-
CiteScore
-
Impact Factor
Volume 1, Issue 2, ICCK Transactions on Advanced Functional Materials and Processing
Volume 1, Issue 2, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Advanced Functional Materials and Processing, Volume 1, Issue 2, 2025: 32-46

Open Access | Review Article | 17 August 2025
Recycling of Materials from Computer Waste
1 School of Civil and Mechanical Engineering, Curtin University, Perth 6102, Australia
2 Adelaide Microscopy, The University of Adelaide, Adelaide, SA 5000, Australia
3 Department of Mechatronics Engineering, Kongu Engineering College, Erode 638060, India
* Corresponding Author: Alokesh Pramanik, [email protected]
Received: 06 March 2025, Accepted: 26 May 2025, Published: 17 August 2025  
Abstract
As new and innovative products with more functions, effectiveness and efficiency are introduced to the market continuously, the lifespan of existing products and equipment are becoming shorter and shorter before they are discarded. Therefore, significant amounts of electronic waste (e-waste) are mainly disposed of in the landfill. This study investigates the recycling of e-waste and recovering precious metals from computer components based on the information available in the literature. The manual dismantling, pre-processing and smelting techniques are discussed and elaborated. Among these techniques smelting/end-processes are employed to collect metals using several methods such as hydrometallurgy, pyrometallurgy and bio metallurgy are analysed critically. It was found that the dismantling techniques depends on the type of appliances, but the pre-processing techniques are almost independent on the appliance or types of metals to be collected. The smelting/end-processes and types of chemicals used depend on the metals to be recovered. The appropriate recycling processes and methods can be used to minimize the negative impacts that e-wastes have brought. In general, bio metallurgy is the most environmentally friendly technique to recover metals though this technique is very selective, less efficient and minor contaminating.

Graphical Abstract
Recycling of Materials from Computer Waste

Keywords
recycling
electronic waste
metal recovery
waste management

Data Availability Statement
Not applicable.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Heacock, M., Kelly, C. B., Asante, K. A., Birnbaum, L. S., Bergman, Å. L., Bruné, M. N., ... & Suk, W. A. (2016). E-waste and harm to vulnerable populations: a growing global problem. Environmental health perspectives, 124(5), 550-555.
    [CrossRef]   [Google Scholar]
  2. Lee, C. H., Chang, S. L., Wang, K. M., & Wen, L. C. (2000). Management of scrap computer recycling in Taiwan. Journal of hazardous materials, 73(3), 209-220.
    [CrossRef]   [Google Scholar]
  3. Kang, H. Y., & Schoenung, J. M. (2005). Electronic waste recycling: A review of US infrastructure and technology options. Resources, Conservation and Recycling, 45(4), 368-400.
    [CrossRef]   [Google Scholar]
  4. Robinson, B. H. (2009). E-waste: an assessment of global production and environmental impacts. Science of the total environment, 408(2), 183-191.
    [CrossRef]   [Google Scholar]
  5. Forti, V., Balde, C. P., Kuehr, R., & Bel, G. (2020). The Global E-waste Monitor 2020: Quantities, flows and the circular economy potential.
    [Google Scholar]
  6. Ongondo, F. O., Williams, I. D., & Cherrett, T. J. (2011). How are WEEE doing? A global review of the management of electrical and electronic wastes. Waste management, 31(4), 714-730.
    [CrossRef]   [Google Scholar]
  7. Abdelbasir, S. M., Hassan, S. S., Kamel, A. H., & El-Nasr, R. S. (2018). Status of electronic waste recycling techniques: a review. Environmental Science and Pollution Research, 25(17), 16533-16547.
    [CrossRef]   [Google Scholar]
  8. Gangwar, C., Choudhari, R., Chauhan, A., Kumar, A., Singh, A., & Tripathi, A. (2019). Assessment of air pollution caused by illegal e-waste burning to evaluate the human health risk. Environment international, 125, 191-199.
    [CrossRef]   [Google Scholar]
  9. Zhang, K., Schnoor, J. L., & Zeng, E. Y. (2012). E-waste recycling: where does it go from here?. Environmental science & technology, 46(20), 10861-10867.
    [CrossRef]   [Google Scholar]
  10. Al Razi, K. M. H. (2016). Resourceful recycling process of waste desktop computers: A review study. Resources, Conservation and Recycling, 110, 30-47.
    [CrossRef]   [Google Scholar]
  11. Bhuie, A. K., Ogunseitan, O. A., Saphores, J. D., & Shapiro, A. A. (2004, May). Environmental and economic trade-offs in consumer electronic products recycling: a case study of cell phones and computers. In IEEE International Symposium on Electronics and the Environment, 2004. Conference Record. 2004 (pp. 74-79). IEEE.
    [CrossRef]   [Google Scholar]
  12. Arshadi, M., Mousavi, S. M., & Rasoulnia, P. (2016). Enhancement of simultaneous gold and copper recovery from discarded mobile phone PCBs using Bacillus megaterium: RSM based optimization of effective factors and evaluation of their interactions. Waste Management, 57, 158-167.
    [CrossRef]   [Google Scholar]
  13. Chatterjee, S. (2012). Sustainable electronic waste management and recycling process. American Journal of Environmental Engineering, 2(1), 23-33.
    [CrossRef]   [Google Scholar]
  14. Ilyas, S., Srivastava, R. R., Kim, H., Das, S., & Singh, V. K. (2021). Circular bioeconomy and environmental benignness through microbial recycling of e-waste: A case study on copper and gold restoration. Waste Management, 121, 175-185.
    [CrossRef]   [Google Scholar]
  15. Namias, J. (2013). The future of electronic waste recycling in the United States: obstacles and domestic solutions. Columbia University.
    [Google Scholar]
  16. Ning, C., Lin, C. S. K., Hui, D. C. W., & McKay, G. (2017). Waste printed circuit board (PCB) recycling techniques. Chemistry and Chemical Technologies in Waste Valorization, 21-56.
    [CrossRef]   [Google Scholar]
  17. Lee, C. H., & Hsi, C. S. (2002). Recycling of scrap cathode ray tubes. Environmental science & technology, 36(1), 69-75.
    [CrossRef]   [Google Scholar]
  18. Jung, L. B., & Bartel, T. (1998, May). An industry approach to consumer computer recycling: The San Jose Project. In Proceedings of the 1998 IEEE International Symposium on Electronics and the Environment. ISEE-1998 (Cat. No. 98CH36145) (pp. 36-41). IEEE.
    [CrossRef]   [Google Scholar]
  19. Bleiwas, D. I., & Kelly, T. D. (2001). Obsolete Computers," gold Mine", Or High-tech Trash?: Resource Recovery from Recycling. Denver, USA: US Geological Survey.
    [Google Scholar]
  20. Xu, Q., Li, G., He, W., Huang, J., & Shi, X. (2012). Cathode ray tube (CRT) recycling: current capabilities in China and research progress. Waste management, 32(8), 1566-1574.
    [CrossRef]   [Google Scholar]
  21. Andreola, F., Barbieri, L., Corradi, A., & Lancellotti, I. (2007). CRT glass state of the art: A case study: Recycling in ceramic glazes. Journal of the European Ceramic Society, 27(2-3), 1623-1629.
    [CrossRef]   [Google Scholar]
  22. Westbroek, C. D., Bitting, J., Craglia, M., Azevedo, J. M., & Cullen, J. M. (2021). Global material flow analysis of glass: From raw materials to end of life. Journal of Industrial Ecology, 25(2), 333-343.
    [CrossRef]   [Google Scholar]
  23. Sahajwalla, V., & Gaikwad, V. (2018). The present and future of e-waste plastics recycling. Current Opinion in Green and Sustainable Chemistry, 13, 102-107.
    [CrossRef]   [Google Scholar]
  24. Kumar, A., Holuszko, M., & Espinosa, D. C. R. (2017). E-waste: An overview on generation, collection, legislation and recycling practices. Resources, conservation and recycling, 122, 32-42.
    [CrossRef]   [Google Scholar]
  25. Igarashi, S., Nomura, N., Mishima, F., & Akiyama, Y. (2014). Study on magnetic separation for decontamination of cesium contaminated soil by using superconducting magnet. Physica C: Superconductivity and Its Applications, 504, 144-147.
    [CrossRef]   [Google Scholar]
  26. Ruan, J., & Xu, Z. (2016). Constructing environment-friendly return road of metals from e-waste: combination of physical separation technologies. Renewable and Sustainable Energy Reviews, 54, 745-760.
    [CrossRef]   [Google Scholar]
  27. Suponik, T., Franke, D., & Nuckowski, P. (2019, November). Electrostatic and magnetic separations for the recovery of metals from electronic waste. In IOP Conference Series: Materials Science and Engineering (Vol. 641, No. 1, p. 012017). IOP Publishing.
    [CrossRef]   [Google Scholar]
  28. Sessel, R. I. (1996). Recycling and resource recovery engineering.
    [CrossRef]   [Google Scholar]
  29. Dalmijn, W. L. (1990). Practical applications of eddy current separators in the scrap recycling industry. In 2nd Int. Symposium Recycling of Metals and Engineered Materials (pp. 303-314).
    [Google Scholar]
  30. Ruan, J., Dong, L., Zheng, J., Zhang, T., Huang, M., & Xu, Z. (2017). Key factors of eddy current separation for recovering aluminum from crushed e-waste. Waste Management, 60, 84-90.
    [CrossRef]   [Google Scholar]
  31. Cui, J., & Zhang, L. (2008). Metallurgical recovery of metals from electronic waste: A review. Journal of hazardous materials, 158(2-3), 228-256.
    [CrossRef]   [Google Scholar]
  32. Ambaye, T. G., Vaccari, M., Castro, F. D., Prasad, S., & Rtimi, S. (2020). Emerging technologies for the recovery of rare earth elements (REEs) from the end-of-life electronic wastes: a review on progress, challenges, and perspectives. Environmental Science and Pollution Research, 27(29), 36052-36074.
    [CrossRef]   [Google Scholar]
  33. Ashiq, A., Kulkarni, J., & Vithanage, M. (2019). Hydrometallurgical recovery of metals from e-waste. In Electronic waste management and treatment technology (pp. 225-246). Butterworth-Heinemann.
    [CrossRef]   [Google Scholar]
  34. Islam, A., Ahmed, T., Awual, M. R., Rahman, A., Sultana, M., Abd Aziz, A., ... & Hasan, M. (2020). Advances in sustainable approaches to recover metals from e-waste-A review. Journal of Cleaner Production, 244, 118815.
    [CrossRef]   [Google Scholar]
  35. Kamberović, Ž., Korać, M., Ivšić, D., Nikolić, V., & Ranitović, M. (2018). Hydrometallurgical process for extraction of metals from electronic waste-part I: Material characterization and process option selection. Metallurgical and Materials Engineering.
    [CrossRef]   [Google Scholar]
  36. Kahhat, R., Kim, J., Xu, M., Allenby, B., Williams, E., & Zhang, P. (2008). Exploring e-waste management systems in the United States. Resources, conservation and recycling, 52(7), 955-964.
    [CrossRef]   [Google Scholar]
  37. Khaliq, A., Rhamdhani, M. A., Brooks, G., & Masood, S. (2014). Metal extraction processes for electronic waste and existing industrial routes: a review and Australian perspective. Resources, 3(1), 152-179.
    [CrossRef]   [Google Scholar]
  38. Korte, F., Spiteller, M., & Coulston, F. (2000). The cyanide leaching gold recovery process is a nonsustainable technology with unacceptable impacts on ecosystems and humans: the disaster in Romania. Ecotoxicology and environmental safety, 46(3), 241-245.
    [CrossRef]   [Google Scholar]
  39. Jeffrey, M. I., & Breuer, P. L. (2000). The cyanide leaching of gold in solutions containing sulfide. Minerals Engineering, 13(10-11), 1097-1106.
    [CrossRef]   [Google Scholar]
  40. Ding, Y., Zhang, S., Liu, B., Zheng, H., Chang, C. C., & Ekberg, C. (2019). Recovery of precious metals from electronic waste and spent catalysts: A review. Resources, conservation and recycling, 141, 284-298.
    [CrossRef]   [Google Scholar]
  41. Rizki, I. N., Tanaka, Y., & Okibe, N. (2019). Thiourea bioleaching for gold recycling from e-waste. Waste management, 84, 158-165.
    [CrossRef]   [Google Scholar]
  42. Ilankoon, I. M. S. K., Ghorbani, Y., Chong, M. N., Herath, G., Moyo, T., & Petersen, J. (2018). E-waste in the international context-A review of trade flows, regulations, hazards, waste management strategies and technologies for value recovery. Waste management, 82, 258-275.
    [CrossRef]   [Google Scholar]
  43. Salhofer, S., Steuer, B., Ramusch, R., & Beigl, P. (2016). WEEE management in Europe and China-A comparison. Waste Management, 57, 27-35.
    [CrossRef]   [Google Scholar]
  44. Zhang, L., & Xu, Z. (2019). Towards minimization of secondary wastes: Element recycling to achieve future complete resource recycling of electronic wastes. Waste Management, 96, 175-180.
    [CrossRef]   [Google Scholar]
  45. Kaya, M., & Sözeri, A. (2009). A review of electronic waste (e-waste) recycling technologies "Is e-waste an opportunity or treat?". In Proceedings. 138th Annual Meeting, San Francisco, TMS, Warrendale, PA (pp. 1055-1060).
    [Google Scholar]
  46. Dave, S. R., Shah, M. B., & Tipre, D. R. (2016). E-waste: metal pollution threat or metal resource. J Adv Res Biotechnol, 1(2), 1-14. http://dx.doi.org/10.15226/2475-4714/1/2/00103
    [Google Scholar]
  47. Dang, H., Wang, B., Chang, Z., Wu, X., Feng, J., Zhou, H., ... & Sun, C. (2018). Recycled lithium from simulated pyrometallurgical slag by chlorination roasting. ACS sustainable chemistry & engineering, 6(10), 13160-13167.
    [CrossRef]   [Google Scholar]
  48. Habashi, F. (2019). Principles of extractive metallurgy. Routledge.
    [Google Scholar]
  49. Jones, R. T., & Curr, T. R. (2006). Pyrometallurgy at mintek. Southern African Pyrometallurgy, 127-150.
    [Google Scholar]
  50. Wang, M., & Wang, X. (2010). Extraction of molybdenum and nickel from carbonaceous shale by oxidation roasting, sulphation roasting and water leaching. Hydrometallurgy, 102(1-4), 50-54.
    [CrossRef]   [Google Scholar]
  51. Li, G., Shi, T., Rao, M., Jiang, T., & Zhang, Y. (2012). Beneficiation of nickeliferous laterite by reduction roasting in the presence of sodium sulfate. Minerals Engineering, 32, 19-26.
    [CrossRef]   [Google Scholar]
  52. Roca, A., Cruells, M., & Núñez, C. (1990). Study of chloridizing volatilization roasting of cinnabar as a basis for a process to obtain mercuric and mercurous chlorides. Metallurgical Transactions B, 21(2), 259-268.
    [CrossRef]   [Google Scholar]
  53. Liu, W., Yang, T., Zhang, D., Chen, L., & Liu, Y. (2014). A new pyrometallurgical process for producing antimony white from by-product of lead smelting. Jom, 66(9), 1694-1700.
    [CrossRef]   [Google Scholar]
  54. Sohn, H. Y., & Olivas-Martinez, M. (2024). Lead and zinc production. In Treatise on Process Metallurgy (pp. 605-624). Elsevier.
    [CrossRef]   [Google Scholar]
  55. Thakur, P., & Kumar, S. (2020). Metallurgical processes unveil the unexplored "sleeping mines" e-waste: a review. Environmental Science and Pollution Research, 27(26), 32359-32370.
    [CrossRef]   [Google Scholar]
  56. Gallo, G., Puopolo, R., Carbonaro, M., Maresca, E., & Fiorentino, G. (2021). Extremophiles, a nifty tool to face environmental pollution: from exploitation of metabolism to genome engineering. International journal of environmental research and public health, 18(10), 5228.
    [CrossRef]   [Google Scholar]
  57. Gaidajis, G., Angelakoglou, K., & Aktsoglou, D. (2010). E-waste: environmental problems and current management. Journal of Engineering Science and Technology Review, 3(1), 193-199.
    [Google Scholar]
  58. Gaidajis, G., Angelakoglou, K., & Aktsoglou, D. (2010). E-waste: environmental problems and current management. Journal of Engineering Science and Technology Review, 3(1), 193-199.
    [Google Scholar]

Cite This Article
APA Style
Chan, C. K., Pramanik, A., Basak, A. K., & Shankar, S. (2025). Recycling of Materials from Computer Waste. ICCK Transactions on Advanced Functional Materials and Processing, 1(2), 32–46. https://doi.org/10.62762/TAFMP.2025.802278

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 145
PDF Downloads: 38

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
ICCK Transactions on Advanced Functional Materials and Processing

ICCK Transactions on Advanced Functional Materials and Processing

ISSN: 3068-8973 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/