Volume 1, Issue 1, Journal of Advanced Materials Research
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Journal of Advanced Materials Research, Volume 1, Issue 1, 2025: 6-17

Open Access | Research Article | 20 December 2025
Highly Transparent Sm:LuAG Ceramics for Cladding Fabricated by Solid-state Reactive Sintering
1 State Key Laboratory of High Performance Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Microelectronics, Shanghai University, Shanghai 201800, China
* Corresponding Author: Jiang Li, [email protected]
ARK: ark:/57805/jamr.2025.567536
Received: 29 October 2025, Accepted: 08 December 2025, Published: 20 December 2025  
Abstract
In solid-state laser systems with nanosecond repetition rates and high energy, amplified spontaneous emission (ASE) and parasitic oscillation (PO) produced by the gain material can significantly impact the laser output. A well-designed cladding composite structure is an effective solution to absorb ASE and suppress PO. In this work, 5 at.% Sm:LuAG transparent ceramics, a promising cladding material for suppressors of PO at 1064 nm of Nd:LuAG lasers, have been prepared by solid-state reactive sintering at 1825 °C followed by hot isostatic pressing (HIP) post-treatment at 1750 °C. The influences of TEOS (tetraethyl orthosilicate) content on microstructure evolution, in-line transmittance of the 5 at.% Sm:LuAG ceramics were studied. The results show that when the TEOS content is 0.8 wt.%, high transparency Sm:LuAG ceramics can be obtained by vacuum sintering at 1825 °C for 5 h followed by HIP post-treatment at 1750 °C in an argon atmosphere under 200 MPa for 3 h. The optimum in-line transmittance of the HIP-ed Sm:LuAG ceramics (1.5 mm thickness) is 83.3% at a wavelength of 808 nm and absorption coefficient of 3.46 cm$^{-1}$ at 1064 nm, indicating that it can effectively suppress ASE and PO.

Graphical Abstract
Highly Transparent Sm:LuAG Ceramics for Cladding Fabricated by Solid-state Reactive Sintering

Keywords
Sm:LuAG
transparent ceramics
cladding ceramics
microstructure evolution
sintering additives

Data Availability Statement
Data will be made available on request.

Funding
This work was supported by the National Key R&D Program of China under Grant 2023YFB3812000.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Wan, X., Tan, G., Cai, L., Fu, J., Li, J., & Zhang, Y. (2024). Nd 3+: YAG–Al 2 O 3 nanocrystalline transparent ceramics with high inflexion concentration quenching of Nd 3+ prepared by amorphous crystallization. Journal of Advanced Ceramics, 13(8), 1242-1253.
    [Google Scholar]
  2. Qian, Y. A. N. G., ZHENG, Y. T., Shi-Jiang, W. U., Wan-Jun, Y. U., Yang, W. A. N. G., Yong-Dong, Y. U., & Fu-Tian, L. I. U. (2023). A Review on the Preparation of Nanocomposite Oxide Ceramics by Solid State Phase Transformation Method. Advanced Ceramics, 44(5-6), 385-396.
    [CrossRef]   [Google Scholar]
  3. Sanghera, J., Kim, W., Villalobos, G., Shaw, B., Baker, C., Frantz, J., ... & Aggarwal, I. (2013). Ceramic laser materials: past and present. Optical Materials, 35(4), 693-699.
    [CrossRef]   [Google Scholar]
  4. Rong, X., Yang, Y., Peng, S., Yang, C., & Wang, D. (2023). Sub-nanosecond diode-pumped passively Q-switched Nd: LuAG ceramic microchip lasers. Optics & Laser Technology, 158, 108901.
    [CrossRef]   [Google Scholar]
  5. Zhao, C. C., Kim, E. B., Park, Y. J., Logesh, G., Kim, M. J., Lee, J. W., ... & Yoon, S. Y. (2024). Optimization of a TEOS addition on plasma resistance of YAG ceramics. International Journal of Applied Ceramic Technology, 21(5), 3200-3208.
    [CrossRef]   [Google Scholar]
  6. Han, W. W., Hu, C., Zhou, Z. Z., Ye, J. H., Huang, D., Li, T. S., & Li, J. (2025). Fabrication of Sm:LuAG transparent ceramics with different doping concentrations for cladding from co-precipitated nano-powders. Journal of Advanced Ceramics, 14, 9221129.
    [CrossRef]   [Google Scholar]
  7. Mang, T. Y. P., Xu, Y., GAO, Q., ZHOU, H., Zhang, Z., Yin, H., ... & SU, L. (2024). Spectroscopic Properties and Optical Clusters in Erbium-doped CaF2, SrF2 and PbF2 Crystals. Journal of Inorganic Materials, 39(3).
    [CrossRef]   [Google Scholar]
  8. Li, W., Huang, H., Mei, B., Wang, C., Liu, J., Wang, S., ... & Su, L. (2020). Fabrication, microstructure and laser performance of Yb3+ doped CaF2-YF3 transparent ceramics. Ceramics International, 46(11), 19530-19536.
    [CrossRef]   [Google Scholar]
  9. Kränkel, C. (2014). Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range. IEEE Journal of Selected Topics in Quantum Electronics, 21(1), 250-262.
    [CrossRef]   [Google Scholar]
  10. Ye, J., Zhou, Z., Hu, C., Wang, Y., Jing, Y., Li, T., ... & Li, J. (2025). Yb: Sc2O3 Transparent Ceramics Fabricated from Co-precipitated Nano-powders: Microstructure and Optical Property. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 40(2), 215-224. http://dx.doi.org/10.15541/jim20240322
    [Google Scholar]
  11. Li, Q., Liang, F., Wang, J., Xue, Y. L., Ma, J., Liu, P., ... & Tang, D. (2025). Regulation of the sintering trajectory of Ho, Pr: Y 2 O 3 ceramics for 2.9 $\mu$m mid-infrared lasers by atmospheric sintering. Journal of Advanced Ceramics, 14(1).
    [CrossRef]   [Google Scholar]
  12. Yan, L., Xianpeng, Q., Lin, G., Guohong, Z., Tianjin, Z., Shiwei, W., & Hetuo, C. (2024). Preparation of sub-micron spherical Y 2 O 3 particles and transparent ceramics. Journal of Inorganic Materials, 39(6), 691-696.
    [CrossRef]   [Google Scholar]
  13. Liu, T., Feng, T., Sui, Z., Liu, Q., Gong, M., Zhang, L., ... & Fu, X. (2019). 50 mm-aperture Nd: LuAG ceramic nanosecond laser amplifier producing 10 J at 10 Hz. Optics Express, 27(11), 15595-15603.
    [CrossRef]   [Google Scholar]
  14. Liu, Q., Gong, M., Liu, T., Sui, Z., & Fu, X. (2016). Efficient sub-joule energy extraction from a diode-pumped Nd: LuAG amplifier seeded by a Nd: YAG laser. Optics Letters, 41(22), 5322-5325.
    [CrossRef]   [Google Scholar]
  15. Xu, X. D., Wang, X. D., Meng, J. Q., Cheng, Y., Li, D. Z., Cheng, S. S., ... & Xu, J. (2009). Crystal growth, spectral and laser properties of Nd: LuAG single crystal. Laser Physics Letters, 6(9), 678.
    [CrossRef]   [Google Scholar]
  16. Kaminskii, A. A., Butaeva, T. I., Fedorov, V. A., Bagdasarov, K. S., & Petrosyan, A. G. (1977). Absorption, luminescence, and stimulated emission investigations in Lu3Al5O12‐Er3+ Crystals. physica status solidi (a), 39(2), 541-548.
    [CrossRef]   [Google Scholar]
  17. Beil, K., Fredrich-Thornton, S. T., Tellkamp, F., Peters, R., Kränkel, C., Petermann, K., & Huber, G. (2010). Thermal and laser properties of Yb:LuAG for kW thin disk lasers. Optics Express, 18(20), 20712–20722.
    [CrossRef]   [Google Scholar]
  18. Basyrova, L., Maksimov, R., Shitov, V., Baranov, M., Mikhaylovsky, V., Khubetsov, A., ... & Loiko, P. (2019). Effect of SiO2 addition on structural and optical properties of Yb: Lu3Al5O12 transparent ceramics based on laser ablated nanopowders. Journal of Alloys and Compounds, 806, 717-725.
    [CrossRef]   [Google Scholar]
  19. Sugiyama, M., Fujimoto, Y., Yanagida, T., Yokota, Y., Pejchal, J., Furuya, Y., ... & Yoshikawa, A. (2011). Crystal growth and scintillation properties of Nd-doped Lu3Al5O12 single crystals with different Nd concentrations. Optical Materials, 33(6), 905-908.
    [CrossRef]   [Google Scholar]
  20. Yan, D., Liu, P., Xu, X., Zhang, J., & Tang, D. (2018). The phase, microstructure evolution and the Nd3+ function in the fabrication process of LuAG transparent ceramics. Journal of the European Ceramic Society, 38(11), 4043-4049.
    [CrossRef]   [Google Scholar]
  21. Mason, P., Divoký, M., Ertel, K., Pilař, J., Butcher, T., Hanuš, M., ... & Collier, J. (2017). Kilowatt average power 100 J-level diode pumped solid state laser. Optica, 4(4), 438-439.
    [CrossRef]   [Google Scholar]
  22. Divoký, M., Pilař, J., Hanuš, M., Navrátil, P., Denk, O., Severová, P., ... & Mocek, T. (2021). 150 J DPSSL operating at 1.5 kW level. Optics letters, 46(22), 5771-5773.
    [CrossRef]   [Google Scholar]
  23. Ogino, J., Tokita, S., Kitajima, S., Yoshida, H., Li, Z., Motokoshi, S., ... & Kawanaka, J. (2021). 10 J operation of a conductive-cooled Yb: YAG active-mirror amplifier and prospects for 100 Hz operation. Optics Letters, 46(3), 621-624.
    [CrossRef]   [Google Scholar]
  24. Lia, T., Hreniakd, D., & Lia, J. (2024). Effect of Y substitution on the microstructure, magneto-optical, and thermal properties of (Tb1-xYx) 3Al5O12 transparent ceramics.
    [CrossRef]   [Google Scholar]
  25. Yagi, H., Bisson, J. F., Ueda, K. I., & Yanagitani, T. (2006). Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd: YAG lasers. Journal of luminescence, 121(1), 88-94.
    [CrossRef]   [Google Scholar]
  26. Li, X., Hu, C., Liu, Q., Hreniak, D., & Li, J. (2024). Fluoride transparent ceramics for solid-state lasers: A review. Journal of Advanced Ceramics, 13(12), 1891–1918.
    [CrossRef]   [Google Scholar]
  27. Zhang, L., Hu, C., Li, X., Zhou, Z., Li, T., Liu, Y., ... & Li, J. (2024). Effect of Sc substitution on the phase composition, microstructure, and properties of (Tb 1- x Sc x) 3 (Al 1- y Sc y) 2 Al 3 O 12 transparent ceramics. Journal of Advanced Ceramics, 13(9), 1442-1452.
    [CrossRef]   [Google Scholar]
  28. Zhu, K., Zhou, H., Qiu, J., Wang, L. G., & Ye, L. (2022). Optical temperature sensing characteristics of Sm3+ doped YAG single crystal fiber based on luminescence emission. Journal of Alloys and Compounds, 890, 161844.
    [CrossRef]   [Google Scholar]
  29. Huß, R., Wilhelm, R., Kolleck, C., Neumann, J., & Kracht, D. (2010). Suppression of parasitic oscillations in a core-doped ceramic Nd: YAG laser by Sm: YAG cladding. Optics Express, 18(12), 13094-13101.
    [CrossRef]   [Google Scholar]
  30. Timoshenko, A. D., Matvienko, O. O., Doroshenko, A. G., Parkhomenko, S. V., Vorona, I. O., Kryzhanovska, O. S., ... & Yavetskiy, R. P. (2023). Highly-doped YAG: Sm3+ transparent ceramics: Effect of Sm3+ ions concentration. Ceramics International, 49(5), 7524-7533.
    [CrossRef]   [Google Scholar]
  31. Zhu, Z., Lv, S., Zhang, H., Hui, Y., Lei, H., & Li, Q. (2021). Highly efficient actively Q-switched Nd: YAG laser. Optics Express, 29(20), 32325-32332.
    [CrossRef]   [Google Scholar]
  32. De Vido, M., Ertel, K., Mason, P. D., Banerjee, S., Phillips, P. J., Smith, J. M., ... & Collier, J. L. (2017, February). A 100J-level nanosecond pulsed DPSSL for pumping high-efficiency, high-repetition rate PW-class lasers. In Solid State Lasers XXVI: Technology and Devices (Vol. 10082, pp. 124-131). SPIE.
    [CrossRef]   [Google Scholar]
  33. Lang, Y., Chen, Y., Ge, W., He, J., Zhang, H., Liao, L., ... & Fan, Z. (2018). Actively Q-switched laser with novel Nd: YAG/YAG polygonal active-mirror. Laser Physics, 28(3), 035001.
    [CrossRef]   [Google Scholar]
  34. Ji, S., Huang, W., Feng, T., Pan, L., Wang, J., Lu, X., ... & Li, X. (2021, March). Modeling and measurement of thermal effect in a flashlamp-pumped direct-liquid-cooled split-disk Nd: LuAG ceramic laser amplifier. In Photonics (Vol. 8, No. 4, p. 97). MDPI.
    [CrossRef]   [Google Scholar]
  35. Yagi, H., & Yanagitani, T. (2011). Recent progress in transparent polycrystalline ceramics for optical applications. The Review of Laser Engineering, 39(4), 300–305.
    [CrossRef]   [Google Scholar]
  36. Gonçalvès-Novo, T., Albach, D., Vincent, B., Arzakantsyan, M., & Chanteloup, J. C. (2013). 14 J/2 Hz Yb3+: YAG diode pumped solid state laser chain. Optics Express, 21(1), 855-866.
    [CrossRef]   [Google Scholar]
  37. Ma, J., Lu, T., Zhu, X., Jiang, B., Zhang, P., & Chen, W. (2017). 1.57 MW peak power pulses generated by a diode-pumped Q-switched Nd: LuAG ceramic laser. Chinese Optics Letters, 15(12), 121402.
    [CrossRef]   [Google Scholar]
  38. Kong, W., Tsunekane, M., & Taira, T. (2015). Diode edge-pumped passively Q-switched microchip laser. Optical Engineering, 54(9), 090501-090501.
    [CrossRef]   [Google Scholar]
  39. Li, X., Liu, Q., Guo, L., Hu, C., Wu, J., Toci, G., ... & Li, J. (2025). Effect of powder calcination temperature on the microstructure and laser performance of Yb: CaF2 transparent ceramics. International Journal of Applied Ceramic Technology, 22(4), e15108.
    [CrossRef]   [Google Scholar]
  40. Kijko, V. S., Maksimov, R. N., Shitov, V. A., Demakov, S. L., & Yurovskikh, A. S. (2015). Sintering of transparent Yb-doped Lu2O3 ceramics using nanopowder produced by laser ablation method. Journal of Alloys and Compounds, 643, 207-211.
    [CrossRef]   [Google Scholar]
  41. Vorona, I. O., Yavetskiy, R. P., Parkhomenko, S. V., Doroshenko, A. G., Kryzhanovska, O. S., Safronova, N. A., ... & Baumer, V. N. (2022). Effect of complex Si4++ Mg2+ additive on sintering and properties of undoped YAG ceramics. Journal of the European Ceramic Society, 42(13), 6104-6109.
    [CrossRef]   [Google Scholar]
  42. Jing, Y., Tian, F., Guo, L., Li, T., Wu, J., Ivanov, M., ... & Li, J. (2024). Effect of TEOS content on microstructure evolution and optical properties of Sm: YAG transparent ceramics. Optical Materials, 147, 114681.
    [CrossRef]   [Google Scholar]
  43. HU, C., LIU, Z. Y., LUO, W., CHENG, Z. Q., WANG, Y. B., LI, T. S., & LI, J. (2025). Test Methods for Optical and Opto-Functional Transparent Ceramics. Advanced Ceramics, 46(3-4), 286-326.
    [CrossRef]   [Google Scholar]
  44. Kim, E. B., Zhao, C. C., Park, Y. J., Kim, M. J., Ma, H. J., Kim, H. N., ... & Lee, J. W. (2024). Effect of porosity on etching rate and crater-like microstructure of sintered Al2O3, Y2O3, and YAG ceramics in plasma etching. Ceramics International, 50(9), 15182-15194.
    [CrossRef]   [Google Scholar]
  45. Stevenson, A. J., Li, X., Martinez, M. A., Anderson, J. M., Suchy, D. L., Kupp, E. R., ... & Messing, G. L. (2011). Effect of SiO2 on densification and microstructure development in Nd: YAG transparent ceramics. Journal of the American Ceramic Society, 94(5), 1380-1387.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Ye, J., Han, W., Zhou, Z., Hu, C., Liu, Y., Wu, L., Huang, D., Li, T., & Li, J. (2025). Highly Transparent Sm:LuAG Ceramics for Cladding Fabricated by Solid-state Reactive Sintering. Journal of Advanced Materials Research, 1(1), 6–17. https://doi.org/10.62762/JAMR.2025.567536
Export Citation
RIS Format
Compatible with EndNote, Zotero, Mendeley, and other reference managers
RIS format data for reference managers
TY  - JOUR
AU  - Ye, Junhao
AU  - Han, Weiwei
AU  - Zhou, Zhenzhen
AU  - Hu, Chen
AU  - Liu, Yiyang
AU  - Wu, Lexiang
AU  - Huang, Dong
AU  - Li, Tingsong
AU  - Li, Jiang
PY  - 2025
DA  - 2025/12/20
TI  - Highly Transparent Sm:LuAG Ceramics for Cladding Fabricated by Solid-state Reactive Sintering
JO  - Journal of Advanced Materials Research
T2  - Journal of Advanced Materials Research
JF  - Journal of Advanced Materials Research
VL  - 1
IS  - 1
SP  - 6
EP  - 17
DO  - 10.62762/JAMR.2025.567536
UR  - https://www.icck.org/article/abs/JAMR.2025.567536
KW  - Sm:LuAG
KW  - transparent ceramics
KW  - cladding ceramics
KW  - microstructure evolution
KW  - sintering additives
AB  - In solid-state laser systems with nanosecond repetition rates and high energy, amplified spontaneous emission (ASE) and parasitic oscillation (PO) produced by the gain material can significantly impact the laser output. A well-designed cladding composite structure is an effective solution to absorb ASE and suppress PO. In this work, 5 at.% Sm:LuAG transparent ceramics, a promising cladding material for suppressors of PO at 1064 nm of Nd:LuAG lasers, have been prepared by solid-state reactive sintering at 1825 °C followed by hot isostatic pressing (HIP) post-treatment at 1750 °C. The influences of TEOS (tetraethyl orthosilicate) content on microstructure evolution, in-line transmittance of the 5 at.% Sm:LuAG ceramics were studied. The results show that when the TEOS content is 0.8 wt.%, high transparency Sm:LuAG ceramics can be obtained by vacuum sintering at 1825 °C for 5 h followed by HIP post-treatment at 1750 °C in an argon atmosphere under 200 MPa for 3 h. The optimum in-line transmittance of the HIP-ed Sm:LuAG ceramics (1.5 mm thickness) is 83.3% at a wavelength of 808 nm and absorption coefficient of 3.46 cm$^{-1}$ at 1064 nm, indicating that it can effectively suppress ASE and PO.
SN  - 3070-5851
PB  - Institute of Central Computation and Knowledge
LA  - English
ER  - 
BibTeX Format
Compatible with LaTeX, BibTeX, and other reference managers
BibTeX format data for LaTeX and reference managers
@article{Ye2025Highly,
  author = {Junhao Ye and Weiwei Han and Zhenzhen Zhou and Chen Hu and Yiyang Liu and Lexiang Wu and Dong Huang and Tingsong Li and Jiang Li},
  title = {Highly Transparent Sm:LuAG Ceramics for Cladding Fabricated by Solid-state Reactive Sintering},
  journal = {Journal of Advanced Materials Research},
  year = {2025},
  volume = {1},
  number = {1},
  pages = {6-17},
  doi = {10.62762/JAMR.2025.567536},
  url = {https://www.icck.org/article/abs/JAMR.2025.567536},
  abstract = {In solid-state laser systems with nanosecond repetition rates and high energy, amplified spontaneous emission (ASE) and parasitic oscillation (PO) produced by the gain material can significantly impact the laser output. A well-designed cladding composite structure is an effective solution to absorb ASE and suppress PO. In this work, 5 at.\% Sm:LuAG transparent ceramics, a promising cladding material for suppressors of PO at 1064 nm of Nd:LuAG lasers, have been prepared by solid-state reactive sintering at 1825 °C followed by hot isostatic pressing (HIP) post-treatment at 1750 °C. The influences of TEOS (tetraethyl orthosilicate) content on microstructure evolution, in-line transmittance of the 5 at.\% Sm:LuAG ceramics were studied. The results show that when the TEOS content is 0.8 wt.\%, high transparency Sm:LuAG ceramics can be obtained by vacuum sintering at 1825 °C for 5 h followed by HIP post-treatment at 1750 °C in an argon atmosphere under 200 MPa for 3 h. The optimum in-line transmittance of the HIP-ed Sm:LuAG ceramics (1.5 mm thickness) is 83.3\% at a wavelength of 808 nm and absorption coefficient of 3.46 cm\$^{-1}\$ at 1064 nm, indicating that it can effectively suppress ASE and PO.},
  keywords = {Sm:LuAG, transparent ceramics, cladding ceramics, microstructure evolution, sintering additives},
  issn = {3070-5851},
  publisher = {Institute of Central Computation and Knowledge}
}

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 244
PDF Downloads: 86

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Journal of Advanced Materials Research

Journal of Advanced Materials Research

ISSN: 3070-5851 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/