-
CiteScore
-
Impact Factor
Volume 1, Issue 1, Journal of Materials Durability and Engineering
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Journal of Materials Durability and Engineering, Volume 1, Issue 1, 2025: 4-22

Open Access | Review Article | 17 August 2025
Research Progress, Challenges, and Prospects of High-Pressure Water Jet Surface Modification Technology for Aerospace Materials
1 College of Mechanical and Electrical Engineering, Qingdao Huanghai University, Qingdao 266520, China
2 College of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China
3 College of Intelligent Manufacturing, Qingdao University of Technology, Qingdao 266520, China
* Corresponding Author: Ping Zhang, [email protected]
Received: 21 June 2025, Accepted: 21 July 2025, Published: 17 August 2025  
Abstract
The water jet surface modification technology does not introduce thermal stress and thermal deformation during operation, reducing changes in the material's phase transformation temperature or grain growth, and avoiding problems related to thermal stress and deformation. It contains no chemical substances, posing no environmental pollution, and features low cost. It enables treatment of surfaces in narrow spaces, deep grooves, and on small components, and can operate under complex environmental conditions. Moreover, it is easy to mechanize and automate, showing great application prospects across many industries. This paper first reviews the development history and working principles of high-pressure water jet surface strengthening technology, explaining the mechanisms and recent research progress of abrasive water jet, cavitation water jet, and pulsed water jet technologies. It then summarizes the residual stress, grain refinement, fatigue life, and comparisons of internal and external flow field structures of different water jet surface modification techniques. Finally, it discusses the practical challenges of high-pressure water jet technology, such as poor workpiece surface quality, specific nozzle requirements, and nozzle wear.

Graphical Abstract
Research Progress, Challenges, and Prospects of High-Pressure Water Jet Surface Modification Technology for Aerospace Materials

Keywords
high-pressure water jet
fatigue life
residual stress
nozzle structure
internal and external flow field structure

Data Availability Statement
Not applicable.

Funding
This work was supported by the Natural Science Foundation of Shandong Province under Grant ZR2022QE149 and Grant ZR2023ME223.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Zhao, Y., Jiang, R., Wang, R. X., Li, Z. H., Zhang, L., Zhao, L. G., & Song, Y. D. (2024). LCF life prediction of turbine disc alloy using crystal plasticity and 3D representative volume element containing twin boundaries. International Journal of Fatigue, 179, 108075.
    [CrossRef]   [Google Scholar]
  2. Wang, H., Wang, Y., Xu, W., & Lu, H. (2024). High-temperature ratcheting and low-cycle fatigue failure of a friction stir welding Al-Zn-Mg-Cu alloy. International Journal of Fatigue, 179, 108072.
    [CrossRef]   [Google Scholar]
  3. Xia, Z., Wu, D., Zhang, X., Wang, J., & Han, E. H. (2024). Rolling contact fatigue failure mechanism of bearing steel on different surface roughness levels under heavy load. International Journal of Fatigue, 179, 108042.
    [CrossRef]   [Google Scholar]
  4. Liu, X., Wei, D., Zhang, X., & Yang, S. (2025). The fretting fatigue crack propagation life prediction of Ti-6Al-4V by a two-stage dislocation-based model. International Journal of Solids and Structures, 113460.
    [CrossRef]   [Google Scholar]
  5. Wang, Q., Zhou, Z., Ye, K., Hu, M., Hu, X., Wang, S., & Hu, C. (2024). The effect of pretreatment and surface modification of porous transport layer (PTL) on the performance of proton exchange membrane water electrolyzer. International Journal of Hydrogen Energy, 53, 163-172.
    [CrossRef]   [Google Scholar]
  6. Wu, J., Liu, H., Wei, P., Lin, Q., & Zhou, S. (2020). Effect of shot peening coverage on residual stress and surface roughness of 18CrNiMo7-6 steel. International Journal of Mechanical Sciences, 183, 105785.
    [CrossRef]   [Google Scholar]
  7. Yin, F., Zhang, X., Chen, F., Hu, S., Ming, K., Zhao, J., ... & Wang, J. (2023). Understanding the microstructure refinement and mechanical strengthening of dual-phase high entropy alloy during ultrasonic shot peening. Materials & Design, 227, 111771.
    [CrossRef]   [Google Scholar]
  8. Wang, H., Wang, X., Hu, X., & Tian, Y. (2025). Study on the Micro-Mechanism of Ultrasonic Rolling Strengthening of Quenched 42CrMo Steel. Metals and Materials International, 1-16.
    [CrossRef]   [Google Scholar]
  9. Wang, Z., Chen, G., Wang, J., Jin, L., Wu, Z., & Zhu, F. (2025). Variable direction shear deformation induced strengthening mechanism of Ti-6Al-4V alloy treated by a novel ultrasonic milling-burnishing process. Journal of Manufacturing Processes, 144, 294-310.
    [CrossRef]   [Google Scholar]
  10. Wang, X., Zheng, Y., Liu, J., Cai, Z., Du, X., & Wang, H. (2025). Study on the enhancement of surface integrity and wear resistance of iron-based coatings by ultrasonic surface rolling process. Journal of Materials Research and Technology.
    [CrossRef]   [Google Scholar]
  11. Song, Y., Zhu, H., Liu, D., Song, X., Bian, H., Fu, W., ... & Cao, J. (2024). Synergistically enhanced Si3N4/Cu heterostructure bonding by laser surface modification. Journal of Materials Science & Technology, 182, 187-197.
    [CrossRef]   [Google Scholar]
  12. Li, C., Luo, J., Zhao, Z., & Xu, J. (2025). Effect of laser shock peening pretreatment on the microstructure and wear resistance of plasma nitrided TC4 titanium alloy. Surface and Coatings Technology, 132337.
    [CrossRef]   [Google Scholar]
  13. Cao, Y., Yao, C., Tan, L., Cheng, Q., & Fan, T. (2025). Prediction of residual stress in superalloys by low energy laser shock peening based on inherent strain theory and finite element method. The International Journal of Advanced Manufacturing Technology, 1-23.
    [CrossRef]   [Google Scholar]
  14. Zhang, P., Gao, Y., Zhang, S., Yue, X., Wang, S., & Lin, Z. (2023). Investigation of residual stress formation mechanism with water jet strengthening of CoCrFeNiAlx high-entropy alloy. Vacuum, 217, 112446.
    [CrossRef]   [Google Scholar]
  15. Zou, Y., Xu, Y., Li, J., Liu, S., Wang, D., & Li, Y. (2020). Evaluation of surface integrity in 18CrNiMo7-6 steel after multiple abrasive waterjet peening process. Metals, 10(6), 844.
    [CrossRef]   [Google Scholar]
  16. Zhang, P., Gao, Y., Yue, X., Sun, Y., Zhou, H., & Zhang, J. (2024). Study on the fatigue performance and Residual Stress of subsurface fluid flow of 2519a aluminum alloy based on water jet peening. Vacuum, 230, 113648.
    [CrossRef]   [Google Scholar]
  17. Liu, J., Han, J., Lu, R., Wang, Y., & Liu, C. (2023). Surface layer characterization of 2205 duplex stainless steel subjected to abrasive water jet descaling. Materials Today Communications, 35, 105872.
    [CrossRef]   [Google Scholar]
  18. Xie, L., Luo, G., Fang, T., Zhang, X., Yu, Y., Wang, X., ... & Wang, Z. (2025). The effect of secondary shot peening on the microstructures of 2060 Al-Li alloy: Experiment and Simulation. Journal of Alloys and Compounds, 180741.
    [CrossRef]   [Google Scholar]
  19. Zheng, Y., Wu, D., Wang, H., Lv, H., Yu, J., & Liu, X. (2024). Formation mechanism of blade surface integrity based on hybrid process of cryogenic minimum quantity lubrication and ultrasonic rolling strengthening process. Materials & Design, 245, 113235.
    [CrossRef]   [Google Scholar]
  20. Jiahui, C., Jiayuan, G., Song, Z., Naijing, W., Jiahao, W., & Li, H. (2023). Effect of ultrasonic rolling on crack propagation behavior of Ti6Al4V titanium alloy laser welded joints. Engineering Fracture Mechanics, 292, 109618.
    [CrossRef]   [Google Scholar]
  21. Wang, Y., Wu, M., Zhou, S., & Miao, X. (2025). Study on the process of abrasive water jet peening for Ti6Al4V curved surfaces. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 47(7), 315.
    [CrossRef]   [Google Scholar]
  22. Yue, X., Zhang, P., Sun, Y., Jiang, X., & Wang, Y. (2025). Study on cavitation flow field of cavitation nozzle and strengthening mechanism of cavitation jet of 7075 aluminum alloy. Vacuum, 236, 114137.
    [CrossRef]   [Google Scholar]
  23. Kobayashi, R., Fukunishi, Y., & Sugawara, K. (1994, July). Abrasive Velocity in Water Jet Cutting. In KSME/JSME THERMAL and FLUID Engineering Conference (pp. 662-667).
    [Google Scholar]
  24. Wang, Z., Liao, Z., Axinte, D., Dong, X., Xu, D., & Augustinavicius, G. (2021). Analytical model for predicting residual stresses in abrasive waterjet peening. Materials & Design, 212, 110209.
    [CrossRef]   [Google Scholar]
  25. Zhuang, D. D., Zhang, S. H., Liu, H. X., & Chen, J. (2023). Cavitation erosion behavior and anti-cavitation erosion mechanism of NiTi alloys impacted by water jet. Wear, 518, 204631.
    [CrossRef]   [Google Scholar]
  26. Ramulu, M., Kunaporn, S., Arola, D., Hashish, M., & Hopkins, J. (2000). Waterjet machining and peening of metals. J. Pressure Vessel Technol., 122(1), 90-95.
    [CrossRef]   [Google Scholar]
  27. Sadasivam, B., & Arola, D. (2012). An examination of abrasive waterjet peening with elastic pre-stress and the effects of boundary conditions. Machining science and technology, 16(1), 71-95.
    [Google Scholar]
  28. Pradeep, N., Sastry, C. C., Brandão, L. C., Coelho, R. T., Bairapudi, A., Manickam, M. M., ... & Patil, S. (2022). Surface modification of Ti6Al7Nb employing pure waterjet and abrasive waterjet polishing for implant application: comparison study. Surface Topography: Metrology and Properties, 10(1), 015034.
    [CrossRef]   [Google Scholar]
  29. Wan, L., Qian, Y. N., Li, Y., Wu, S., Kang, Y., & Li, D. (2025). Surface characteristics and tribological performance of Ti6Al4V peened by sinking bead abrasive waterjet. Journal of Manufacturing Processes, 149, 331-344.
    [CrossRef]   [Google Scholar]
  30. Gongyu, W. A. N. G., Shulei, Y. A. O., Yuxin, C. H. I., Ning, W. A. N. G., Yalong, C. H. E. N., Rongsheng, L. U., & Zhuang, L. I. (2024). Improvement of titanium alloy TA19 fatigue life by submerged abrasive waterjet peening: Correlation of its process parameters with surface integrity and fatigue performance. Chinese Journal of Aeronautics, 37(1), 377-390.
    [CrossRef]   [Google Scholar]
  31. Yao, S. L., Zeng, X. T., Li, K. S., Wang, J., Wang, R. Z., Wang, N., ... & Tu, S. T. (2023). Fretting fatigue life improvement of nickel-based superalloy GH4169 dovetail slots by deflecting abrasive waterjet peening process. International Journal of Fatigue, 175, 107832.
    [CrossRef]   [Google Scholar]
  32. Shulei, Y. A. O., Yuxin, C. H. I., Xianhao, Z. H. U., Tiwen, L. U., Kaishang, L. I., Ning, W. A. N. G., ... & Shantung, T. U. (2025). Gradient nanostructure enabled exceptional fretting fatigue properties of Inconel 718 superalloy through submerged abrasive waterjet peening. Chinese Journal of Aeronautics, 38(1), 103297.
    [CrossRef]   [Google Scholar]
  33. Zhu, R., Zhang, X., Zhu, H., Pan, S., Li, B., & Xie, B. (2025). Unsteady characteristics of submerged impinging cavitating water jets via synchronous dual-perspective observation. Ocean Engineering, 329, 121091.
    [CrossRef]   [Google Scholar]
  34. Zhang, X., Liu, B., Zhu, R., Zhang, M., Wang, S., Li, B., ... & Xie, Z. (2025). Investigation on unsteady flow characteristics of an artificial-submerged cavitating jet based on the LES approach. Ocean Engineering, 316, 119989.
    [CrossRef]   [Google Scholar]
  35. Zhou, W., Liu, B., Zhao, M., & Wang, X. (2024). An experimental study on the erosion of solid propellant by cavitation water jet in submerged environment. Polymer Testing, 141, 108650.
    [CrossRef]   [Google Scholar]
  36. Liu, H., Xu, Y., Wang, Z., Zhang, J., & Wang, J. (2024). Cavitation cloud evolution and erosion by cavitation water jets applied to curved surfaces. Ocean Engineering, 312, 119139.
    [CrossRef]   [Google Scholar]
  37. Wang, J., Wang, Z., Cui, H., Liu, H., Yan, Y., Zhang, J., ... & Xu, Y. (2025). Effects of jet impact angle on cavitation erosion intensity and cavitation cloud dynamics. Ocean Engineering, 315, 119832.
    [CrossRef]   [Google Scholar]
  38. Yao, S., Wang, G., Li, K., Wang, N., Zhang, C., Liu, S., ... & Tu, S. (2022). Cavitation abrasive integrated waterjet peening process and the effect of process parameters on the surface integrity of TA19 titanium alloy. Surface and Coatings Technology, 440, 128477.
    [CrossRef]   [Google Scholar]
  39. Plesset, M. S. (1949). The dynamics of cavitation bubbles.
    [CrossRef]   [Google Scholar]
  40. Soyama, H., Saito, K., & Saka, M. (2002). Improvement of fatigue strength of aluminum alloy by cavitation shotless peening. J. Eng. Mater. Technol., 124(2), 135-139.
    [CrossRef]   [Google Scholar]
  41. Soyama, H. (2019). Comparison between the improvements made to the fatigue strength of stainless steel by cavitation peening, water jet peening, shot peening and laser peening. Journal of Materials Processing Technology, 269, 65-78.
    [CrossRef]   [Google Scholar]
  42. Peng, Q., Ming, T., Han, Y., & Zhang, T. (2025). Role of residual stress and ultrafine grain layer at the surface introduced by water jet cavitation peening in stress corrosion cracking of alloy 600 in high temperature water. Surface and Coatings Technology, 496, 131675.
    [CrossRef]   [Google Scholar]
  43. Li, F., Yan, Y., He, P., Ma, H., Wang, Y., Zhang, K., ... & Ren, L. (2024). Feasibility study on the micro-forming of novel metal foil arrays based on submerged cavitating water-jet impingement. The International Journal of Advanced Manufacturing Technology, 134(5), 2969-2977.
    [CrossRef]   [Google Scholar]
  44. Balamurugan, K., Uthayakumar, M., Gowthaman, S., & Pandurangan, R. (2018). A study on the compressive residual stress due to waterjet cavitation peening. Engineering Failure Analysis, 92, 268-277.
    [CrossRef]   [Google Scholar]
  45. Stolárik, G., Svobodová, J., Klichová, D., Nag, A., & Hloch, S. (2023). Titanium surface roughening with ultrasonic pulsating water jet. Journal of Manufacturing Processes, 90, 341-356.
    [CrossRef]   [Google Scholar]
  46. Chlupová, A., Hloch, S., Nag, A., Šulák, I., & Kruml, T. (2023). Effect of pulsating water jet processing on erosion grooves and microstructure in the subsurface layer of 25CrMo4 (EA4T) steel. Wear, 524, 204774.
    [CrossRef]   [Google Scholar]
  47. Ma, H., Wan, W., Xu, D., Zhao, P., Wu, J., Chen, Y., & Wang, Y. (2024). Damage evolution and fracture characteristics of coal rock impacted by self‐excited pulse water jet under different stress loading conditions. Energy Science & Engineering, 12(9), 3743-3763.
    [CrossRef]   [Google Scholar]
  48. Ge, Z., Ling, Y., Tang, J., Lu, Y., Zhang, Y., Wang, L., & Yao, Q. (2022). Formation principle and characteristics of self-supercharging pulsed water jet. Chinese Journal of Mechanical Engineering, 35(1), 51.
    [CrossRef]   [Google Scholar]
  49. Liu, Y., Wei, J. (2015). On the Formation Mechanism and Characteristics of High-Pressure Percussion Pulsed Water Jets. Fluid Dynamics & Materials Processing, 11(3), 221–240.
    [CrossRef]   [Google Scholar]
  50. Srivastava, M., Hloch, S., Gubeljak, N., Milkovic, M., Chattopadhyaya, S., & Klich, J. (2019). Surface integrity and residual stress analysis of pulsed water jet peened stainless steel surfaces. Measurement, 143, 81-92.
    [CrossRef]   [Google Scholar]
  51. Siahpour, P., Amegadzie, M. Y., Tieu, A., Donaldson, I. W., & Plucknett, K. P. (2023). Ultrasonic pulsed waterjet peening of commercially-pure titanium. Surface and Coatings Technology, 472, 129953.
    [CrossRef]   [Google Scholar]
  52. Wang, L., & Qian, X. (2024). Effects of pre-tension and fatigue loadings on the evolution of welding residual stresses in welded plates. Engineering structures, 301, 117272.
    [CrossRef]   [Google Scholar]
  53. Zheng, H., Jie, Z., Zhang, L., & Lu, W. (2024). Fatigue crack growth and life assessment of full penetration U-rib welded joints considering residual stresses. Thin-Walled Structures, 195, 111426.
    [CrossRef]   [Google Scholar]
  54. Zhang, P., Gao, Y., Zhang, S., Yue, X., Wang, S., & Lin, Z. (2024). The mechanism of the effect of dual-sided waterjet peening on the surface integrity and fatigue performance of 12 mm thick Inconel 718. International Journal of Fatigue, 178, 108011.
    [CrossRef]   [Google Scholar]
  55. Song, F., Yao, S., Liu, L., Chi, Y., Shao, Z., Wang, G., ... & Tu, S. (2023). Submerged deflecting abrasive waterjet peening for improving the surface integrity and solid particle erosion resistance of Ti-6Al-4V alloy. Surface and Coatings Technology, 470, 129780.
    [CrossRef]   [Google Scholar]
  56. He, P., Li, F., Guo, J., Chen, S., Guo, Y., Wang, Y., & Tan, Z. (2021). Research on the water cavitation peening process and mechanism of TC4 titanium alloy. The International Journal of Advanced Manufacturing Technology, 112(5), 1259-1269.
    [CrossRef]   [Google Scholar]
  57. Sekyi-Ansah, J., Wang, Y., Quaisie, J. K., Li, F., Yu, C., Asamoah, E., & Liu, H. (2021). Surface characteristics and cavitation damage in 8090Al–Li alloy by using cavitation water jet peening processing. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 45(1), 299-309.
    [CrossRef]   [Google Scholar]
  58. Zhuang, D. D., Zhang, S. H., Liu, H. X., & Chen, J. (2022). Cavitation erosion behaviors and damage mechanism of Ti-Ni alloy impacted by water jet with different standoff distances. Engineering Failure Analysis, 139, 106458.
    [CrossRef]   [Google Scholar]
  59. Zhang, Z., Yang, Y., Gao, Y., Wang, G., & Shi, W. (2022). Performance analysis of 7075 aluminum alloy strengthened by cavitation water jet peening at different scanning speeds. Crystals, 12(10), 1451.
    [CrossRef]   [Google Scholar]
  60. Srivastava, M., Hloch, S., Tripathi, R., Kozak, D., Chattopadhyaya, S., Dixit, A. R., ... & Adamcik, P. (2018). Ultrasonically generated pulsed water jet peening of austenitic stainless-steel surfaces. Journal of Manufacturing Processes, 32, 455-468.
    [CrossRef]   [Google Scholar]
  61. Siahpour, P., Amegadzie, M. Y., Moreau, E. D., Kalliecharan, D., Monchesky, T. L., Tieu, A., ... & Plucknett, K. P. (2022). Surface characteristics and residual stress generation in Ti-6Al-4 V following ultrasonic pulsed water jet peening. Surface and Coatings Technology, 445, 128691.
    [CrossRef]   [Google Scholar]
  62. Fang, Z., Ji, Z., Kang, D., Chen, Y., Zhang, X., Wang, S., & Xiong, T. (2023). Cavitation damage characteristics following marine fouling cleaning by a self-excited oscillation cavitation waterjet. Applied Ocean Research, 139, 103692.
    [CrossRef]   [Google Scholar]
  63. Luo, Y., Zheng, H. X., Jiang, W., Fang, Y., & Zhao, X. (2023). Improving structure integrity and fatigue properties of 316L welded joint by water jet peening treatment. Journal of Materials Engineering and Performance, 32(2), 664-679.
    [CrossRef]   [Google Scholar]
  64. Soyama, H., & Kuji, C. (2022). Improving effects of cavitation peening, using a pulsed laser or a cavitating jet, and shot peening on the fatigue properties of additively manufactured titanium alloy Ti6Al4V. Surface and Coatings Technology, 451, 129047.
    [CrossRef]   [Google Scholar]
  65. Zhou, X., Huang, H., Hu, Y., Chen, M., Yang, L., & Jiang, P. (2025). Turbulent structures and associated Reynolds shear stress in an impinging jet. International Journal of Heat and Mass Transfer, 244, 126948.
    [CrossRef]   [Google Scholar]
  66. Zheng, H. X., Luo, Y., Zang, J. Y., & Zhang, Q. (2022). Effect of nozzle outlet type on the flow field velocity and impact pressure of high-pressure water jet peening. Journal of Fluids Engineering, 144(7), 071201.
    [CrossRef]   [Google Scholar]
  67. Du, M., Wang, H., Dong, H., Guo, Y., & Ke, Y. (2021). Numerical research on multi-particle movements and nozzle wear involved in abrasive waterjet machining. The International Journal of Advanced Manufacturing Technology, 117(9), 2845-2858.
    [CrossRef]   [Google Scholar]
  68. Cai, T., Pan, Y., & Ma, F. (2020). Effects of nozzle lip geometry on the cavitation erosion characteristics of self-excited cavitating waterjet. Experimental Thermal and Fluid Science, 117, 110137.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Yue, X., Zhang, P., Gao, Y. & Wang, X. (2025). Research Progress, Challenges, and Prospects of High-Pressure Water Jet Surface Modification Technology for Aerospace Materials. Journal of Materials Durability and Engineering, 1(1), 4–22. https://doi.org/10.62762/JMDE.2025.954580

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 192
PDF Downloads: 35

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Journal of Materials Durability and Engineering

Journal of Materials Durability and Engineering

ISSN: pending (Online) | ISSN: pending (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/