-
CiteScore
-
Impact Factor
Volume 1, Issue 1, Reservoir Science
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Reservoir Science, Volume 1, Issue 1, 2025: 36-51

Open Access | Research Article | 28 October 2025
Effects of Crosslinking Agents and Reservoir Conditions on the Propagation of Fractures in Coal Reservoirs During Hydraulic Fracturing
1 College of Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
* Corresponding Author: Lili Cao, [email protected]
Received: 22 August 2025, Accepted: 18 October 2025, Published: 28 October 2025  
Abstract
Low fracturing efficiency and high permeability filtration present substantial challenges during the fracturing development of coalbed methane (CBM), significantly hindering its efficient exploitation. In this study, a cross-linker featuring specific polar functional groups on its side chains was synthesized, and a multi-functional coupling evaluation apparatus was developed to systematically investigate the performance characteristics of water-based fracturing fluids. Furthermore, molecular dynamics simulations were employed to elucidate the microscopic mechanisms by which the modified cross-linkers and various external factors influence CBM extraction efficiency. The results indicated that the modified water-based fracturing fluid enhances fracture propagation and reduces fluid filtration into the reservoir. Increasing the concentration of the cross-linker (0wt% to 0.3wt%) improves both gas production efficiency and fracture expansion capacity (20m of crack length to 36m). Conversely, elevated reservoir temperatures (383K to 433K) markedly decrease gas recovery efficiency while significantly increasing fluid seepage (5.8ml to 7.5ml) and expansion capacity (26m of crack length to 42m). In contrast, higher reservoir pressure demonstrates an opposite trend by enhancing extraction efficiency and mitigating fluid filtration. The alteration of chemical bonding interactions between fluid molecules is identified as a key microscopic mechanism influencing CBM development, thereby offering a theoretical foundation for optimizing water-based fracturing strategies in low-permeability coal reservoirs.

Graphical Abstract
Effects of Crosslinking Agents and Reservoir Conditions on the Propagation of Fractures in Coal Reservoirs During Hydraulic Fracturing

Keywords
enhanced oil recovery
reservoir transformation
coalbed methane mining
water-based fracturing
low permeability reservoir

Data Availability Statement
Data will be made available on request.

Funding
This work was supported in part by the Heilongjiang Postdoctoral Financial Assistance under Grant LBH-Z24245; in part by the Academic Success, the Introduction of Talent Research Start-up Program of Heilongjiang Bayi Agricultural University under Grant XYB202003; in part by the Young Innovative Talents Project of Heilongjiang Bayi Agricultural University under Grant ZRCQC202313.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Tang, L., Wang, Y., Zhou, T., Li, Y., & Li, Q. (2020). Enhanced toughness and mechanical property of epoxy resins with good shape memory behaviors. Fibers and Polymers, 21(6), 1187-1194.
    [CrossRef]   [Google Scholar]
  2. Liu, Y., Zhou, L., Wan, X., Tang, Y., Liu, Q., Li, W., & Liao, J. (2024). Synthesis and Characterization of a Temperature-Sensitive Microcapsule Gelling Agent for High-Temperature Acid Release. ACS omega, 9(19), 20849-20858.
    [CrossRef]   [Google Scholar]
  3. Emblemsvåg, J. (2022). Wind energy is not sustainable when balanced by fossil energy. Applied energy, 305, 117748.
    [CrossRef]   [Google Scholar]
  4. Wang, F., Li, Q., Xiao, Z., Jiang, B., Ren, J., Jin, Z., ... & Li, X. (2022). Conversion of rice husk biomass into electrocatalyst for oxygen reduction reaction in Zn-air battery: Effect of self-doped Si on performance. Journal of Colloid and Interface Science, 606, 1014-1023.
    [CrossRef]   [Google Scholar]
  5. Huang, Q., Liu, S., Wang, G., & Cheng, W. (2021). Evaluating the changes of sorption and diffusion behaviors of Illinois coal with various water-based fracturing fluid treatments. Fuel, 283, 118884.
    [CrossRef]   [Google Scholar]
  6. Nianyin, L., Yu, J., Daocheng, W., Chao, W., Jia, K., Pingli, L., ... & Ying, X. (2022). Development status of crosslinking agent in high-temperature and pressure fracturing fluid: A review. Journal of Natural Gas Science and Engineering, 107, 104369.
    [CrossRef]   [Google Scholar]
  7. Liu, B., Suzuki, A., & Ito, T. (2020). Numerical analysis of different fracturing mechanisms between supercritical CO2 and water-based fracturing fluids. International Journal of Rock Mechanics and Mining Sciences, 132, 104385.
    [CrossRef]   [Google Scholar]
  8. Qun, L. E. I., Dingwei, W. E. N. G., Hanbin, L. I. U., Baoshan, G. U. A. N., Qiang, D. E. N. G., Xuemei, Y. A. N., & Zeyuan, M. A. (2021). Progress and development directions of shale oil reservoir stimulation technology of China National Petroleum Corporation. Petroleum Exploration and Development, 48(5), 1198-1207.
    [CrossRef]   [Google Scholar]
  9. Wang, J., Elsworth, D., Wu, Y., Liu, J., Zhu, W., & Liu, Y. (2018). The influence of fracturing fluids on fracturing processes: a comparison between water, oil and SC-CO2. Rock Mechanics and Rock Engineering, 51(1), 299-313.
    [CrossRef]   [Google Scholar]
  10. Zhang, C. P., Ranjith, P. G., Perera, M. S. A., Li, X., & Zhao, J. (2018). Simulation of flow behaviour through fractured unconventional gas reservoirs considering the formation damage caused by water-based fracturing fluids. Journal of Natural Gas Science and Engineering, 57, 100-121.
    [CrossRef]   [Google Scholar]
  11. Papavasileiou, K. D., Michalis, V. K., Peristeras, L. D., Vasileiadis, M., Striolo, A., & Economou, I. G. (2018). Molecular dynamics simulation of water-based fracturing fluids in kaolinite slit pores. The Journal of Physical Chemistry C, 122(30), 17170-17183.
    [CrossRef]   [Google Scholar]
  12. Song, H., & Liu, J. (2024). Effects of Modified Cross-Linkers on the Rheology of Water-Based Fracturing Fluids and Reservoir Water Environment. Processes, 12(12), 2896.
    [CrossRef]   [Google Scholar]
  13. Fan, M., Lai, X., Tang, M., Li, J., Wang, L., & Gao, J. (2022). Preparation and properties of a clean, low‐damage waterproof locking damage multifunctional integrated water‐based fracturing fluid. Journal of Applied Polymer Science, 139(48), e53207.
    [CrossRef]   [Google Scholar]
  14. Rodhe, H. (1990). A comparison of the contribution of various gases to the greenhouse effect. Science, 248(4960), 1217-1219.
    [CrossRef]   [Google Scholar]
  15. Li, L., Al-Muntasheri, G. A., & Liang, F. (2016). A review of crosslinked fracturing fluids prepared with produced water. Petroleum, 2(4), 313-323.
    [CrossRef]   [Google Scholar]
  16. Kreipl, M. P., & Kreipl, A. T. (2017). Hydraulic fracturing fluids and their environmental impact: then, today, and tomorrow. Environmental Earth Sciences, 76(4), 160.
    [CrossRef]   [Google Scholar]
  17. Wu, G., Pan, J., Anwaier, M., Wu, J., Xiao, P., Zheng, L., ... & Zhu, D. (2023). Effect of nano-SiO2 on the flowback-flooding integrated performance of water-based fracturing fluids. Journal of Molecular Liquids, 379, 121686.
    [CrossRef]   [Google Scholar]
  18. Wang, L., Zheng, A., Lu, W., Shen, T., Wang, W., Wei, L., ... & Li, Q. (2024). Analysis of fracturing expansion law of shale reservoir by supercritical CO2 fracturing and mechanism revealing. Energies, 17(16), 3865.
    [CrossRef]   [Google Scholar]
  19. Li, S., Zhang, S., Ma, X., Zou, Y., Li, N., Chen, M., ... & Bo, Z. (2019). Hydraulic fractures induced by water-/carbon dioxide-based fluids in tight sandstones. Rock Mechanics and Rock Engineering, 52(9), 3323-3340.
    [CrossRef]   [Google Scholar]
  20. Zhang, X., Wang, J. G., Gao, F., & Ju, Y. (2017). Impact of water, nitrogen and CO2 fracturing fluids on fracturing initiation pressure and flow pattern in anisotropic shale reservoirs. Journal of Natural Gas Science and Engineering, 45, 291-306.
    [CrossRef]   [Google Scholar]
  21. Al-Hajri, S., Negash, B. M., Rahman, M. M., Haroun, M., & Al-Shami, T. M. (2022). Perspective Review of polymers as additives in water-based fracturing fluids. ACS omega, 7(9), 7431-7443.
    [CrossRef]   [Google Scholar]
  22. Xue, S., Huang, Q., Wang, G., Bing, W., & Li, J. (2021). Experimental study of the influence of water-based fracturing fluids on the pore structure of coal. Journal of Natural Gas Science and Engineering, 88, 103863.
    [CrossRef]   [Google Scholar]
  23. Barati, R., & Liang, J. T. (2014). A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. Journal of Applied Polymer Science, 131(16).
    [CrossRef]   [Google Scholar]
  24. Gonzalez Perdomo, M. E., & Wan Madihi, S. (2022). Foam based fracturing fluid characterization for an optimized application in HPHT reservoir conditions. Fluids, 7(5), 156.
    [CrossRef]   [Google Scholar]
  25. Zhang, Q., Mao, J., Qu, X., Liao, Y., Du, A., Zhang, H., ... & Zhang, Y. (2023). Application of fumed silica-enhanced polymeric fracturing fluids in highly mineralized water. Journal of Molecular Liquids, 375, 120835.
    [CrossRef]   [Google Scholar]
  26. Liu, Y., Pei, X., Yang, F., Zhong, J., Dai, L., Wang, C., ... & Xiao, S. (2025). Molecular Simulation Study of Gas–Water Adsorption Behavior and Mobility Evaluation in Ultra-Deep, High-Pressure Fractured Tight Sandstone Reservoirs. Energies, 18(9), 2175.
    [CrossRef]   [Google Scholar]
  27. Matovu, S., Al Shafloot, T., Raza, A., Mahmoud, M. A., Hassan, A., Alarifi, S., & Abu-Mahfouz, I. S. (2025). A Novel Approach to Stimulating Tight Reservoirs Using Cyclic Thermochemical Fluids. Energy & Fuels, 39(29), 14158-14172.
    [CrossRef]   [Google Scholar]
  28. Mousavi, N., Kothapalli, G., Habibi, D., Khiadani, M., & Das, C. K. (2019). An improved mathematical model for a pumped hydro storage system considering electrical, mechanical, and hydraulic losses. Applied energy, 247, 228-236.
    [CrossRef]   [Google Scholar]
  29. Liu, J., Liu, P., Du, J., Wang, Q., Chen, X., & Zhao, L. (2023). Review on high-temperature-resistant viscoelastic surfactant fracturing fluids: State-of-the-art and perspectives. Energy & Fuels, 37(14), 9790-9821.
    [CrossRef]   [Google Scholar]
  30. Tang, H., Tang, H., He, J., Zhao, F., Zhang, L., Liao, J., ... & Yuan, X. (2021). Damage mechanism of water-based fracturing fluid to tight sandstone gas reservoirs: Improvement of The Evaluation Measurement for Properties of Water-based Fracturing Fluid: SY/T 5107-2016. Natural Gas Industry B, 8(2), 163-172.
    [CrossRef]   [Google Scholar]
  31. Wang, Y., Zhang, C., Xu, N., Lan, J., Jiang, B., & Meng, L. (2021). Synthesis and properties of organoboron functionalized nanocellulose for crosslinking low polymer fracturing fluid system. RSC advances, 11(22), 13466-13474.
    [CrossRef]   [Google Scholar]
  32. Budiman, O., & Alajmei, S. (2023). Seawater-based fracturing fluid: a review. ACS omega, 8(44), 41022-41038.
    [CrossRef]   [Google Scholar]
  33. Liu, J., Wang, S., Wang, C., Zhao, F., Lei, S., Yi, H., & Guo, J. (2020). Influence of nanomaterial morphology of guar-gum fracturing fluid, physical and mechanical properties. Carbohydrate Polymers, 234, 115915.
    [CrossRef]   [Google Scholar]
  34. Kalinichev, A. G. (2001). Molecular simulations of liquid and supercritical water: Thermodynamics, structure, and hydrogen bonding. Reviews in Mineralogy and Geochemistry, 42(1), 83-129.
    [CrossRef]   [Google Scholar]
  35. Wang, X., Dai, C., Zhao, M., Wang, X., Guo, X., Liu, P., & Qu, Y. (2022). A novel property enhancer of clean fracturing fluids: Deep eutectic solvents. Journal of Molecular Liquids, 366, 120153.
    [CrossRef]   [Google Scholar]
  36. Wang, T., & Ye, J. (2023). Rheological and fracturing characteristics of a cationic guar gum. International Journal of Biological Macromolecules, 224, 196-206.
    [CrossRef]   [Google Scholar]
  37. Zhao, M., Yang, Z., Meng, X., Xu, Z., Wu, Y., & Dai, C. (2024). Enhancing temperature resistance of polymer gel fracturing fluids: The role of alcohol. Geoenergy Science and Engineering, 242, 213219.
    [CrossRef]   [Google Scholar]
  38. Othman, A., Aljawad, M. S., Kalgaonkar, R., & Kamal, M. S. (2025). Application of Polymers in Hydraulic Fracturing Fluids: A Review. Polymers, 17(18), 2562.
    [CrossRef]   [Google Scholar]
  39. Yang, S., Yu, W., Zhao, M., Ding, F., & Zhang, Y. (2024). A review of weak gel fracturing fluids for deep shale gas reservoirs. Gels, 10(5), 345.
    [CrossRef]   [Google Scholar]
  40. de Araujo, I. S., & Heidari, Z. (2022). Quantifying Interfacial Interactions Between Minerals and Reservoir/Fracturing Fluids. Petrophysics, 63(06), 658-670.
    [CrossRef]   [Google Scholar]
  41. Liao, Z., Chen, F., Deng, Y., Wang, K., Von Gunten, K., He, Y., & Zhong, C. (2022). Organic weighting hydraulic fracturing fluid: complex interactions between formate salts, hydroxy carboxylate acid, and guar. SPE Journal, 27(04), 2334-2351.
    [CrossRef]   [Google Scholar]
  42. Jennings Jr, A. R. (1996). Fracturing fluids-then and now. Journal of petroleum technology, 48(07), 604-610.
    [CrossRef]   [Google Scholar]
  43. Wang, X., Zhao, M., Wang, X., Liu, P., Fan, M., Yan, X., ... & Dai, C. (2023). Synergistic effect of dual hydrogen-donor deep eutectic solvent for performance improvement of fracturing-oil expulsion fluids. Chemical Engineering Journal, 468, 143728.
    [CrossRef]   [Google Scholar]
  44. Hou, P., Gao, F., Ju, Y., Yang, Y., Gao, Y., & Liu, J. (2017). Effect of water and nitrogen fracturing fluids on initiation and extension of fracture in hydraulic fracturing of porous rock. Journal of Natural Gas Science and Engineering, 45, 38-52.
    [CrossRef]   [Google Scholar]
  45. Hu, J., Fu, M., Li, M., Zheng, Y., Li, G., & Hou, B. (2023). Preparation and Performance Evaluation of a Self-Crosslinking Emulsion-Type Fracturing Fluid for Quasi-Dry CO2 Fracturing. Gels, 9(2), 156.
    [CrossRef]   [Google Scholar]
  46. Almubarak, T., Rafie, M., Alotaibi, F., & Alabdrabalnabi, M. I. (2025). Advancing Hydraulic Fracturing Fluids with Ascorbic Acid: A Green and Multifunctional Approach. ACS omega, 10(32), 36252-36266.
    [CrossRef]   [Google Scholar]
  47. Zhang, C., Wang, Y., Yin, Z., Yan, Y., Wang, Z., & Wang, H. (2024). Quantitative characterization of the crosslinking degree of hydroxypropyl guar gum fracturing fluid by low-field NMR. International Journal of Biological Macromolecules, 277, 134445.
    [CrossRef]   [Google Scholar]
  48. Shan, H., Sun, Y., Li, B., Shen, Y., Qi, Y., & Zhang, G. (2024). Low-temperature gel breaking fracturing fluid for marine hydrate reservoir fracturing and its effect on phase equilibrium of methane hydrates. Geoenergy Science and Engineering, 233, 212583.
    [CrossRef]   [Google Scholar]
  49. Zheng, N., Zhu, J., Yang, Z., Song, C., Li, X., Long, Y., ... & Ge, J. (2025). Study on the mechanism of pseudo-interpenetrating network enhancing recyclable VES-CO2 foam system and the key performance as fracturing fluid. Fuel, 385, 134190.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Cao, L., Lv, M., Li, C., Sun, Q., Wu, M., Xu, C., & Dou, J. (2025). Effects of Crosslinking Agents and Reservoir Conditions on the Propagation of Fractures in Coal Reservoirs During Hydraulic Fracturing. Reservoir Science, 1(1), 36–51. https://doi.org/10.62762/RS.2025.494074

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 102
PDF Downloads: 68

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Reservoir Science

Reservoir Science

ISSN: pending (Online) | ISSN: pending (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/