-
CiteScore
-
Impact Factor
Volume 1, Issue 1, ICCK Journal of Applied Mathematics
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Journal of Applied Mathematics, Volume 1, Issue 1, 2025: 3-14

Open Access | Research Article | 20 June 2025
Nanofluid Heat Transfer in Thermal Systems: Case Studies on Brownian and Thermophoretic Phenomena
1 Department of Mathematics, Vishwakarma University, Pune 411048, India
2 Department of Mathematics, Vishwakarma Institute of Technology, Pune 411048, India
3 Department of Mathematics, School of Applied Sciences, REVA University, Bengaluru 560064, Karnataka, India
4 Department of Physics and Chemistry, University of Potsdam, Potsdam, Germany
* Corresponding Author: Nadia Batool, [email protected]
Received: 06 May 2025, Accepted: 22 May 2025, Published: 20 June 2025  
Abstract
This study presents the application of the Artificial Neural Network Backpropagation Levenberg-Marquardt (ANN-BLMS) model for solving the nonlinear system of equations governing the flow of Casson-Williamson nanofluid under the influence of a magnetic field, Brownian motion, and thermophoresis effects. The model was trained using MATLAB's "bvp4c" solver to generate a reference dataset for various flow scenarios. Graphs having significant interest such as Nusselt Number are plotted and performance evaluation was carried out across multiple scenarios, which included variations in parameters such as Prandtl number, Weissenberg number, and Brownian motion coefficient. The results demonstrate that the ANN-BLMS model effectively minimizes the Mean Squared Error (MSE), achieving high accuracy across all cases. The model achieved an MSE as low as 5.36e-09, indicating strong performance in predicting the behaviour of the nanofluid. The model exhibited good generalization with minimal differences between training, validation, and testing errors, confirming its robustness. Additionally, the ANN-BLMS model showed efficient convergence, with fast computational times and the ability to handle complex flow dynamics involving magnetic field effects. These findings highlight the potential of using ANN for solving complex fluid dynamics problems in nanofluid systems, offering a reliable tool for practical applications in engineering and thermal management.

Graphical Abstract
Nanofluid Heat Transfer in Thermal Systems: Case Studies on Brownian and Thermophoretic Phenomena

Keywords
magnetic field
casson-williamson nanofluid
brownian motion
thermophoresis
artificial neural network

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Chamkha, A. J., Rashad, A. M., El-Zahar, E. R., & EL-Mky, H. A. (2019). Analytical and numerical investigation of Fe3O4–water nanofluid flow over a moveable plane in a parallel stream with high suction. Energies, 12(1), 198.
    [CrossRef]   [Google Scholar]
  2. Pal, D., & Mondal, S. K. (2018). MHD nanofluid bioconvection over an exponentially stretching sheet in the presence of gyrotactic microorganisms and thermal radiation. BioNanoScience, 8(1), 272-287.
    [CrossRef]   [Google Scholar]
  3. Amjad, M., Ahmed, I., Ahmed, K., Alqarni, M. S., Akbar, T., & Muhammad, T. (2022). Numerical solution of magnetized Williamson nanofluid flow over an exponentially stretching permeable surface with temperature dependent viscosity and thermal conductivity. Nanomaterials, 12(20), 3661.
    [CrossRef]   [Google Scholar]
  4. Srinivasulu, T., & Goud, B. S. (2021). Effect of inclined magnetic field on flow, heat and mass transfer of Williamson nanofluid over a stretching sheet. Case Studies in Thermal Engineering, 23, 100819.
    [CrossRef]   [Google Scholar]
  5. Ghasemi, S. E., & Hatami, M. (2021). Solar radiation effects on MHD stagnation point flow and heat transfer of a nanofluid over a stretching sheet. Case Studies in Thermal Engineering, 25, 100898.
    [CrossRef]   [Google Scholar]
  6. Makhdoum, B. M., Mahmood, Z., Fadhl, B. M., Aldhabani, M. S., Khan, U., & Eldin, S. M. (2023). Significance of entropy generation and nanoparticle aggregation on stagnation point flow of nanofluid over stretching sheet with inclined Lorentz force. Arabian Journal of Chemistry, 16(6), 104787.
    [CrossRef]   [Google Scholar]
  7. Prasannakumara, B. C. (2021). Numerical simulation of heat transport in Maxwell nanofluid flow over a stretching sheet considering magnetic dipole effect. Partial Differential Equations in Applied Mathematics, 4, 100064.
    [CrossRef]   [Google Scholar]
  8. Mahmood, Z., Alhazmi, S. E., Alhowaity, A., Marzouki, R., Al-Ansari, N., & Khan, U. (2022). MHD mixed convective stagnation point flow of nanofluid past a permeable stretching sheet with nanoparticles aggregation and thermal stratification. Scientific Reports, 12(1), 16020.
    [CrossRef]   [Google Scholar]
  9. Lund, L. A., Omar, Z., Khan, I., & Sherif, E. S. M. (2020). Dual solutions and stability analysis of a hybrid nanofluid over a stretching/shrinking sheet executing MHD flow. Symmetry, 12(2), 276.
    [CrossRef]   [Google Scholar]
  10. Bouslimi, J., Omri, M., Mohamed, R. A., Mahmoud, K. H., Abo-Dahab, S. M., & Soliman, M. S. (2021). MHD Williamson nanofluid flow over a stretching sheet through a porous medium under effects of joule heating, nonlinear thermal radiation, heat generation/absorption, and chemical reaction. Advances in Mathematical Physics, 2021(1), 9950993.
    [CrossRef]   [Google Scholar]
  11. Panigrahi, L., Panda, J., Swain, K., & Dash, G. C. (2020). Heat and mass transfer of MHD Casson nanofluid flow through a porous medium past a stretching sheet with Newtonian heating and chemical reaction. Karbala International Journal of Modern Science, 6(3), 11.
    [Google Scholar]
  12. Abbas, A., Jeelani, M. B., Alnahdi, A. S., & Ilyas, A. (2022). MHD Williamson nanofluid fluid flow and heat transfer past a non-linear stretching sheet implanted in a porous medium: effects of heat generation and viscous dissipation. Processes, 10(6), 1221.
    [CrossRef]   [Google Scholar]
  13. Tawade, J. V., Guled, C. N., Noeiaghdam, S., Fernandez-Gamiz, U., Govindan, V., & Balamuralitharan, S. (2022). Effects of thermophoresis and Brownian motion for thermal and chemically reacting Casson nanofluid flow over a linearly stretching sheet. Results in Engineering, 15, 100448.
    [CrossRef]   [Google Scholar]
  14. Manvi, B., Tawade, J., Biradar, M., Noeiaghdam, S., Fernandez-Gamiz, U., & Govindan, V. (2022). The effects of MHD radiating and non-uniform heat source/sink with heating on the momentum and heat transfer of Eyring-Powell fluid over a stretching. Results in Engineering, 14, 100435.
    [CrossRef]   [Google Scholar]
  15. Alkasasbeh, H. (2022). Numerical solution of heat transfer flow of casson hybrid nanofluid over vertical stretching sheet with magnetic field effect. CFD Lett, 14(3), 39-52.
    [CrossRef]   [Google Scholar]
  16. Manjunatha, S., Puneeth, V., Gireesha, B. J., & Chamkha, A. (2022). Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet. Journal of Applied and Computational Mechanics, 8(4), 1279-1286.
    [CrossRef]   [Google Scholar]
  17. Rekha, M. B., Sarris, I. E., Madhukesh, J. K., Raghunatha, K. R., & Prasannakumara, B. C. (2022). Activation energy impact on flow of AA7072-AA7075/Water-Based hybrid nanofluid through a cone, wedge and plate. Micromachines, 13(2), 302.
    [CrossRef]   [Google Scholar]
  18. Naqvi, S. M. R. S., Waqas, H., Yasmin, S., Liu, D., Muhammad, T., Eldin, S. M., & Khan, S. A. (2022). Numerical simulations of hybrid nanofluid flow with thermal radiation and entropy generation effects. Case Studies in Thermal Engineering, 40, 102479.
    [CrossRef]   [Google Scholar]
  19. Jamshed, W., Baleanu, D., Nasir, N. A. A. M., Shahzad, F., Nisar, K. S., Shoaib, M., ... & Ismail, K. A. (2021). The improved thermal efficiency of Prandtl–Eyring hybrid nanofluid via classical Keller box technique. Scientific reports, 11(1), 23535.
    [CrossRef]   [Google Scholar]
  20. Abbas, W., Megahed, A. M., Ibrahim, M. A., & Said, A. A. (2023). Ohmic dissipation impact on flow of Casson-Williamson fluid over a slippery surface through a porous medium. Indian Journal of Physics, 97(14), 4277-4283.
    [CrossRef]   [Google Scholar]
  21. Ali, U., Irfan, M., Akbar, N. S., Rehman, K. U., & Shatanawi, W. (2024). Dynamics of Soret–Dufour effects and thermal aspects of Joule heating in multiple slips Casson–Williamson nanofluid. International Journal of Modern Physics B, 38(16), 2450206.
    [CrossRef]   [Google Scholar]
  22. Sreedevi, P., Sudarsana Reddy, P., & Chamkha, A. (2020). Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation. SN Applied Sciences, 2(7), 1222.
    [CrossRef]   [Google Scholar]
  23. Venkateswarlu, B., & Satya Narayana, P. V. (2021). Cu‐Al2O3/H2O hybrid nanofluid flow past a porous stretching sheet due to temperatue‐dependent viscosity and viscous dissipation. Heat Transfer, 50(1), 432-449.
    [CrossRef]   [Google Scholar]
  24. Yahya, A. U., Salamat, N., Huang, W. H., Siddique, I., Abdal, S., & Hussain, S. (2021). Thermal charactristics for the flow of Williamson hybrid nanofluid (MoS2+ ZnO) based with engine oil over a streched sheet. Case Studies in Thermal Engineering, 26, 101196.
    [CrossRef]   [Google Scholar]
  25. Waini, I., Ishak, A., & Pop, I. (2020). Hybrid nanofluid flow induced by an exponentially shrinking sheet. Chinese Journal of Physics, 68, 468-482.
    [CrossRef]   [Google Scholar]
  26. Alfvén, H. (1942). Existence of electromagnetic-hydrodynamic waves. Nature, 150(3805), 405-406.
    [CrossRef]   [Google Scholar]
  27. Galal, A. M., Alharbi, F. M., Arshad, M., Alam, M. M., Abdeljawad, T., & Al-Mdallal, Q. M. (2024). Numerical investigation of heat and mass transfer in three-dimensional MHD nanoliquid flow with inclined magnetization. Scientific reports, 14(1), 1207.
    [CrossRef]   [Google Scholar]
  28. Zaman, S. U., Aslam, M. N., Riaz, M. B., Akgul, A., & Hussan, A. (2024). Williamson MHD nanofluid flow with radiation effects through slender cylinder. Results in Engineering, 22, 101966.
    [CrossRef]   [Google Scholar]
  29. Daniel, Y. S., Aziz, Z. A., Ismail, Z., & Bahar, A. (2020). Unsteady EMHD dual stratified flow of nanofluid with slips impacts. Alexandria Engineering Journal, 59(1), 177-189.
    [CrossRef]   [Google Scholar]
  30. Ramesh, K., Asogwa, K. K., Oreyeni, T., Reddy, M. G., & Verma, A. (2024). EMHD radiative titanium oxide-iron oxide/ethylene glycol hybrid nanofluid flow over an exponentially stretching sheet. Biomass Conversion and Biorefinery, 14(16), 18887-18896.
    [CrossRef]   [Google Scholar]
  31. Prakash, J., Tripathi, D., Bég, O. A., & Srivastava, V. (2022). EMHD Casson hybrid nanofluid flow over an exponentially accelerated rotating porous surface. Journal of Porous Media, 25(11).
    [CrossRef]   [Google Scholar]
  32. Jakeer, S., Reddy, S. R. R., Rashad, A. M., Rupa, M. L., & Manjula, C. (2023). Nonlinear analysis of Darcy-Forchheimer flow in EMHD ternary hybrid nanofluid (Cu-CNT-Ti/water) with radiation effect. Forces in Mechanics, 10, 100177.
    [CrossRef]   [Google Scholar]
  33. Khashi'ie, N. S., Arifin, N. M., & Pop, I. (2022). Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating. Alexandria engineering journal, 61(3), 1938-1945.
    [CrossRef]   [Google Scholar]
  34. Ali, A., Khan, H. S., Saleem, S., & Hussan, M. (2022). EMHD nanofluid flow with radiation and variable heat flux effects along a slandering stretching sheet. Nanomaterials, 12(21), 3872.
    [CrossRef]   [Google Scholar]
  35. Abdullaev, S., Barakayev, N. R., Abdullaeva, B. S., & Turdialiyev, U. (2023). A novel model of a hydrogen production in micro reactor: conversion reaction of methane with water vapor and catalytic. International Journal of Thermofluids, 20, 100510.
    [CrossRef]   [Google Scholar]
  36. Abdullaev, S., Abdullaeva, B. S., Opakhai, S., & Alzubaidi, L. H. (2024). Enhancing the efficacy of humidifier-dehumidifier desalination in humid regions through the use of an absorption refrigeration cycle (an economic and experimental investigation). International Journal of Thermofluids, 22, 100700.
    [CrossRef]   [Google Scholar]
  37. Abdullaev, S. S., Pallathadka, H., Majdi, A., Xie, S., Muda, I., Radhy AL Kubaisy, M. M., ... & Patra, I. (2023). Comparing and Investigating the Effect of Functional Groups of Nano-Graphene Oxide (NGO) on Biodiesel Production from Jatropha Oil Using Density Function Theory. Polycyclic Aromatic Compounds, 43(9), 8096-8109.
    [CrossRef]   [Google Scholar]
  38. Abdullaev, S. S., Althomali, R. H., Khan, A. R., Jabbar, H. S., Aggarwal, S., Mustafa, Y. F., & Khlewee, I. H. (2024). Integrating of analytical techniques with enzyme-mimicking nanomaterials for the fabrication of microfluidic systems for biomedical analysis. Talanta, 273, 125896.
    [CrossRef]   [Google Scholar]
  39. Abdullaev, S. S., Althomali, R. H., Abdu Musad Saleh, E., Robertovich, M. R., Sapaev, I. B., Romero-Parra, R. M., ... & Fenjan, M. N. (2023). Synthesis of novel antibacterial and biocompatible polymer nanocomposite based on polysaccharide gum hydrogels. Scientific Reports, 13(1), 16800.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Sobale, S., Kulkarni, N. V., Tawade, J. V., Hanumagowda, B. N., & Batool, N. (2025). Nanofluid Heat Transfer in Thermal Systems: Case Studies on Brownian and Thermophoretic Phenomena. ICCK Journal of Applied Mathematics, 1(1), 3–14. https://doi.org/10.62762/JAM.2025.801252

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 237
PDF Downloads: 44

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
ICCK Journal of Applied Mathematics

ICCK Journal of Applied Mathematics

ISSN: 3068-5656 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/