-
CiteScore
-
Impact Factor
Volume 1, Issue 1, ICCK Transactions on Information Security and Cryptography
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Academic Editor
Donghua Jiang
Donghua Jiang
Sun Yat-sen University
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Information Security and Cryptography, Volume 1, Issue 1, 2025: 38-53

Open Access | Perspective | 19 August 2025
Singularity Cipher: A Topology-Driven Cryptographic Scheme Based on Visual Paradox and Klein Bottle Illusions
1 AI-WEINBERG, AI Experts, Tel-Aviv, Israel
* Corresponding Author: Abraham Itzhak Weinberg, [email protected]
Received: 08 July 2025, Accepted: 31 July 2025, Published: 19 August 2025  
Abstract
This paper presents the Singularity Cipher, a novel cryptographic-steganographic framework that integrates topological transformations and visual paradoxes to achieve multidimensional security. Inspired by the non-orientable properties of the Klein bottle—constructed from two Möbius strips—the cipher applies symbolic twist functions to simulate topological traversal, producing high confusion and diffusion in the ciphertext. The resulting binary data is then encoded using perceptual illusions, such as the missing square paradox, to visually obscure the presence of encrypted content. Unlike conventional ciphers that rely solely on algebraic complexity, the Singularity Cipher introduces a dual-layer approach: symbolic encryption rooted in topology and visual steganography designed for human cognitive ambiguity. This combination enhances both cryptographic strength and detection resistance, making it well-suited for secure communication, watermarking, and plausible deniability in adversarial environments. The paper formalizes the architecture, provides encryption and decryption algorithms, evaluates security properties, and compares the method against classical, post-quantum, and steganographic approaches. Potential applications and future research directions are also discussed.

Graphical Abstract
Singularity Cipher: A Topology-Driven Cryptographic Scheme Based on Visual Paradox and Klein Bottle Illusions

Keywords
topological cryptography
visual steganography
klein bottle cipher
post-quantum security
cognitive encryption

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Kendhe, A. K., & Agrawal, H. (2013). A survey report on various cryptanalysis techniques. International Journal of Soft Computing and Engineering (IJSCE), 3(2), 287-293.
    [Google Scholar]
  2. Dworkin, M. J., Barker, E., Nechvatal, J. R., Foti, J., Bassham, L. E., Roback, E., & Dray Jr, J. F. (2001). Advanced encryption standard (AES). National Institute of Standards and Technology (NIST).
    [CrossRef]   [Google Scholar]
  3. Imam, R., Areeb, Q. M., Alturki, A., & Anwer, F. (2021). Systematic and critical review of rsa based public key cryptographic schemes: Past and present status. IEEE Access, 9, 155949–155976.
    [CrossRef]   [Google Scholar]
  4. Maram, V., & Xagawa, K. (2023). Post-quantum anonymity of Kyber. In IACR International Conference on Public-Key Cryptography (pp. 3–35). Springer.
    [CrossRef]   [Google Scholar]
  5. Mandal, P. C., Mukherjee, I., Paul, G., & Chatterji, B. N. (2022). Digital image steganography: A literature survey. Information Sciences, 609, 1451–1488.
    [CrossRef]   [Google Scholar]
  6. Zhang, B., & Liu, L. (2023). Chaos-based image encryption: Review, application, and challenges. Mathematics, 11(11), 2585.
    [CrossRef]   [Google Scholar]
  7. Weinberg, A. I. (2025). Dynamic Data Defense: Unveiling the Database in motion Chaos Encryption (DaChE) Algorithm–A Breakthrough in Chaos Theory for Enhanced Database Security. arXiv preprint arXiv:2501.03296.
    [Google Scholar]
  8. Lv, X., Zhong, Y., & Tan, Q. (2020). A study of bitcoin de-anonymization: Graph and multidimensional data analysis. In 2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC) (pp. 339–345). IEEE.
    [CrossRef]   [Google Scholar]
  9. Putz, M. V., & Ori, O. (2020). Topological symmetry transition between toroidal and klein bottle graphenic systems. Symmetry, 12(8), 1233.
    [CrossRef]   [Google Scholar]
  10. Ninio, J. (2014). Geometrical illusions are not always where you think they are: a review of some classical and less classical illusions, and ways to describe them. Frontiers in Human Neuroscience, 8, 856.
    [CrossRef]   [Google Scholar]
  11. Pohl, R. F. (2022). What are cognitive illusions? In Cognitive Illusions (pp. 3–23). Routledge.
    [CrossRef]   [Google Scholar]
  12. Anderson, R. J., & Petitcolas, F. A. P. (1998). On the limits of steganography. IEEE Journal on Selected Areas in Communications, 16(4), 474–481.
    [CrossRef]   [Google Scholar]
  13. Fuladi, N., Hubard, A., & de Mesmay, A. (2024). Short topological decompositions of non-orientable surfaces. Discrete & Computational Geometry, 72(2), 783–830.
    [CrossRef]   [Google Scholar]
  14. Jiao, S., & Feng, J. (2021). Image steganography with visual illusion. Optics Express, 29(10), 14282–14292.
    [CrossRef]   [Google Scholar]
  15. Joseph, D., Misoczki, R., Manzano, M., Tricot, J., Pinuaga, F. D., Lacombe, O., ... & Hansen, R. (2022). Transitioning organizations to post-quantum cryptography. Nature, 605(7909), 237–243.
    [CrossRef]   [Google Scholar]
  16. Weinberg, A. I. (2025). Preparing for the Post Quantum Era: Quantum Ready Architecture for Security and Risk Management (QUASAR)–A Strategic Framework for Cybersecurity. arXiv preprint arXiv:2505.17034.
    [Google Scholar]
  17. Shamir, A. (1998, May). Visual cryptanalysis. In International Conference on the Theory and Applications of Cryptographic Techniques (pp. 201-210). Berlin, Heidelberg: Springer Berlin Heidelberg.
    [CrossRef]   [Google Scholar]
  18. Clack, C. D., & Courtois, N. T. (2019). Distributed Ledger Privacy: Ring Signatures, Möbius and CryptoNote. arXiv preprint arXiv:1902.02609.
    [Google Scholar]
  19. Ponticorvo, M., & Miglino, O. (2010). Encoding geometric and non-geometric information: a study with evolved agents. Animal Cognition, 13, 157–174.
    [CrossRef]   [Google Scholar]
  20. Yao, B., & Mu, Y. (2018, December). Mathematical Problems From Topological Graphic Passwords of Cryptography. In 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC) (pp. 1897-1903). IEEE.
    [CrossRef]   [Google Scholar]
  21. Chen, J. W., Chen, L. J., Yu, C. M., & Lu, C. S. (2021). Perceptual indistinguishability-net (pi-net): Facial image obfuscation with manipulable semantics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 6478-6487).
    [CrossRef]   [Google Scholar]
  22. Yang, C. N., Sun, L. Z., Yan, X., & Kim, C. (2016). Design a new visual cryptography for human-verifiable authentication in accessing a database. Journal of Real-Time Image Processing, 12, 483–494.
    [CrossRef]   [Google Scholar]
  23. Edwards, M., Mashatan, A., & Ghose, S. (2020). A review of quantum and hybrid quantum/classical blockchain protocols. Quantum Information Processing, 19(6), 184.
    [CrossRef]   [Google Scholar]
  24. Polovnikov, K., Kazakov, V., & Syntulsky, S. (2020). Core–periphery organization of the cryptocurrency market inferred by the modularity operator. Physica A: Statistical Mechanics and its Applications, 540, 123075.
    [CrossRef]   [Google Scholar]
  25. Makhdoom, I., Abolhasan, M., & Lipman, J. (2022). A comprehensive survey of covert communication techniques, limitations and future challenges. Computers & Security, 120, 102784.
    [CrossRef]   [Google Scholar]
  26. Gabriel, A. J., Alese, B. K., Adetunmbi, A. O., & Adewale, O. S. (2013). Post-quantum crystography: a combination of post-quantum cryptography and steganography. In 8th International Conference for Internet Technology and Secured Transactions (ICITST-2013) (pp. 449–452). IEEE.
    [CrossRef]   [Google Scholar]
  27. Myers, A., Kvinge, H., & Emerson, T. (2023). TopFusion: Using topological feature space for fusion and imputation in multi-modal data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 600–609).
    [CrossRef]   [Google Scholar]
  28. Yegireddi, R., & Kumar, R. K. (2016). A survey on conventional encryption algorithms of Cryptography. In 2016 International Conference on ICT in Business Industry & Government (ICTBIG) (pp. 1–4). IEEE.
    [CrossRef]   [Google Scholar]
  29. Ryu, D., Abernethy, B., Park, S. H., & Mann, D. L. (2018). The perception of deceptive information can be enhanced by training that removes superficial visual information. Frontiers in Psychology, 9, 1132.
    [CrossRef]   [Google Scholar]
  30. Kappler, S. A., & Schneider, B. (2022). Post-quantum cryptography: An introductory overview and implementation challenges of quantum-resistant algorithms. Proceedings of the Society, 84, 61–71.
    [CrossRef]   [Google Scholar]
  31. Baluja, S. (2017). Hiding images in plain sight: Deep steganography. Advances in Neural Information Processing Systems, 30.
    [CrossRef]   [Google Scholar]
  32. Taha, M. S., Mohd Rahim, M. S., Lafta, S. A., Hashim, M. M., & Alzuabidi, H. M. (2019). Combination of steganography and cryptography: A short survey. In IOP Conference Series: Materials Science and Engineering (Vol. 518, No. 5, p. 052003). IOP Publishing.
    [CrossRef]   [Google Scholar]
  33. Dhall, S., & Yadav, K. (2024). Cryptanalysis of substitution-permutation network based image encryption schemes: a systematic review. Nonlinear Dynamics, 112(17), 14719–14744.
    [CrossRef]   [Google Scholar]
  34. Qayyum, A., Ahmad, J., Boulila, W., Rubaiee, S., Masood, F., Khan, F., ... & Buchanan, W. J. (2020). Chaos-based confusion and diffusion of image pixels using dynamic substitution. IEEE Access, 8, 140876–140895.
    [CrossRef]   [Google Scholar]
  35. Overbeck, R., & Sendrier, N. (2009). Code-based cryptography. In Post-quantum cryptography (pp. 95–145). Springer.
    [CrossRef]   [Google Scholar]
  36. Dey, J., & Dutta, R. (2023). Progress in multivariate cryptography: Systematic review, challenges, and research directions. ACM Computing Surveys, 55(12), 1–34.
    [CrossRef]   [Google Scholar]
  37. Ugwuishiwu, C. H., Orji, U. E., Ugwu, C. I., & Asogwa, C. N. (2020). An overview of quantum cryptography and shor’s algorithm. Int. J. Adv. Trends Comput. Sci. Eng, 9(5).
    [CrossRef]   [Google Scholar]
  38. Grassl, M., Langenberg, B., Roetteler, M., & Steinwandt, R. (. Applying Grover’s algorithm to AES: quantum resource estimates. In International Workshop on Post-Quantum Cryptography (pp. 29–43). Springer.
    [CrossRef]   [Google Scholar]
  39. Horváth, M., & Buttyán, L. (2020). Cryptographic Obfuscation: A Survey. Springer.
    [Google Scholar]
  40. Gençoğlu, M. T. (2017). Cryptanalysis of a new method of cryptography using laplace transform hyperbolic functions. Communications in Mathematics and applications, 8(2), 183.
    [Google Scholar]
  41. Ke, Y., Liu, J., Zhang, M. Q., Su, T. T., & Yang, X. Y. (2018). Steganography security: Principle and practice. IEEE Access, 6, 73009–73022.
    [CrossRef]   [Google Scholar]
  42. Bansal, K., Agrawal, A., & Bansal, N. (2020). A survey on steganography using least significant bit (lsb) embedding approach. In 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184) (pp. 64–69). IEEE.
    [CrossRef]   [Google Scholar]
  43. Yadahalli, S. S., Rege, S., & Sonkusare, R. (2020). Implementation and analysis of image steganography using Least Significant Bit and Discrete Wavelet Transform techniques. In 2020 5th international conference on communication and electronics systems (ICCES) (pp. 1325–1330). IEEE.
    [CrossRef]   [Google Scholar]
  44. Joshi, S. V., Bokil, A. A., Jain, N. A., & Koshti, D. (2012). Image steganography combination of spatial and frequency domain. International Journal of Computer Applications, 53(5), 25–29.
    [Google Scholar]
  45. De La Croix, N. J., Ahmad, T., & Han, F. (2024). Comprehensive survey on image steganalysis using deep learning. Array, 100353.
    [CrossRef]   [Google Scholar]
  46. Fridrich, J., & Goljan, M. (2002). Practical steganalysis of digital images: state of the art. Security and Watermarking of Multimedia Contents IV, 4675, 1–13.
    [CrossRef]   [Google Scholar]
  47. Stern, A., & Lindner, N. H. (2013). Topological quantum computation—from basic concepts to first experiments. Science, 339(6124), 1179–1184.
    [CrossRef]   [Google Scholar]
  48. de Albuquerque, C. D., da Silva, E. B., & Soares, W. S. (2022). Quantum Codes for Topological Quantum Computation. Springer.
    [Google Scholar]
  49. Yao, X. C., Wang, T. X., Chen, H. Z., Gao, W. B., Fowler, A. G., Raussendorf, R., ... & Pan, J. W. (2012). Experimental demonstration of topological error correction. Nature, 482(7386), 489–494.
    [CrossRef]   [Google Scholar]
  50. Song, S., & Li, H. (2025). Can topological transitions in cryptocurrency systems serve as early warning signals for extreme fluctuations in traditional markets? Physica A: Statistical Mechanics and its Applications, 657, 130194.
    [CrossRef]   [Google Scholar]
  51. Polthier, K. (2003). Imaging maths-Inside the Klein bottle. Retrieved from http://plus.maths.org/content/imaging-maths-inside-klein-bottle.
    [Google Scholar]
  52. Micciancio, D., & Panjwani, S. (2005). Adaptive security of symbolic encryption. In Theory of Cryptography Conference (pp. 169–187). Springer.
    [CrossRef]   [Google Scholar]
  53. Dehornoy, P. (2004). Braid-based cryptography. Contemp. Math, 360(5), 33.
    [Google Scholar]
  54. Sconza, S., & Wildi, A. (2024). Knot-based Key Exchange protocol. Cryptology ePrint Archive.
    [Google Scholar]
  55. Ko, K. H., Lee, S. J., Cheon, J. H., Han, J. W., Kang, J. S., & Park, C. (2000). New public-key cryptosystem using braid groups. In Advances in Cryptology—CRYPTO 2000 (pp. 166–183). Springer.
    [CrossRef]   [Google Scholar]
  56. Barthe, G., Grégoire, B., Jacomme, C., Kremer, S., & Strub, P. Y. (2019). Symbolic methods in computational cryptography proofs. In 2019 IEEE 32nd Computer Security Foundations Symposium (CSF) (pp. 136–13615). IEEE.
    [CrossRef]   [Google Scholar]
  57. Draper, S. W. (1978). The Penrose triangle and a family of related figures. Perception, 7(3), 283–296.
    [CrossRef]   [Google Scholar]
  58. Marr, D. (2010). Vision: A computational investigation into the human representation and processing of visual information. MIT press.
    [Google Scholar]
  59. Jonsson, D. (2022). Deceptive geometries: Spatial analysis and design through the study of visual illusions.
    [Google Scholar]
  60. Coren, S., & Girgus, J. (2020). Seeing is deceiving: The psychology of visual illusions. Routledge.
    [CrossRef]   [Google Scholar]
  61. Hayashi, E., Dhamija, R., Christin, N., & Perrig, A. (2008). Use your illusion: secure authentication usable anywhere. In Proceedings of the 4th Symposium on Usable Privacy and Security (pp. 35–45).
    [CrossRef]   [Google Scholar]
  62. Goldwasser, S., Micali, S., & Rivest, R. L. (2019). A "paradoxical" solution to the signature problem. In Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali (pp. 265–284).
    [CrossRef]   [Google Scholar]
  63. Bresciani, S., & Eppler, M. J. (2015). The pitfalls of visual representations: A review and classification of common errors made while designing and interpreting visualizations. Sage Open, 5(4), 2158244015611451.
    [CrossRef]   [Google Scholar]
  64. Abbe, E. A. (2008). Local to global geometric methods in information theory (Doctoral dissertation, Massachusetts Institute of Technology).
    [Google Scholar]
  65. Patel, V. L., Arocha, J. F., & Shortliffe, E. H. (2000). Cognitive models in training health professionals to protect patients' confidential information. International Journal of Medical Informatics, 60(2), 143–150.
    [CrossRef]   [Google Scholar]
  66. Arcos, R., & Smith, H. (2021). Digital communication and hybrid threats. Revista ICONO 14. Revista científica de Comunicación y Tecnologías emergentes, 19(1), 1–14.
    [CrossRef]   [Google Scholar]
  67. Vignesh, R. S., Sudharssun, S., & Kumar, K. J. J. (2009). Limitations of quantum & the versatility of classical cryptography: a comparative study. In 2009 Second international conference on environmental and computer science (pp. 333–337). IEEE.
    [CrossRef]   [Google Scholar]
  68. Basyoni, L., Fetais, N., Erbad, A., Mohamed, A., & Guizani, M. (2020). Traffic analysis attacks on tor: A survey. In 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT) (pp. 183–188). IEEE.
    [CrossRef]   [Google Scholar]
  69. Faruk, M. J. H., Tahora, S., Tasnim, M., Shahriar, H., & Sakib, N. (2022). A review of quantum cybersecurity: threats, risks and opportunities. In 2022 1st International Conference on AI in Cybersecurity (ICAIC) (pp. 1–8). IEEE.
    [CrossRef]   [Google Scholar]
  70. Bernstein, D. J., & Lange, T. (2017). Post-quantum cryptography. Nature, 549(7671), 188–194.
    [CrossRef]   [Google Scholar]
  71. Ibrahim, D. R., Teh, J. S., & Abdullah, R. (2021). An overview of visual cryptography techniques. Multimedia Tools and Applications, 80, 31927–31952.
    [CrossRef]   [Google Scholar]
  72. Andrade, R. O., & Yoo, S. G. (2019). Cognitive security: A comprehensive study of cognitive science in cybersecurity. Journal of Information Security and Applications, 48, 102352.
    [CrossRef]   [Google Scholar]
  73. Al Maliky, S. B. S., & Abbas, N. A. (2014). Multidisciplinary in Cryptology. In Multidisciplinary Perspectives in Cryptology and Information Security (pp. 1–28). IGI Global.
    [CrossRef]   [Google Scholar]
  74. Bloch, M. (2015). A channel resolvability perspective on stealth communications. In 2015 IEEE international symposium on information theory (ISIT) (pp. 2535–2539). IEEE.
    [CrossRef]   [Google Scholar]
  75. Jassim, K. N., Nsaif, A. K., Nseaf, A. K., Hazidar, A. H., Priambodo, B., Naf'an, E., ... & Putra, Z. P. (2019). Hybrid cryptography and steganography method to embed encrypted text message within image. In Journal of Physics: Conference Series (Vol. 1339, No. 1, p. 012061). IOP Publishing.
    [CrossRef]   [Google Scholar]
  76. Arnold, D. N., & Rogness, J. P. (2008). Möbius transformations revealed. Notices of the American Mathematical Society, 55(10), 1226–1231.
    [Google Scholar]
  77. Rauschenberger, R., & Yantis, S. (2006). Perceptual encoding efficiency in visual search. Journal of Experimental Psychology: General, 135(1), 116. https://psycnet.apa.org/doi/10.1037/0096-3445.135.1.116
    [Google Scholar]
  78. Xiang, T., Yang, Y., Liu, H., & Guo, S. (2019). Visual security evaluation of perceptually encrypted images based on image importance. IEEE Transactions on Circuits and Systems for Video Technology, 30(11), 4129–4142.
    [CrossRef]   [Google Scholar]
  79. Cruse, D. A. (2001). Crypto-ambiguity. Recherches anglaises et nord-américaines, 34(1), 5–18.
    [Google Scholar]
  80. Lord, S., & Nunes-Vaz, R. (2013). Designing and evaluating layered security. International Journal of Risk Assessment and Management, 17(1), 19–45.
    [CrossRef]   [Google Scholar]
  81. Li, S., Li, C., Chen, G., Bourbakis, N. G., & Lo, K. T. (2008). A general quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks. Signal Processing: Image Communication, 23(3), 212–223.
    [CrossRef]   [Google Scholar]
  82. Tesler, G. (2000). Matchings in graphs on non-orientable surfaces. Journal of Combinatorial Theory, Series B, 78(2), 198–231.
    [CrossRef]   [Google Scholar]
  83. Hehn, T., Milenkovic, O., Laendner, S., & Huber, J. B. (2008). Permutation decoding and the stopping redundancy hierarchy of cyclic and extended cyclic codes. IEEE Transactions on Information Theory, 54(12), 5308–5331.
    [CrossRef]   [Google Scholar]
  84. Ye, G. (2010). Image scrambling encryption algorithm of pixel bit based on chaos map. Pattern Recognition Letters, 31(5), 347–354.
    [CrossRef]   [Google Scholar]
  85. Chas, M., & Lalley, S. P. (2012). Self-intersections in combinatorial topology: statistical structure. Inventiones Mathematicae, 188(2), 429–463.
    [CrossRef]   [Google Scholar]
  86. Lin, K. T. (2012). Based on binary encoding methods and visual cryptography schemes to hide data. In 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (pp. 59–62). IEEE.
    [CrossRef]   [Google Scholar]
  87. Dabrowski, A., Weippl, E. R., & Echizen, I. (2013). Framework based on privacy policy hiding for preventing unauthorized face image processing. In 2013 IEEE International Conference on Systems, Man, and Cybernetics (pp. 455–461). IEEE.
    [CrossRef]   [Google Scholar]
  88. Halevi, S. (2005). A plausible approach to computer-aided cryptographic proofs. Cryptology ePrint Archive.
    [Google Scholar]
  89. Chapman, M., & Davida2, G. (2002). Plausible deniability using automated linguistic stegonagraphy. In International Conference on Infrastructure Security (pp. 276–287). Springer.
    [CrossRef]   [Google Scholar]
  90. Dani, P., & Chaudhuri, S. (1995). Automated assembling of images: Image montage preparation. Pattern Recognition, 28(3), 431–445.
    [CrossRef]   [Google Scholar]
  91. Shehab, D. A., & Alhaddad, M. J. (2022). Comprehensive survey of multimedia steganalysis: Techniques, evaluations, and trends in future research. Symmetry, 14(1), 117.
    [CrossRef]   [Google Scholar]
  92. Khoo, K., Lee, E., Peyrin, T., & Sim, S. M. (2017). Human-readable proof of the related-key security of AES-128. IACR Transactions on Symmetric Cryptology, 59–83.
    [Google Scholar]
  93. Jena, P. C., & Das, N. K. (2008). A survey on visual cryptography using image encryption and decryption. Int. J. Emerg. Technol. Adv. Eng.
    [Google Scholar]
  94. Mahalingam, H., Veeramalai, T., Menon, A. R., Subashanthini, S., & Amirtharajan, R. (2023). Dual-domain image encryption in unsecure medium—A secure communication perspective. Mathematics, 11(2), 457.
    [CrossRef]   [Google Scholar]
  95. Yao, B., Wang, X., Ma, F., & Wang, H. (2021). New Encryption Techniques From Lattice Thought In Topological Cryptography. In 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) (Vol. 5, pp. 467–473). IEEE.
    [CrossRef]   [Google Scholar]
  96. Vargas-Olmos, C., Murguia, J. S., Ramírez-Torres, M. T., Mejía, M. C., Rosu, H. C., & Gonzalez-Aguilar, H. (2016). Perceptual security of encrypted images based on wavelet scaling analysis. Physica A: Statistical Mechanics and its Applications, 456, 22–30.
    [CrossRef]   [Google Scholar]
  97. Behnia, S., Akhshani, A., Ahadpour, S., Akhavan, A., & Mahmodi, H. (2009). Cryptography based on chaotic random maps with position dependent weighting probabilities. Chaos, Solitons & Fractals, 40(1), 362–369.
    [CrossRef]   [Google Scholar]
  98. Stone, L. (2014). Metaphors for Abstract Concepts: Visual Art and Quantum Mechanics. Studio Research, 2, 14–29.
    [Google Scholar]
  99. Liu, J., Zhang, M., Tong, X., & Wang, Z. (2021). Image compression and encryption algorithm based on compressive sensing and nonlinear diffusion. Multimedia Tools and Applications, 80, 25433–25452.
    [CrossRef]   [Google Scholar]
  100. Wu, J., Liao, X., & Yang, B. (2018). Cryptanalysis and enhancements of image encryption based on three-dimensional bit matrix permutation. Signal Processing, 142, 292–300.
    [CrossRef]   [Google Scholar]
  101. Ramanujam, S., & Karuppiah, M. (2011). Designing an algorithm with high avalanche effect. IJCSNS International Journal of Computer Science and Network Security, 11(1), 106–111.
    [Google Scholar]
  102. Bogdanov, A. (2010). Analysis and design of block cipher constructions. Citeseer.
    [Google Scholar]
  103. Bogdanov, A., Knudsen, L. R., Leander, G., Standaert, F. X., Steinberger, J., & Tischhauser, E. (2012). Key-alternating ciphers in a provable setting: encryption using a small number of public permutations. In Advances in Cryptology--EUROCRYPT 2012 (pp. 45–62). Springer.
    [CrossRef]   [Google Scholar]
  104. Pospíšil, J., & Novotný, M. (2012). Lightweight cipher resistivity against brute-force attack: Analysis of PRESENT. In 2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS) (pp. 197–198). IEEE.
    [CrossRef]   [Google Scholar]
  105. Zhang, B., & Jin, C. (2008). Cryptanalysis of a chaos-based stream cipher. In 2008 The 9th International Conference for Young Computer Scientists (pp. 2782–2785). IEEE.
    [CrossRef]   [Google Scholar]
  106. Jiao, S., Lei, T., Gao, Y., Xie, Z., & Yuan, X. (2019). Known-plaintext attack and ciphertext-only attack for encrypted single-pixel imaging. IEEE Access, 7, 119557–119565.
    [CrossRef]   [Google Scholar]
  107. Gao, Y., Wang, Y., Yuan, Q., Wang, T., Wang, X., & Guo, L. (2018). Methods of differential fault attack on LBlock with analysis of probability. In 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) (pp. 474–479). IEEE.
    [CrossRef]   [Google Scholar]
  108. Hariss, K., & Noura, H. (2022). Towards a fully homomorphic symmetric cipher scheme resistant to plain-text/cipher-text attacks. Multimedia Tools and Applications, 81(10), 14403–14449.
    [CrossRef]   [Google Scholar]
  109. Hussain, I., & Shah, T. (2013). Literature survey on nonlinear components and chaotic nonlinear components of block ciphers. Nonlinear Dynamics, 74, 869–904.
    [CrossRef]   [Google Scholar]
  110. Popov, I. V., Debray, S. K., & Andrews, G. R. (2007). Binary Obfuscation Using Signals. In USENIX Security Symposium (pp. 275–290).
    [Google Scholar]
  111. Bagdasaryan, E., Jha, R., Shmatikov, V., & Zhang, T. (2024). Adversarial Illusions in Multi-Modal Embeddings. In 33rd USENIX Security Symposium (USENIX Security 24) (pp. 3009–3025).
    [Google Scholar]
  112. Huo, Y., Xiang, S., Luo, X., & Zhang, X. (2024). Image Semantic Steganography: A Way to Hide Information in Semantic Communication. IEEE Transactions on Circuits and Systems for Video Technology.
    [CrossRef]   [Google Scholar]
  113. Agarwal, A., Singh, R., Vatsa, M., & Ratha, N. (2020). Image transformation-based defense against adversarial perturbation on deep learning models. IEEE Transactions on Dependable and Secure Computing, 18(5), 2106–2121.
    [CrossRef]   [Google Scholar]
  114. Troscianko, T., Benton, C. P., Lovell, P. G., Tolhurst, D. J., & Pizlo, Z. (2009). Camouflage and visual perception. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1516), 449–461.
    [CrossRef]   [Google Scholar]
  115. Dagdelen, Ö., Fischlin, M., Gagliardoni, T., Marson, G. A., Mittelbach, A., & Onete, C. (2013). A cryptographic analysis of OPACITY. In Computer Security--ESORICS 2013 (pp. 345–362). Springer.
    [CrossRef]   [Google Scholar]
  116. Mabry, F. J., James, J. R., & Ferguson, A. J. (2007). Unicode steganographic exploits: maintaining enterprise border security. IEEE Security & Privacy, 5(5), 32–39.
    [CrossRef]   [Google Scholar]
  117. Kim, K., Kim, J., Song, S., Choi, J. H., Joo, C., & Lee, J. S. (2021). Light lies: Optical adversarial attack. arXiv preprint arXiv:2106.09908.
    [Google Scholar]
  118. Gschwandtner, M., Uhl, A., & Wild, P. (2007). Transmission error and compression robustness of 2D chaotic map image encryption schemes. EURASIP Journal on Information Security, 2007(1), 048179.
    [Google Scholar]
  119. Wang, H. J., Guo, C., Simon, D. R., & Zugenmaier, A. (2004). Shield: Vulnerability-driven network filters for preventing known vulnerability exploits. In Proceedings of the 2004 conference on Applications, technologies, architectures, and protocols for computer communications (pp. 193–204).
    [CrossRef]   [Google Scholar]
  120. Westheimer, G. (2008). Illusions in the spatial sense of the eye: Geometrical–optical illusions and the neural representation of space. Vision Research, 48(20), 2128–2142.
    [CrossRef]   [Google Scholar]
  121. Hu, Y., Yang, S., Yang, W., Duan, L. Y., & Liu, J. (2020). Towards coding for human and machine vision: A scalable image coding approach. In 2020 IEEE International Conference on Multimedia and Expo (ICME) (pp. 1–6). IEEE.
    [CrossRef]   [Google Scholar]
  122. Sarveswaran, S., Shangkavi, G., Gowthaman, N., & Vasanthaseelan, S. (2021). Cryptography techniques and internet of things applications–A modern survey. Int. J. of Aquatic Science, 12(2), 2338–2371.
    [Google Scholar]
  123. Ramakrishna, D., & Shaik, M. A. (2024). A Comprehensive analysis of Cryptographic Algorithms: Evaluating Security, Efficiency, and Future Challenges. IEEE Access.
    [CrossRef]   [Google Scholar]
  124. Lindell, Y. (2017). Tutorials on the Foundations of Cryptography. Springer.
    [Google Scholar]
  125. Yang, Y., Xiang, T., Lv, X., Guo, S., & Zeng, T. (2023). The illusion of visual security: Reconstructing perceptually encrypted images. IEEE Transactions on Circuits and Systems for Video Technology, 34(5), 3998–4010.
    [CrossRef]   [Google Scholar]
  126. Mitra, S., Jana, B., Bhattacharya, S., Pal, P., & Poray, J. (2017). Quantum cryptography: Overview, security issues and future challenges. In 2017 4th international conference on opto-electronics and applied optics (optronix) (pp. 1–7). IEEE.
    [CrossRef]   [Google Scholar]
  127. Abd, A. J., & Al-Janabi, S. (2019). Classification and identification of classical cipher type using artificial neural networks. Journal of Engineering and Applied Sciences, 14(11), 3549–3556.
    [CrossRef]   [Google Scholar]
  128. Guo, Q., Johansson, T., & Nilsson, A. (2020). A key-recovery timing attack on post-quantum primitives using the Fujisaki-Okamoto transformation and its application on FrodoKEM. In Annual International Cryptology Conference (pp. 359–386). Springer.
    [CrossRef]   [Google Scholar]
  129. Nejatollahi, H., Dutt, N., Ray, S., Regazzoni, F., Banerjee, I., & Cammarota, R. (2019). Post-quantum lattice-based cryptography implementations: A survey. ACM Computing Surveys (CSUR), 51(6), 1–41.
    [CrossRef]   [Google Scholar]
  130. Hosseini, S. M., & Pilaram, H. (2024). A Comprehensive Review of Post-Quantum Cryptography: Challenges and Advances. Cryptology ePrint Archive.
    [Google Scholar]
  131. Dhawan, S., & Gupta, R. (2021). Analysis of various data security techniques of steganography: A survey. Information Security Journal: A Global Perspective, 30(2), 63–87.
    [CrossRef]   [Google Scholar]
  132. Vyas, C., & Lunagaria, M. (2014). A review on methods for image authentication and visual cryptography in digital image watermarking. In 2014 IEEE International Conference on Computational Intelligence and Computing Research (pp. 1–6). IEEE.
    [CrossRef]   [Google Scholar]
  133. Talhaoui, M. Z., Wang, Z., Midoun, M. A., Smaili, A., Mekkaoui, D. E., Lablack, M., & Zhang, K. (2025). Vulnerability Detection and Improvements of an Image Cryptosystem for Real-Time Visual Protection. ACM Transactions on Multimedia Computing, Communications and Applications, 21(3), 1–23.
    [CrossRef]   [Google Scholar]
  134. Peng, S. L., & Zhang, X. S. (1998). Second topological conjugate transformation in symbolic dynamics. Physical Review E, 57(5), 5311.
    [CrossRef]   [Google Scholar]
  135. Yang, Z., Xiang, L., Zhang, S., Sun, X., & Huang, Y. (2021). Linguistic generative steganography with enhanced cognitive-imperceptibility. IEEE Signal Processing Letters, 28, 409–413.
    [CrossRef]   [Google Scholar]
  136. Tzalenchuk, A., Lara-Avila, S., Kalaboukhov, A., Paolillo, S., Syväjärvi, M., Yakimova, R., ... & Kubatkin, S. (2010). Towards a quantum resistance standard based on epitaxial graphene. Nature nanotechnology, 5(3), 186–189.
    [CrossRef]   [Google Scholar]
  137. Fedorov, A. K. (2023). Deploying hybrid quantum-secured infrastructure for applications: When quantum and post-quantum can work together. Frontiers in Quantum Science and Technology, 2, 1164428.
    [CrossRef]   [Google Scholar]
  138. Scientific, L. L. (2025). A multilayered security scheme for data encryption and decryption for stronger security towards post-quantum cryptography in cloud computing. Journal of Theoretical and Applied Information Technology, 103(11).
    [Google Scholar]
  139. Mikic, M., Srbakoski, M., & Praska, S. (2025). Post-Quantum Stealth Address Protocols. arXiv preprint arXiv:2501.13733.
    [Google Scholar]
  140. Singh, B., & Cheema, S. S. (2024). Psychological Defenses in Cyberspace: Unveiling the Significance of Cognitive Shields in Cybersecurity. International Journal of Advanced Networking and Applications, 16(1), 6291–6295.
    [Google Scholar]
  141. Schaefer, R. F., Boche, H., & Poor, H. V. (2015). Secure communication under channel uncertainty and adversarial attacks. Proceedings of the IEEE, 103(10), 1796–1813.
    [CrossRef]   [Google Scholar]
  142. Shamsi, Z., Waikhom, L., Saha, A. K., Patgiri, R., Singha, M. F., & Laiphrakpam, D. S. (2024). Visually meaningful cipher data concealment. Digital Signal Processing, 155, 104717.
    [CrossRef]   [Google Scholar]
  143. Dal, A., & Nisbet, E. C. (2022). Walking through firewalls: Circumventing censorship of social media and online content in a networked authoritarian context. Social Media+ Society, 8(4), 20563051221137738.
    [CrossRef]   [Google Scholar]
  144. Chamales, G., & Baker, R. (2011). Securing crisis maps in conflict zones. In 2011 IEEE Global Humanitarian Technology Conference (pp. 426–430). IEEE.
    [CrossRef]   [Google Scholar]
  145. Khan, F., & Gutub, A. (2007). Message concealment techniques using image based steganography.
    [Google Scholar]
  146. Johnson, N. F., & Jajodia, S. (1998). Exploring steganography: Seeing the unseen. Computer, 31(2), 26–34.
    [CrossRef]   [Google Scholar]
  147. Evsutin, O., Melman, A., & Meshcheryakov, R. (2020). Digital steganography and watermarking for digital images: A review of current research directions. IEEE Access, 8, 166589–166611.
    [CrossRef]   [Google Scholar]
  148. Sengupta, A., & Rathor, M. (2019). IP core steganography for protecting DSP kernels used in CE systems. IEEE Transactions on Consumer Electronics, 65(4), 506–515.
    [CrossRef]   [Google Scholar]
  149. Kadian, P., Arora, S. M., & Arora, N. (2021). Robust digital watermarking techniques for copyright protection of digital data: A survey. Wireless Personal Communications, 118, 3225–3249.
    [CrossRef]   [Google Scholar]
  150. Muhammad, K., Ahmad, J., Rho, S., & Baik, S. W. (2017). Image steganography for authenticity of visual contents in social networks. Multimedia Tools and Applications, 76, 18985–19004.
    [CrossRef]   [Google Scholar]
  151. Zebari, D. A., Zeebaree, D. Q., Saeed, J. N., Zebari, N. A., & Adel, A. Z. (2020). Image steganography based on swarm intelligence algorithms: A survey. people, 7(8), 9.
    [Google Scholar]
  152. Hall, S. (2014). Encoding and decoding the message. In The discourse studies reader: Main currents in theory and analysis (pp. 111–121). John Benjamins.
    [Google Scholar]
  153. Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nature neuroscience, 8(5), 679–685.
    [CrossRef]   [Google Scholar]
  154. Barkhi, M., Pourhossein, J., & Hosseini, S. A. (2024). Integrating fault detection and classification in microgrids using supervised machine learning considering fault resistance uncertainty. Scientific Reports, 14(1), 28466.
    [CrossRef]   [Google Scholar]
  155. Lin, S., Zhu, J., Yu, W., Wang, B., Sabet, K. A., Zhao, Y., ... & Lin, H. (2022). A touch-based multimodal and cryptographic bio-human–machine interface. Proceedings of the National Academy of Sciences, 119(15), e2201937119.
    [CrossRef]   [Google Scholar]
  156. Syed, T. A., Siddiqui, M. S., Abdullah, H. B., Jan, S., Namoun, A., Alzahrani, A., ... & Alkhodre, A. B. (2022). In-depth review of augmented reality: Tracking technologies, development tools, AR displays, collaborative AR, and security concerns. Sensors, 23(1), 146.
    [CrossRef]   [Google Scholar]
  157. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., & Wadia, A. (2010). Founding cryptography on tamper-proof hardware tokens. In Theory of Cryptography: 7th Theory of Cryptography Conference, TCC 2010 (pp. 308–326). Springer.
    [CrossRef]   [Google Scholar]
  158. Kaminska, A. (2018). Storing Authenticity at the Surface and into the Depths: Securing Paper with Human-and Machine-Readable Devices 1. Intermédialités, 32.
    [CrossRef]   [Google Scholar]
  159. Gordienko, Y., Trochun, Y., Taran, V., Khmelnytskyi, A., & Stirenko, S. (2025). HNN-QC n: Hybrid Neural Network with Multiple Backbones and Quantum Transformation as Data Augmentation Technique. AI, 6(2), 36.
    [CrossRef]   [Google Scholar]
  160. Sengupta, A., & Rathor, M. (2020). Structural obfuscation and crypto-steganography-based secured JPEG compression hardware for medical imaging systems. IEEE Access, 8, 6543–6565.
    [CrossRef]   [Google Scholar]
  161. Yendamury, G., & Mohankumar, N. (2021). Defense in depth approach on AES cryptographic decryption core to enhance reliability. In 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS) (pp. 1–7). IEEE.
    [CrossRef]   [Google Scholar]
  162. Mollicchi, S. (2017). Flatness versus depth: A study of algorithmically generated camouflage. Security Dialogue, 48(1), 78–94.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Weinberg, A. I. (2025). Singularity Cipher: A Topology-Driven Cryptographic Scheme Based on Visual Paradox and Klein Bottle Illusions. ICCK Transactions on Information Security and Cryptography, 1(1), 38–53. https://doi.org/10.62762/TISC.2025.186894

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 26
PDF Downloads: 10

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
ICCK Transactions on Information Security and Cryptography

ICCK Transactions on Information Security and Cryptography

ISSN: request pending (Online) | ISSN: request pending (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/