Makarychev, K., ... & Strauss, K. (2018). Random access in large-scale DNA data storage. Nature biotechnology, 36(3), 242-248.
    [CrossRef]   [Google Scholar]
  13. Press, W. H., Hawkins, J. A., Jones Jr, S. K., Schaub, J. M., & Finkelstein, I. J. (2020). HEDGES error-correcting code for DNA storage corrects indels and allows sequence constraints. Proceedings of the National Academy of Sciences, 117(31), 18489-18496.
    [CrossRef]   [Google Scholar]
  14. Rasool, A., Hong, J., Hong, Z., Li, Y., Zou, C., Chen, H., ... & Dai, J. (2024). An Effective DNA‐Based File Storage System for Practical Archiving and Retrieval of Medical MRI Data. Small Methods, 8(10), 2301585.
    [CrossRef]   [Google Scholar]
  15. Ren, Y., Zhang, Y., Liu, Y., Wu, Q., Su, J., Wang, F., ... & Zhang, H. (2022). DNA‐Based Concatenated Encoding System for High‐Reliability and High‐Density Data Storage. Small Methods, 6(4), 2101335.
    [CrossRef]   [Google Scholar]
  16. Song, L., Geng, F., Gong, Z. Y., Chen, X., Tang, J., Gong, C., ... & Yuan, Y. J. (2022). Robust data storage in DNA by de Bruijn graph-based de novo strand assembly. Nature communications, 13(1), 5361.
    [CrossRef]   [Google Scholar]
  17. Liu, D., Xu, D., Shi, L., Zhang, J., Bi, K., Luo, B., ... & Ping, Z. (2025). A practical DNA data storage using an expanded alphabet introducing 5-methylcytosine. Gigabyte, 2025, gigabyte147-0.
    [CrossRef]   [Google Scholar]
  18. Winston, C., Organick, L., Ward, D., Ceze, L., Strauss, K., & Chen, Y. J. (2022). Combinatorial PCR method for efficient, selective oligo retrieval from complex oligo pools. ACS Synthetic Biology, 11(5), 1727-1734.
    [CrossRef]   [Google Scholar]
  19. Zheng, Y., Cao, B., Zhang, X., Cui, S., Wang, B., & Zhang, Q. (2024). DNA-QLC: an efficient and reliable image encoding scheme for DNA storage. BMC genomics, 25(1), 266.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Chen, R., Li, X., & Cao, B. (2025). The Future of DNA Storage in Revolutionizing Biological Data Management. Journal of Artificial Intelligence in Bioinformatics, 1(2), 51–57. https://doi.org/10.62762/JAIB.2025.924847

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 41
PDF Downloads: 9

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Journal of Artificial Intelligence in Bioinformatics

Journal of Artificial Intelligence in Bioinformatics

ISSN: 3068-7535 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/