Volume 1, Issue 1, Journal of Advanced Materials Research
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Journal of Advanced Materials Research, Volume 1, Issue 1, 2025: 37-55

Open Access | Review Article | 26 December 2025
Metal-Organic Frameworks as Multifunctional Regulators for Zinc Anode Stability in Aqueous Energy Storage Systems
1 State Key Laboratory of Engineering Materials for Major Infrastructure, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2 Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
* Corresponding Authors: Pan Feng, [email protected] ; Xinli Guo, [email protected] ; Yanmei Zheng, [email protected]
ARK: ark:/57805/jamr.2025.925427
Received: 21 November 2025, Accepted: 18 December 2025, Published: 26 December 2025  
Abstract
Aqueous zinc-ion batteries (AZIBs) are considered one of the most promising candidates for next-generation energy storage systems, owing to the high safety, low cost, high theoretical capacity (820 mAh g\(^{-1}\)), and environmental compatibility. However, the practical implementation of zinc metal anodes still faces challenges such as dendrite growth, hydrogen evolution reaction, and corrosion, which significantly restrict the cycling life and practical usability. To address these issues, metal-organic frameworks (MOFs) with tunable pore structures and ultrahigh specific surface areas have been widely employed for protecting zinc anodes. Therefore, this review systematically summarizes the innovative applications of MOFs in interfacial protection of anodes, three-dimensional host structures, and functional separator design, starting from the fundamental principles and existing problems of AZIBs. Moreover, this review identifies the key issues and challenges in current research and proposes future research directions, aiming to provide new strategic insights into zinc anode protection and promote the high-value application of MOFs materials in the field of energy storage.

Graphical Abstract
Metal-Organic Frameworks as Multifunctional Regulators for Zinc Anode Stability in Aqueous Energy Storage Systems

Keywords
aqueous zinc-ion batteries
metal-organic frameworks (MOFs)
zinc anode protection
interfacial engineering
functional separator design

Data Availability Statement
Not applicable.

Funding
This work was supported by the National Key R&D Program of China under Grant 2024YFB3715000 and the National Natural Science Foundation of China under Grant 22405127.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Chu, S., & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. nature, 488(7411), 294-303.
    [CrossRef]   [Google Scholar]
  2. Obama, B. (2017). The irreversible momentum of clean energy. Science, 355(6321), 126-129.
    [CrossRef]   [Google Scholar]
  3. Zhang, Q., Suresh, L., Liang, Q., Zhang, Y., Yang, L., Paul, N., & Tan, S. C. (2021). Emerging technologies for green energy conversion and storage. Advanced Sustainable Systems, 5(3), 2000152.
    [CrossRef]   [Google Scholar]
  4. Xin, W., Xiao, J., Li, J., Zhang, L., Peng, H., Yan, Z., & Zhu, Z. (2023). Metal-organic frameworks with carboxyl functionalized channels as multifunctional ion-conductive interphase for highly reversible Zn anode. Energy Storage Materials, 56, 76-86.
    [CrossRef]   [Google Scholar]
  5. Feng, P., Liu, Z., Yuan, L., Liu, X., Liu, R., Tao, G., ... & Liu, J. (2025). Concrete: From infrastructure to structural energy storage. Materials Today.
    [CrossRef]   [Google Scholar]
  6. Hunter, C. A., Penev, M. M., Reznicek, E. P., Eichman, J., Rustagi, N., & Baldwin, S. F. (2021). Techno-economic analysis of long-duration energy storage and flexible power generation technologies to support high-variable renewable energy grids. Joule, 5(8), 2077-2101.
    [CrossRef]   [Google Scholar]
  7. Zhang, C., Wei, Y. L., Cao, P. F., & Lin, M. C. (2018). Energy storage system: Current studies on batteries and power condition system. Renewable and Sustainable Energy Reviews, 82, 3091-3106.
    [CrossRef]   [Google Scholar]
  8. Yang, Y., Bremner, S., Menictas, C., & Kay, M. (2018). Battery energy storage system size determination in renewable energy systems: A review. Renewable and Sustainable Energy Reviews, 91, 109-125.
    [CrossRef]   [Google Scholar]
  9. Kittner, N., Lill, F., & Kammen, D. M. (2017). Energy storage deployment and innovation for the clean energy transition. Nature Energy, 2(9), 1-6.
    [CrossRef]   [Google Scholar]
  10. Liu, Z., Feng, P., Liu, R., Yuan, L., Meng, X., Tao, G., ... & Miao, C. (2024). Integration of zinc anode and cement: unlocking scalable energy storage. National Science Review, 11(10), nwae309.
    [CrossRef]   [Google Scholar]
  11. Xie, J., & Lu, Y. C. (2020). A retrospective on lithium-ion batteries. Nature communications, 11(1), 2499.
    [CrossRef]   [Google Scholar]
  12. Wang, Z., Huang, J., Guo, Z., Dong, X., Liu, Y., Wang, Y., & Xia, Y. (2019). A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule, 3(5), 1289-1300.
    [CrossRef]   [Google Scholar]
  13. Taabodi, M. H., Niknam, T., Sharifhosseini, S. M., Aghajari, H. A., & Shojaeiyan, S. (2025). Electrochemical storage systems for renewable energy integration: A comprehensive review of battery technologies and grid-scale applications. Journal of Power Sources, 641, 236832.
    [CrossRef]   [Google Scholar]
  14. Dunn, B., Kamath, H., & Tarascon, J. M. (2011). Electrical energy storage for the grid: a battery of choices. Science, 334(6058), 928-935.
    [CrossRef]   [Google Scholar]
  15. Goodenough, J. B., & Park, K. S. (2013). The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 135(4), 1167-1176.
    [CrossRef]   [Google Scholar]
  16. Peker, M., Kocaman, A. S., & Kara, B. Y. (2018). Benefits of transmission switching and energy storage in power systems with high renewable energy penetration. Applied Energy, 228, 1182-1197.
    [CrossRef]   [Google Scholar]
  17. Wrogemann, J. M., Künne, S., Heckmann, A., Rodríguez‐Pérez, I. A., Siozios, V., Yan, B., ... & Placke, T. (2020). Development of safe and sustainable dual‐ion batteries through hybrid aqueous/nonaqueous electrolytes. Advanced Energy Materials, 10(8), 1902709.
    [CrossRef]   [Google Scholar]
  18. Liu, S., Zhang, R., Wang, C., Mao, J., Chao, D., Zhang, C., ... & Guo, Z. (2024). Zinc ion Batteries: Bridging the Gap from Academia to Industry for Grid‐Scale Energy Storage. Angewandte Chemie, 136(17), e202400045.
    [CrossRef]   [Google Scholar]
  19. Lei, L., Chen, F., Wu, Y., Shen, J., Wu, X. J., Wu, S., & Yuan, S. (2022). Surface coatings of two-dimensional metal-organic framework nanosheets enable stable zinc anodes. Science China Chemistry, 65(11), 2205-2213.
    [CrossRef]   [Google Scholar]
  20. Xiang, Y., Zhou, L., Tan, P., Dai, S., Wang, Y., Bao, S., ... & Zhang, X. (2023). Continuous amorphous metal–organic frameworks layer boosts the performance of metal anodes. ACS nano, 17(19), 19275-19287.
    [CrossRef]   [Google Scholar]
  21. Luo, X., Nian, Q., Wang, Z., Xiong, B. Q., Chen, S., Li, Y., & Ren, X. (2023). Building a seamless water-sieving MOF-based interphase for highly reversible Zn metal anodes. Chemical Engineering Journal, 455, 140510.
    [CrossRef]   [Google Scholar]
  22. Li, B., Ruan, P., Xu, X., He, Z., Zhu, X., Pan, L., ... & Zhou, J. (2024). Covalent organic framework with 3D ordered channel and multi-functional groups endows Zn anode with superior stability. Nano-Micro Letters, 16(1), 76.
    [CrossRef]   [Google Scholar]
  23. Yang, W., Li, X., Li, Y., Zhu, R., & Pang, H. (2019). Applications of metal–organic‐framework‐derived carbon materials. Advanced materials, 31(6), 1804740.
    [CrossRef]   [Google Scholar]
  24. Peng, Y., Xu, J., Xu, J., Ma, J., Bai, Y., Cao, S., ... & Pang, H. (2022). Metal-organic framework (MOF) composites as promising materials for energy storage applications. Advances in Colloid and Interface Science, 307, 102732.
    [CrossRef]   [Google Scholar]
  25. Ye, Z., Jiang, Y., Li, L., Wu, F., & Chen, R. (2021). Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Letters, 13(1), 203.
    [CrossRef]   [Google Scholar]
  26. Xie, X., Deng, L., Li, L., Pan, A., Liang, S., & Fang, G. (2024). Modulating interfacial Zn$^{2+$ deposition mode towards stable Zn anode via bimetallic co-doped coating. Energy Storage Materials, 73, 103834.
    [CrossRef]   [Google Scholar]
  27. Xiang, Y., Zhong, Y., Tan, P., Zhou, L., Yin, G., Pan, H., ... & Zhang, X. (2023). Thickness‐controlled synthesis of compact and uniform MOF protective layer for zinc anode to achieve 85\% zinc utilization. Small, 19(43), 2302161.
    [CrossRef]   [Google Scholar]
  28. Tan, H., Zhou, Y., Qiao, S. Z., & Fan, H. J. (2021). Metal organic framework (MOF) in aqueous energy devices. Materials Today, 48, 270-284.
    [CrossRef]   [Google Scholar]
  29. Chuhadiya, S., Suthar, D., Patel, S. L., & Dhaka, M. S. (2021). Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: A review. Coordination Chemistry Reviews, 446, 214115.
    [CrossRef]   [Google Scholar]
  30. Wei, Y. S., Zhang, M., Zou, R., & Xu, Q. (2020). Metal–organic framework-based catalysts with single metal sites. Chemical reviews, 120(21), 12089-12174.
    [CrossRef]   [Google Scholar]
  31. Wang, Z., Chen, H., Wang, H., Huang, W., Li, H., & Pan, F. (2022). In situ growth of a metal–organic framework-based solid electrolyte interphase for highly reversible Zn anodes. ACS Energy Letters, 7(12), 4168-4176.
    [CrossRef]   [Google Scholar]
  32. Zhang, R., Feng, Y., Ni, Y., Zhong, B., Peng, M., Sun, T., ... & Zhang, K. (2023). Bifunctional interphase with target‐distributed desolvation sites and directionally depositional ion flux for sustainable zinc anode. Angewandte Chemie, 135(25), e202304503.
    [CrossRef]   [Google Scholar]
  33. Zhang, W., Qi, W., Yang, K., Hu, Y., Jiang, F., Liu, W., ... & Sun, J. (2024). Boosting tough metal Zn anode by MOF layer for high-performance zinc-ion batteries. Energy Storage Materials, 71, 103616.
    [CrossRef]   [Google Scholar]
  34. Wang, X., Li, X., Fan, H., & Ma, L. (2022). Solid electrolyte interface in Zn-based battery systems. Nano-Micro Letters, 14(1), 205.
    [CrossRef]   [Google Scholar]
  35. Feng, K., Wang, D., & Yu, Y. (2023). Progress and prospect of Zn anode modification in aqueous zinc-ion batteries: experimental and theoretical aspects. Molecules, 28(6), 2721.
    [CrossRef]   [Google Scholar]
  36. Sarma, D. D., & Shukla, A. K. (2018). Building better batteries: a travel back in time. ACS Energy Letters, 3(11), 2841-2845.
    [CrossRef]   [Google Scholar]
  37. Heise, G. W., & Cahoon, N. C. (1952). Fiftieth Anniversary: The Anniversary Issue on Primary Cell Systems: Dry Cells of the Leclanché Type, 1902–1952—A Review. Journal of the Electrochemical Society, 99(8), 179C.
    [CrossRef]   [Google Scholar]
  38. Li, H., Ma, L., Han, C., Wang, Z., Liu, Z., Tang, Z., & Zhi, C. (2019). Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy, 62, 550-587.
    [CrossRef]   [Google Scholar]
  39. Zeng, Y., Zhang, X., Qin, R., Liu, X., Fang, P., Zheng, D., ... & Lu, X. (2019). Dendrite‐free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn‐ion batteries. Advanced materials, 31(36), 1903675.
    [CrossRef]   [Google Scholar]
  40. Yamamoto, T., & Shoji, T. (1986). Rechargeable Zn| ZnSO4| MnO2-type cells. Inorganica chimica acta, 117(2), L27-L28.
    [CrossRef]   [Google Scholar]
  41. Liu, X., Li, X., Yang, X., Lu, J., Zhang, X., Yuan, D., & Zhang, Y. (2023). Influence of Water on Gel Electrolytes for Zinc‐Ion Batteries. Chemistry–An Asian Journal, 18(4), e202201280.
    [CrossRef]   [Google Scholar]
  42. Yuan, L., Hao, J., Kao, C. C., Wu, C., Liu, H. K., Dou, S. X., & Qiao, S. Z. (2021). Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy & Environmental Science, 14(11), 5669-5689.
    [CrossRef]   [Google Scholar]
  43. Zhang, Y., Bi, S., Niu, Z., Zhou, W., & Xie, S. (2022). Design of Zn anode protection materials for mild aqueous Zn-ion batteries. Energy Mater, 2(2), 200012.
    [CrossRef]   [Google Scholar]
  44. Jia, X., Liu, C., Neale, Z. G., Yang, J., & Cao, G. (2020). Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chemical Reviews, 120(15), 7795-7866.
    [CrossRef]   [Google Scholar]
  45. Zhang, N., Chen, X., Yu, M., Niu, Z., Cheng, F., & Chen, J. (2020). Materials chemistry for rechargeable zinc-ion batteries. Chemical Society Reviews, 49(13), 4203-4219.
    [CrossRef]   [Google Scholar]
  46. Chen, W., Guo, S., Qin, L., Li, L., Cao, X., Zhou, J., ... & Liang, S. (2022). Hydrogen bond‐functionalized massive solvation modules stabilizing bilateral interfaces. Advanced Functional Materials, 32(20), 2112609.
    [CrossRef]   [Google Scholar]
  47. Xu, P., Wang, C., Zhao, B., Zhou, Y., & Cheng, H. (2021). An interfacial coating with high corrosion resistance based on halloysite nanotubes for anode protection of zinc-ion batteries. Journal of Colloid and Interface Science, 602, 859-867.
    [CrossRef]   [Google Scholar]
  48. Zhang, C., Holoubek, J., Wu, X., Daniyar, A., Zhu, L., Chen, C., ... & Ji, X. (2018). A ZnCl 2 water-in-salt electrolyte for a reversible Zn metal anode. Chemical communications, 54(100), 14097-14099.
    [CrossRef]   [Google Scholar]
  49. Qiu, M., Sun, P., Wang, Y., Ma, L., Zhi, C., & Mai, W. (2022). Anion‐trap engineering toward remarkable crystallographic reorientation and efficient cation migration of Zn ion batteries. Angewandte Chemie International Edition, 61(44), e202210979.
    [CrossRef]   [Google Scholar]
  50. Zhang, Q., Ma, Y., Lu, Y., Ni, Y., Lin, L., Hao, Z., ... & Chen, J. (2022). Halogenated Zn2+ solvation structure for reversible Zn metal batteries. Journal of the American Chemical Society, 144(40), 18435-18443.
    [CrossRef]   [Google Scholar]
  51. Li, L., Jia, S., Cheng, Z., & Zhang, C. (2023). Improved strategies for separators in zinc‐ion batteries. ChemSusChem, 16(8), e202202330.
    [CrossRef]   [Google Scholar]
  52. Yan, H., Li, S., Zhong, J., & Li, B. (2024). An electrochemical perspective of aqueous zinc metal anode. Nano-Micro Letters, 16(1), 15.
    [CrossRef]   [Google Scholar]
  53. Cai, K., Luo, S. H., Feng, J., Wang, J., Zhan, Y., Wang, Q., ... & Liu, X. (2022). Recent advances on spinel zinc manganate cathode materials for zinc‐ion batteries. The Chemical Record, 22(1), e202100169.
    [CrossRef]   [Google Scholar]
  54. Cao, Z., Zhuang, P., Zhang, X., Ye, M., Shen, J., & Ajayan, P. M. (2020). Strategies for dendrite‐free anode in aqueous rechargeable zinc ion batteries. Advanced Energy Materials, 10(30), 2001599.
    [CrossRef]   [Google Scholar]
  55. Tang, B., Shan, L., Liang, S., & Zhou, J. (2019). Issues and opportunities facing aqueous zinc-ion batteries. Energy & Environmental Science, 12(11), 3288-3304.
    [CrossRef]   [Google Scholar]
  56. Yin, Y., Wang, S., Zhang, Q., Song, Y., Chang, N., Pan, Y., ... & Li, X. (2020). Dendrite‐free zinc deposition induced by tin‐modified multifunctional 3D host for stable zinc‐based flow battery. Advanced Materials, 32(6), 1906803.
    [CrossRef]   [Google Scholar]
  57. Zhou, M., Chen, Y., Fang, G., & Liang, S. (2022). Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries. Energy Storage Materials, 45, 618-646.
    [CrossRef]   [Google Scholar]
  58. Zou, P., Wang, Y., Chiang, S. W., Wang, X., Kang, F., & Yang, C. (2018). Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries. Nature communications, 9(1), 464.
    [CrossRef]   [Google Scholar]
  59. Yang, Q., Liang, G., Guo, Y., Liu, Z., Yan, B., Wang, D., ... & Zhi, C. (2019). Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in‐service batteries. Advanced materials, 31(43), 1903778.
    [CrossRef]   [Google Scholar]
  60. Pei, A., Zheng, G., Shi, F., Li, Y., & Cui, Y. (2017). Nanoscale nucleation and growth of electrodeposited lithium metal. Nano letters, 17(2), 1132-1139.
    [CrossRef]   [Google Scholar]
  61. Zhu, Y., Yin, J., Zheng, X., Emwas, A. H., Lei, Y., Mohammed, O. F., ... & Alshareef, H. N. (2021). Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy & Environmental Science, 14(8), 4463-4473.
    [CrossRef]   [Google Scholar]
  62. Su, J., Yin, X., Zhao, H., Yang, H., Yang, D., He, L., ... & Wei, Y. (2022). Temperature-dependent nucleation and electrochemical performance of Zn metal anodes. Nano Letters, 22(4), 1549-1556.
    [CrossRef]   [Google Scholar]
  63. Chen, G., Sang, Z., Cheng, J., Tan, S., Yi, Z., Zhang, X., ... & Hou, F. (2022). Reversible and homogenous zinc deposition enabled by in-situ grown Cu particles on expanded graphite for dendrite-free and flexible zinc metal anodes. Energy Storage Materials, 50, 589-597.
    [CrossRef]   [Google Scholar]
  64. Yurkiv, V., Foroozan, T., Ramasubramanian, A., Ragone, M., Shahbazian-Yassar, R., & Mashayek, F. (2020). Understanding Zn electrodeposits morphology in secondary batteries using phase-field model. Journal of The Electrochemical Society, 167(6), 060503.
    [CrossRef]   [Google Scholar]
  65. Zhao, Z., Zhao, J., Hu, Z., Li, J., Li, J., Zhang, Y., ... & Cui, G. (2019). Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy & Environmental Science, 12(6), 1938-1949.
    [CrossRef]   [Google Scholar]
  66. Wu, T. H., Zhang, Y., Althouse, Z. D., & Liu, N. (2019). Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries. Materials Today Nano, 6, 100032.
    [CrossRef]   [Google Scholar]
  67. Diomidis, N., & Celis, J. P. (2007). Anodic film formation on zinc in alkaline electrolytes containing silicate and tetraborate ions. Journal of The Electrochemical Society, 154(12), C711.
    [CrossRef]   [Google Scholar]
  68. Liu, M. B., Cook, G. M., & Yao, N. P. (1981). Passivation of zinc anodes in KOH electrolytes. Journal of the Electrochemical Society, 128(8), 1663.
    [CrossRef]   [Google Scholar]
  69. Jung, C. Y., Kim, T. H., Kim, W. J., & Yi, S. C. (2016). Computational analysis of the zinc utilization in the primary zinc-air batteries. Energy, 102, 694-704.
    [CrossRef]   [Google Scholar]
  70. Yu, H., Chen, D., Zhang, T., Fu, M., Cai, J., Wei, W., ... & Chen, L. (2022). Insight on the double‐edged sword role of water molecules in the anode of aqueous zinc‐ion batteries. Small Structures, 3(12), 2200143.
    [CrossRef]   [Google Scholar]
  71. Zhou, X., Jin, H., Xia, B. Y., Davey, K., Zheng, Y., & Qiao, S. Z. (2021). Molecular cleavage of metal‐organic frameworks and application to energy storage and conversion. Advanced Materials, 33(51), 2104341.
    [CrossRef]   [Google Scholar]
  72. Chu, Y., Zhang, S., Wu, S., Hu, Z., Cui, G., & Luo, J. (2021). In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy & Environmental Science, 14(6), 3609-3620.
    [CrossRef]   [Google Scholar]
  73. Lv, H., Wang, J., Gao, X., Wang, Y., Shen, Y., Liu, P., ... & Gu, T. (2023). Electrochemical performance and mechanism of bimetallic organic framework for advanced aqueous Zn ion batteries. ACS Applied Materials & Interfaces, 15(40), 47094-47102.
    [CrossRef]   [Google Scholar]
  74. Pu, X., Jiang, B., Wang, X., Liu, W., Dong, L., Kang, F., & Xu, C. (2020). High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-micro letters, 12(1), 152.
    [CrossRef]   [Google Scholar]
  75. Liu, M., Yang, L., Liu, H., Amine, A., Zhao, Q., Song, Y., ... & Pan, F. (2019). Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect. ACS applied materials & interfaces, 11(35), 32046-32051.
    [CrossRef]   [Google Scholar]
  76. Jiang, Z., Du, Z., Pan, R., Cui, F., Zhang, G., Lei, S., ... & Sun, L. (2024). Electrosynthesis of metal–organic framework interlayer to realize highly stable and kinetics‐enhanced Zn metal anode. Advanced Energy Materials, 14(44), 2402150.
    [CrossRef]   [Google Scholar]
  77. Sun, H., Huyan, Y., Li, N., Lei, D., Liu, H., Hua, W., ... & Wang, J. G. (2023). A seamless metal–organic framework interphase with boosted Zn2+ flux and deposition kinetics for long-living rechargeable Zn batteries. Nano Letters, 23(5), 1726-1734.
    [CrossRef]   [Google Scholar]
  78. Han, K., Ma, X., Li, H., Liu, L., Deng, X., Song, L., ... & Huang, W. (2025). A Biomimetic Copper Silicate‐MOF Hybrid for Highly Stable Zn Metal Anode. Advanced Materials, 2503046.
    [CrossRef]   [Google Scholar]
  79. Tao, Y., Zuo, S. W., Xiao, S. H., Sun, P. X., Li, N. W., Chen, J. S., ... & Yu, L. (2022). Atomically dispersed Cu in zeolitic imidazolate framework nanoflake array for dendrite‐free Zn metal anode. Small, 18(30), 2203231.
    [CrossRef]   [Google Scholar]
  80. Wang, Z., Dong, J., Zhang, K., Zhao, Z., Gao, Y., Bai, X., ... & Wang, Y. (2025). Synergistic Gradient Design of a Sandwich‐Structured Heterogeneous Anode for Improved Stability in Aqueous Zinc‐Ion Batteries. Advanced Functional Materials, 2505058.
    [CrossRef]   [Google Scholar]
  81. Li, Y., Peng, X., Li, X., Duan, H., Xie, S., Dong, L., & Kang, F. (2023). Functional ultrathin separators proactively stabilizing zinc anodes for zinc‐based energy storage. Advanced Materials, 35(18), 2300019.
    [CrossRef]   [Google Scholar]
  82. Ma, H., Yu, J., Chen, M., Han, X., Chen, J., Liu, B., & Shi, S. (2023). Amino‐enabled desolvation sieving effect realizes dendrite‐inhibiting thin separator for durable aqueous zinc‐ion batteries. Advanced Functional Materials, 33(52), 2307384.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Zheng, Z., Chen, K., Fang, Y., Zhou, H., Feng, P., Guo, X., & Zheng, Y. (2025). Metal-Organic Frameworks as Multifunctional Regulators for Zinc Anode Stability in Aqueous Energy Storage Systems. Journal of Advanced Materials Research, 1(1), 37–55. https://doi.org/10.62762/JAMR.2025.925427
Export Citation
RIS Format
Compatible with EndNote, Zotero, Mendeley, and other reference managers
RIS format data for reference managers
TY  - JOUR
AU  - Zheng, Zhicheng
AU  - Chen, Kaiqi
AU  - Fang, Yukun
AU  - Zhou, Haoran
AU  - Feng, Pan
AU  - Guo, Xinli
AU  - Zheng, Yanmei
PY  - 2025
DA  - 2025/12/26
TI  - Metal-Organic Frameworks as Multifunctional Regulators for Zinc Anode Stability in Aqueous Energy Storage Systems
JO  - Journal of Advanced Materials Research
T2  - Journal of Advanced Materials Research
JF  - Journal of Advanced Materials Research
VL  - 1
IS  - 1
SP  - 37
EP  - 55
DO  - 10.62762/JAMR.2025.925427
UR  - https://www.icck.org/article/abs/JAMR.2025.925427
KW  - aqueous zinc-ion batteries
KW  - metal-organic frameworks (MOFs)
KW  - zinc anode protection
KW  - interfacial engineering
KW  - functional separator design
AB  - Aqueous zinc-ion batteries (AZIBs) are considered one of the most promising candidates for next-generation energy storage systems, owing to the high safety, low cost, high theoretical capacity (820 mAh g\(^{-1}\)), and environmental compatibility. However, the practical implementation of zinc metal anodes still faces challenges such as dendrite growth, hydrogen evolution reaction, and corrosion, which significantly restrict the cycling life and practical usability. To address these issues, metal-organic frameworks (MOFs) with tunable pore structures and ultrahigh specific surface areas have been widely employed for protecting zinc anodes. Therefore, this review systematically summarizes the innovative applications of MOFs in interfacial protection of anodes, three-dimensional host structures, and functional separator design, starting from the fundamental principles and existing problems of AZIBs. Moreover, this review identifies the key issues and challenges in current research and proposes future research directions, aiming to provide new strategic insights into zinc anode protection and promote the high-value application of MOFs materials in the field of energy storage.
SN  - 3070-5851
PB  - Institute of Central Computation and Knowledge
LA  - English
ER  - 
BibTeX Format
Compatible with LaTeX, BibTeX, and other reference managers
BibTeX format data for LaTeX and reference managers
@article{Zheng2025MetalOrgan,
  author = {Zhicheng Zheng and Kaiqi Chen and Yukun Fang and Haoran Zhou and Pan Feng and Xinli Guo and Yanmei Zheng},
  title = {Metal-Organic Frameworks as Multifunctional Regulators for Zinc Anode Stability in Aqueous Energy Storage Systems},
  journal = {Journal of Advanced Materials Research},
  year = {2025},
  volume = {1},
  number = {1},
  pages = {37-55},
  doi = {10.62762/JAMR.2025.925427},
  url = {https://www.icck.org/article/abs/JAMR.2025.925427},
  abstract = {Aqueous zinc-ion batteries (AZIBs) are considered one of the most promising candidates for next-generation energy storage systems, owing to the high safety, low cost, high theoretical capacity (820 mAh g\(^{-1}\)), and environmental compatibility. However, the practical implementation of zinc metal anodes still faces challenges such as dendrite growth, hydrogen evolution reaction, and corrosion, which significantly restrict the cycling life and practical usability. To address these issues, metal-organic frameworks (MOFs) with tunable pore structures and ultrahigh specific surface areas have been widely employed for protecting zinc anodes. Therefore, this review systematically summarizes the innovative applications of MOFs in interfacial protection of anodes, three-dimensional host structures, and functional separator design, starting from the fundamental principles and existing problems of AZIBs. Moreover, this review identifies the key issues and challenges in current research and proposes future research directions, aiming to provide new strategic insights into zinc anode protection and promote the high-value application of MOFs materials in the field of energy storage.},
  keywords = {aqueous zinc-ion batteries, metal-organic frameworks (MOFs), zinc anode protection, interfacial engineering, functional separator design},
  issn = {3070-5851},
  publisher = {Institute of Central Computation and Knowledge}
}

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 276
PDF Downloads: 80

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Journal of Advanced Materials Research

Journal of Advanced Materials Research

ISSN: 3070-5851 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/