-
CiteScore
-
Impact Factor
Volume 1, Issue 1, Journal of Nonlinear Dynamics and Applications
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Journal of Nonlinear Dynamics and Applications, Volume 1, Issue 1, 2025: 10-25

Free to Read | Research Article | 28 August 2025
Fixed/Predefined-Time Projective Synchronization of Delayed Discontinuous Fuzzy Neural Networks via Adaptive Aperiodically Switching Strategy
1 School of Mathematics and Statistics, South-Central Minzu University, Wuhan 430074, China
2 Department of Mathematics, Swansea University, Bay Campus, SA1 8EN, United Kingdom
* Corresponding Author: Suiyu Gui, [email protected]
Received: 02 July 2025, Accepted: 03 August 2025, Published: 28 August 2025  
Abstract
In this article, the issues of fixed-time projective synchronization (FTPS) and predefined-time projective synchronization (PTPS) in fuzzy neural networks (FNNs) with discontinuous activations and mixed-time delays are addressed by utilizing an adaptive aperiodically switching strategy. First of all, using the tool of Lyapunov function theory, the fixed-time stabilization (FS) in such FNNs is examined. Next, by developing suitable adaptive aperiodically switching strategy controllers, novel criteria for achieving FTPS and PTPS are established within such FNNs. Unlike recent works, in this paper, aperiodically switching control and adaptive control are employed to synchronize fuzzy neural networks (FNNs) within fixed and predefined time. Furthermore, depending on the selection of different projective factors, the results of projective synchronization in this paper can include results such as complete synchronization, anti-synchronization and fixed/predefined-time synchronization. Ultimately, illustrative simulations are conducted to support the efficacy of outcomes gained in this study.

Graphical Abstract
Fixed/Predefined-Time Projective Synchronization of Delayed Discontinuous Fuzzy Neural Networks via Adaptive Aperiodically Switching Strategy

Keywords
aperiodically switching control
adaptive control
fixed-time projective synchronization
predefined-time projective synchronization

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Yang, T., & Yang, L. B. (1996). The global stability of fuzzy cellular neural network. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 43(10), 880–883.
    [CrossRef]   [Google Scholar]
  2. Yang, T., Yang, L. B., Wu, C. W., & Chua, L. O. (1996). Fuzzy cellular neural networks: Applications. In 1996 Fourth IEEE International Workshop on Cellular Neural Networks and Their Applications Proceedings (CNNA-96) (pp. 225–230). IEEE.
    [CrossRef]   [Google Scholar]
  3. Kadak, U. (2022). Multivariate fuzzy neural network interpolation operators and applications to image processing. Expert Systems with Applications, 206, 117771.
    [CrossRef]   [Google Scholar]
  4. Lin, C. T., Yeh, C. M., Liang, S. F., Chung, J. F., & Kumar, N. (2006). Support-vector-based fuzzy neural network for pattern classification. IEEE Transactions on Fuzzy Systems, 14(1), 31–41.
    [CrossRef]   [Google Scholar]
  5. Juang, C. F., Chen, T. C., & Cheng, W. Y. (2011). Speedup of implementing fuzzy neural networks with high-dimensional inputs through parallel processing on graphic processing units. IEEE Transactions on Fuzzy Systems, 19(4), 717–728.
    [CrossRef]   [Google Scholar]
  6. Yan, S., Gu, Z., Park, J. H., & Xie, X. (2022). Synchronization of delayed fuzzy neural networks with probabilistic communication delay and its application to image encryption. IEEE Transactions on Fuzzy Systems, 31(3), 930–940.
    [CrossRef]   [Google Scholar]
  7. Du, F., & Lu, J. G. (2022). Finite-time synchronization of fractional-order delayed fuzzy cellular neural networks with parameter uncertainties. IEEE Transactions on Fuzzy Systems, 31(6), 1769–1779.
    [CrossRef]   [Google Scholar]
  8. Wang, L., He, H., & Zeng, Z. (2019). Global synchronization of fuzzy memristive neural networks with discrete and distributed delays. IEEE Transactions on Fuzzy Systems, 28(9), 2022–2034.
    [CrossRef]   [Google Scholar]
  9. Xu, D., Liu, Y., & Liu, M. (2021). Finite-time synchronization of multi-coupling stochastic fuzzy neural networks with mixed delays via feedback control. Fuzzy Sets and Systems, 411, 85–104.
    [CrossRef]   [Google Scholar]
  10. Kong, F., Zhu, Q., & Huang, T. (2020). New fixed-time stability lemmas and applications to the discontinuous fuzzy inertial neural networks. IEEE Transactions on Fuzzy Systems, 29(12), 3711–3722.
    [CrossRef]   [Google Scholar]
  11. Zhang, J., Yang, J., Gan, Q., & Chen, Y. (2024). Improved fixed-time stability analysis and applications to synchronization of discontinuous complex-valued fuzzy cellular neural networks. Neural Networks, 179, 106585.
    [CrossRef]   [Google Scholar]
  12. Duan, L., Fang, X., & Fu, Y. (2019). Global exponential synchronization of delayed fuzzy cellular neural networks with discontinuous activations. International Journal of Machine Learning and Cybernetics, 10(3), 579–589.
    [CrossRef]   [Google Scholar]
  13. Duan, L., Wei, H., & Huang, L. (2019). Finite-time synchronization of delayed fuzzy cellular neural networks with discontinuous activations. Fuzzy Sets and Systems, 361, 56–70.
    [CrossRef]   [Google Scholar]
  14. Fu, Q., Zhong, S., Jiang, W., & Zheng, J. (2020). Projective synchronization of fuzzy memristive neural networks with pinning impulsive control. Journal of the Franklin Institute, 357(15), 10387–10409.
    [CrossRef]   [Google Scholar]
  15. Liu, F., Meng, W., & Lu, R. (2022). Anti-synchronization of discrete-time fuzzy memristive neural networks via impulse sampled-data communication. IEEE Transactions on Cybernetics, 53(7), 4122–4133.
    [CrossRef]   [Google Scholar]
  16. Muhammadhaji, A., & Abdurahman, A. (2019). General decay synchronization for fuzzy cellular neural networks with time-varying delays. International Journal of Nonlinear Sciences and Numerical Simulation, 20(5), 551–560.
    [CrossRef]   [Google Scholar]
  17. Kong, F., Zhu, Q., Sakthivel, R., & Mohammadzadeh, A. (2021). Fixed-time synchronization analysis for discontinuous fuzzy inertial neural networks with parameter uncertainties. Neurocomputing, 422, 295–313.
    [CrossRef]   [Google Scholar]
  18. Zheng, C., Yu, J., Kong, F., & Zhu, Q. (2024). Fixed-time synchronization of discontinuous fuzzy competitive neural networks via quantized control. Fuzzy Sets and Systems, 482, 108913.
    [CrossRef]   [Google Scholar]
  19. Zheng, M., Li, L., Peng, H., Xiao, J., Yang, Y., & Zhang, Y. (2018). Fixed-time synchronization of memristor-based fuzzy cellular neural network with time-varying delay. Journal of the Franklin Institute, 355(14), 6780–6809.
    [CrossRef]   [Google Scholar]
  20. Sánchez-Torres, J. D., Sanchez, E. N., & Loukianov, A. G. (2014). A discontinuous recurrent neural network with predefined time convergence for solution of linear programming. In 2014 IEEE Symposium on Swarm Intelligence (pp. 1–5). IEEE.
    [CrossRef]   [Google Scholar]
  21. Sánchez-Torres, J. D., Sanchez, E. N., & Loukianov, A. G. (2015). Predefined-time stability of dynamical systems with sliding modes. In 2015 American Control Conference (ACC) (pp. 5842–5846). IEEE.
    [CrossRef]   [Google Scholar]
  22. Abudusaimaiti, M., Abdurahman, A., Jiang, H., & Rahman, K. (2022). Fixed/predefined-time synchronization of fuzzy neural networks with stochastic perturbations. Chaos, Solitons & Fractals, 154, 111596.
    [CrossRef]   [Google Scholar]
  23. Han, J., Chen, G., Zhang, G., & Huang, T. (2024). Fixed/predefined-time projective synchronization for a class of fuzzy inertial discontinuous neural networks with distributed delays. Fuzzy Sets and Systems, 483, 108925.
    [CrossRef]   [Google Scholar]
  24. Wang, L., Li, H., Hu, C., Jiang, H., & Cao, J. (2023). Synchronization and settling-time estimation of fuzzy memristive neural networks with time-varying delays: Fixed-time and preassigned-time control. Fuzzy Sets and Systems, 470, 108654.
    [CrossRef]   [Google Scholar]
  25. Bao, H. B., & Cao, J. D. (2015). Projective synchronization of fractional-order memristor-based neural networks. Neural Networks, 63, 1–9.
    [CrossRef]   [Google Scholar]
  26. Ding, Z., Chen, C., Wen, S., & Huang, T. (2022). Lag projective synchronization of nonidentical fractional delayed memristive neural networks. Neurocomputing, 469, 138–150.
    [CrossRef]   [Google Scholar]
  27. Chen, C., Li, L., Peng, H., Yang, Y., Mi, L., & Zhao, H. (2019). Fixed-time projective synchronization of memristive neural networks with discrete delay. Physica A: Statistical Mechanics and Its Applications, 534, 122248.
    [CrossRef]   [Google Scholar]
  28. Bao, H., Park, J. H., & Cao, J. (2020). Adaptive synchronization of fractional-order output-coupling neural networks via quantized output control. IEEE Transactions on Neural Networks and Learning Systems, 32(7), 3230–3239.
    [CrossRef]   [Google Scholar]
  29. Yang, Z., Luo, B., Liu, D., & Hu, J. (2017). Adaptive synchronization of delayed memristive neural networks with unknown parameters. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(2), 539–549.
    [CrossRef]   [Google Scholar]
  30. Zhou, J., Chen, T., & Xiang, L. (2006). Robust synchronization of delayed neural networks based on adaptive control and parameters identification. Chaos, Solitons & Fractals, 27(4), 905–913.
    [CrossRef]   [Google Scholar]
  31. Zhang, W., Li, C., Huang, T., & Xiao, M. (2015). Synchronization of neural networks with stochastic perturbation via aperiodically intermittent control. Neural networks, 71, 105-111.
    [CrossRef]   [Google Scholar]
  32. Fan, Y., Huang, X., Li, Y., Xia, J., & Chen, G. (2018). Aperiodically intermittent control for quasi-synchronization of delayed memristive neural networks: An interval matrix and matrix measure combined method. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(11), 2254–2265.
    [CrossRef]   [Google Scholar]
  33. Ding, S., Wang, Z., & Rong, N. (2020). Intermittent control for quasisynchronization of delayed discrete-time neural networks. IEEE Transactions on Cybernetics, 51(2), 862–873.
    [CrossRef]   [Google Scholar]
  34. Sun, X., Zhang, L., & Gu, J. (2023). Neural-network based adaptive sliding mode control for Takagi-Sugeno fuzzy systems. Information Sciences, 628, 240–253.
    [CrossRef]   [Google Scholar]
  35. Hu, C., Jiang, H., & Teng, Z. (2009). Impulsive control and synchronization for delayed neural networks with reaction–diffusion terms. IEEE Transactions on Neural Networks, 21(1), 67–81.
    [CrossRef]   [Google Scholar]
  36. Wang, J. L., Wu, H. N., Huang, T., & Ren, S. Y. (2015). Pinning control strategies for synchronization of linearly coupled neural networks with reaction–diffusion terms. IEEE Transactions on Neural Networks and Learning Systems, 27(4), 749–761.
    [CrossRef]   [Google Scholar]
  37. Zhang, S., Yang, Y., Sui, X., & Li, S. (2019). Finite-time synchronization of memristive neural networks with parameter uncertainties via aperiodically intermittent adjustment. Physica A: Statistical Mechanics and Its Applications, 534, 122258.
    [CrossRef]   [Google Scholar]
  38. Cheng, L., Tang, F., Shi, X., & Huang, T. (2022). Finite-time and fixed-time synchronization of delayed memristive neural networks via adaptive aperiodically intermittent adjustment strategy. IEEE Transactions on Neural Networks and Learning Systems, 34(11), 8516–8530.
    [CrossRef]   [Google Scholar]
  39. Pu, H., & Li, F. (2023). Fixed-time projective synchronization of delayed memristive neural networks via aperiodically semi-intermittent switching control. ISA Transactions, 133, 302–316.
    [CrossRef]   [Google Scholar]
  40. Zhang, G., & Cao, J. (2025). Aperiodically semi-intermittent-based fixed-time stabilization and synchronization of delayed discontinuous inertial neural networks. Science China Information Sciences, 68(1), 112202.
    [CrossRef]   [Google Scholar]
  41. Gan, Q., Xiao, F., Qin, Y., & Yang, J. (2019). Fixed-time cluster synchronization of discontinuous directed community networks via periodically or aperiodically switching control. IEEE Access, 7, 83306–83318.
    [CrossRef]   [Google Scholar]
  42. Filippov, A. F. (1960). Differential equations with discontinuous right-hand side. Matematicheskii Sbornik, 93(1), 99–128.
    [Google Scholar]
  43. Polyakov, A. (2011). Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Transactions on Automatic Control, 57(8), 2106–2110.
    [CrossRef]   [Google Scholar]
  44. Zhang, G., Cao, J., & Kashkynbayev, A. (2023). Further results on fixed/preassigned-time projective lag synchronization control of hybrid inertial neural networks with time delays. Journal of the Franklin Institute, 360(13), 9950–9973.
    [CrossRef]   [Google Scholar]
  45. Hardy, G. H., Littlewood, J. E., & Pólya, G. (1988). Inequalities. Cambridge University Press.
    [Google Scholar]
  46. Clarke, F. H., Ledyaev, Y. S., Stern, R. J., & Wolenski, R. R. (1998). Nonsmooth analysis and control theory. New York, NY: Springer New York.
    [Google Scholar]
  47. Li, H., Hu, C., Zhang, L., & Jiang, H. (2022). Complete and finite-time synchronization of fractional-order fuzzy neural networks via nonlinear feedback control. Fuzzy Sets and Systems, 443, 50–69.
    [CrossRef]   [Google Scholar]
  48. Jiang, Y., Zhu, S., Shen, M., & Huang, J. (2024). Aperiodically intermittent control approach to finite-time synchronization of delayed inertial memristive neural networks. IEEE Transactions on Artificial Intelligence, 6(4), 1014-1023.
    [CrossRef]   [Google Scholar]
  49. Yao, Y., Han, J., Zhang, G., & Huang, T. (2024). Novel results on fixed-time complex projective lag synchronization for fuzzy complex-valued neural networks with inertial item. IEEE Access, 12, 86120–86131.
    [CrossRef]   [Google Scholar]
  50. Qin, X., Jiang, H., Qiu, J., & Karimi, H. R. (2024). Projective synchronization in fixed/predefined-time for quaternion-valued BAM neural networks under event-triggered aperiodic intermittent control. Communications in Nonlinear Science and Numerical Simulation, 137, 108139.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Gui, S., & Wang, Z. (2025). Fixed/Predefined-Time Projective Synchronization of Delayed Discontinuous Fuzzy Neural Networks via Adaptive Aperiodically Switching Strategy. Journal of Nonlinear Dynamics and Applications, 1(1), 10–25. https://doi.org/10.62762/JNDA.2025.649261

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 114
PDF Downloads: 28

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
Institute of Central Computation and Knowledge (ICCK) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Journal of Nonlinear Dynamics and Applications

Journal of Nonlinear Dynamics and Applications

ISSN: 3069-6313 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/