-
CiteScore
-
Impact Factor
Volume 1, Issue 1, ICCK Transactions on Radiology and Imaging
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Radiology and Imaging, Volume 1, Issue 1, 2025: 11-42

Free to Read | Review Article | 25 August 2025
Exploring the Potential of Machine Learning and Deep Learning for Predictive Breast Cancer Analytics
1 Shifa College of Medicine, Shifa Tameer-e-millat University, Islamabad 44000, Pakistan
2 Collage of Information Science and Technology, Beijing University of Technology, Beijing 100021, China
* Corresponding Author: Abdul Qadir Khan, [email protected]
Received: 29 June 2025, Accepted: 26 July 2025, Published: 25 August 2025  
Abstract
Breast cancer remains a significant global health challenge affecting millions of people worldwide. Early detection is crucial for improving treatment outcomes and survival rates. With the rapid advancement of technology, artificial intelligence (AI) has emerged as a transformative tool in medical diagnostics, particularly in breast cancer detection. This review examines how state-of-the-art machine learning (ML) and deep learning (DL) methodologies have revolutionized breast cancer diagnostics. Techniques such as convolutional neural network (CNN), ensemble learning, transfer learning, explainable AI, and federated learning (FL) have been analyzed for their contributions to addressing multifaceted challenges in medical image analysis. Each approach was evaluated for its capacity to enhance detection accuracy, interpretability, and scalability in real-world applications. The integration of these methodologies offers a comprehensive solution by combining the strengths of individual techniques. For instance, CNN excels in feature extraction, ensemble learning enhances robustness, and transfer learning influences the efficiency of pre-trained models. Concurrently, explainable AI improves transparency, and FL ensures data privacy while enabling collaborative research. Collectively, these innovations facilitate early diagnosis and pave the way for personalized treatment strategies, ultimately improving patient outcomes. By synthesizing recent findings, this study aims to provide insights into the current state of AI in breast cancer diagnostics, identify research gaps, and encourage future developments. Through the effective integration of AI technologies, healthcare systems can optimize resource allocation and deliver improved care to those affected by breast cancer.

Graphical Abstract
Exploring the Potential of Machine Learning and Deep Learning for Predictive Breast Cancer Analytics

Keywords
artificial intelligence
breast
cancer
machine learning
deep learning

Data Availability Statement
Not applicable.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Zhang, Y., Ji, Y., Liu, S., Li, J., Wu, J., Jin, Q., ... & Huang, Y. (2025). Global burden of female breast cancer: new estimates in 2022, temporal trend and future projections up to 2050 based on the latest release from GLOBOCAN. Journal of the National Cancer Center, 5(3), 287.
    [CrossRef]   [Google Scholar]
  2. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209-249.
    [CrossRef]   [Google Scholar]
  3. Wu, C., Andaloussi, M. A., Hormuth, D. A., Lima, E. A., Lorenzo, G., Stowers, C. E., ... & Yankeelov, T. E. (2025). A critical assessment of artificial intelligence in magnetic resonance imaging of cancer. npj Imaging, 3(1), 15.
    [CrossRef]   [Google Scholar]
  4. Sayaque, L., Leporq, B., Bouyer, C., Pilleul, F., Hamelin, O., Gregoire, V., & Beuf, O. (2025). Magnetic resonance imaging with ultra-short echo time sequence for head and neck radiotherapy planning. Physica Medica, 133, 104974.
    [CrossRef]   [Google Scholar]
  5. Shahid, M. S., & Imran, A. (2025). Breast cancer detection using deep learning techniques: challenges and future directions. Multimedia Tools and Applications, 84(6), 3257-3304.
    [CrossRef]   [Google Scholar]
  6. Tyagi, S., Srivastava, S., & Sahana, B. C. (2025). Deep learning approaches for detection, classification, and localization of breast cancer using microscopic images: A review and bibliometric analysis. Research on Biomedical Engineering, 41(1), 12.
    [CrossRef]   [Google Scholar]
  7. Caldas, F. A. A., Caldas, H. C., Henrique, T., Jordão, P. H. F., Fernandes-Ferreira, R., Souza, D. R. S., & di Pace Bauab, S. (2025). Evaluating the performance of artificial intelligence and radiologists accuracy in breast cancer detection in screening mammography across breast densities. European Journal of Radiology Artificial Intelligence, 2, 100013.
    [CrossRef]   [Google Scholar]
  8. Wahed, M. A., Alqaraleh, M., Alzboon, M. S., & Al-Batah, M. S. (2025). Evaluating AI and Machine Learning Models in Breast Cancer Detection: A Review of Convolutional Neural Networks (CNN) and Global Research Trends. LatIA, 3, 117-117.
    [CrossRef]   [Google Scholar]
  9. Jeba Prasanna Idas, S., Hemalatha, K., Naveenkumar, J., & Joshva Devadas, T. (2025). Recent trends on mammogram breast density analysis using deep learning models: neoteric review. Artificial Intelligence Review, 58(8), 240.
    [CrossRef]   [Google Scholar]
  10. Dave, D., Akhunzada, A., Ivković, N., Gyawali, S., Cengiz, K., Ahmed, A., & Al-Shamayleh, A. S. (2025). Diagnostic test accuracy of AI-assisted mammography for breast imaging: a narrative review. PeerJ Computer Science, 11, e2476.
    [CrossRef]   [Google Scholar]
  11. Shirzad, M., Shaban, M., Mohammadzadeh, V., Rahdar, A., Fathi-karkan, S., Hoseini, Z. S., ... & Aboudzadeh, M. A. (2025). Artificial Intelligence-Assisted Design of Nanomedicines for Breast Cancer Diagnosis and Therapy: Advances, Challenges, and Future Directions. BioNanoScience, 15(3), 354.
    [CrossRef]   [Google Scholar]
  12. Javanmard, Z., Shahraki, S. Z., Safari, K., Omidi, A., Raoufi, S., Rajabi, M., ... & Aria, M. (2025). Artificial intelligence in breast cancer survival prediction: a comprehensive systematic review and meta-analysis. Frontiers in Oncology, 14, 1420328.
    [CrossRef]   [Google Scholar]
  13. Lee, T. F., Shiau, J. P., Chen, C. H., Yun, W. P., Wuu, C. S., Huang, Y. J., ... & Chao, P. J. (2025). A Machine Learning Model for Predicting Breast Cancer Recurrence and Supporting Personalized Treatment Decisions Through Comprehensive Feature Selection and Explainable Ensemble Learning. Cancer Management and Research, 917-932.
    [CrossRef]   [Google Scholar]
  14. Nayak, D. R. (2024). RDTNet: A residual deformable attention based transformer network for breast cancer classification. Expert Systems with Applications, 249, 123569.
    [CrossRef]   [Google Scholar]
  15. Wang, K., Zheng, F., Cheng, L., Dai, H. N., Dou, Q., & Qin, J. (2024). Breast cancer classification from digital pathology images via connectivity-aware graph transformer. IEEE Transactions on Medical Imaging, 43(8), 2854-2865.
    [CrossRef]   [Google Scholar]
  16. Lee, D. Y., Kim, J. Y., & Cho, S. Y. (2025). Improving medical image quality using a super-resolution technique with attention mechanism. Applied Sciences, 15(2), 867.
    [CrossRef]   [Google Scholar]
  17. Haripriya, R., Khare, N., & Pandey, M. (2025). Privacy-preserving federated learning for collaborative medical data mining in multi-institutional settings. Scientific Reports, 15(1), 12482.
    [CrossRef]   [Google Scholar]
  18. AlSalman, H., Al-Rakhami, M. S., Alfakih, T., & Hassan, M. M. (2024). Federated learning approach for breast cancer detection based on DCNN. IEEE Access, 12, 40114-40138.
    [CrossRef]   [Google Scholar]
  19. Raza, A., Guzzo, A., Ianni, M., Lappano, R., Zanolini, A., Maggiolini, M., & Fortino, G. (2025). Federated Learning in radiomics: A comprehensive meta-survey on medical image analysis. Computer Methods and Programs in Biomedicine, 108768.
    [CrossRef]   [Google Scholar]
  20. Rigby, E., Vidya, R., & Shaaban, A. M. (2025). Use of digital pathology and artificial intelligence (AI) in breast cancer diagnosis and management: Opportunities and challenges. Diagnostic Histopathology.
    [CrossRef]   [Google Scholar]
  21. Ashi, L., & Taurin, S. (2025). Computational modeling of breast tissue mechanics and machine learning in cancer diagnostics: enhancing precision in risk prediction and therapeutic strategies. Expert Review of Anticancer Therapy, 25(7), 727-740.
    [CrossRef]   [Google Scholar]
  22. Abdullakutty, F., Akbari, Y., Al-Maadeed, S., Bouridane, A., Talaat, I. M., & Hamoudi, R. (2024). Histopathology in focus: a review on explainable multi-modal approaches for breast cancer diagnosis. Frontiers in Medicine, 11, 1450103.
    [CrossRef]   [Google Scholar]
  23. Qian, X., Pei, J., Han, C., Liang, Z., Zhang, G., Chen, N., ... & Shen, D. (2025). A multimodal machine learning model for the stratification of breast cancer risk. Nature Biomedical Engineering, 9(3), 356-370.
    [CrossRef]   [Google Scholar]
  24. Chaieb, M., Azzouz, M., Refifa, M. B., & Fraj, M. (2025). Deep learning-driven prediction in healthcare systems: Applying advanced CNNs for enhanced breast cancer detection. Computers in Biology and Medicine, 189, 109858.
    [CrossRef]   [Google Scholar]
  25. Lilhore, U. K., Sharma, Y. K., Shukla, B. K., Vadlamudi, M. N., Simaiya, S., Alroobaea, R., ... & Baqasah, A. M. (2025). Hybrid convolutional neural network and bi-LSTM model with EfficientNet-B0 for high-accuracy breast cancer detection and classification. Scientific Reports, 15(1), 12082.
    [CrossRef]   [Google Scholar]
  26. Abeelh, E. A., Abuabeileh, Z., & AbuAbeileh, Z. (2025). Screening Mammography and Artificial Intelligence: A Comprehensive Systematic Review. Cureus, 17(2).
    [CrossRef]   [Google Scholar]
  27. Feng, K., Yi, Z., & Xu, B. (2025). Artificial Intelligence and Breast Cancer Management: From Data to the Clinic. Cancer Innovation, 4(2), e159.
    [CrossRef]   [Google Scholar]
  28. Goh, S., Goh, R. S. J., Chong, B., Ng, Q. X., Koh, G. C. H., Ngiam, K. Y., & Hartman, M. (2025). Challenges in Implementing Artificial Intelligence in Breast Cancer Screening Programs: Systematic Review and Framework for Safe Adoption. Journal of Medical Internet Research, 27, e62941.
    [CrossRef]   [Google Scholar]
  29. Fountzilas, E., Pearce, T., Baysal, M. A., Chakraborty, A., & Tsimberidou, A. M. (2025). Convergence of evolving artificial intelligence and machine learning techniques in precision oncology. NPJ Digital Medicine, 8(1), 75.
    [CrossRef]   [Google Scholar]
  30. Zhang, S., Du, H., Jin, Z., Zhu, Y., Zhang, Y., Xie, F., ... & Luo, Y. (2020). A novel interpretable computer-aided diagnosis system of thyroid nodules on ultrasound based on clinical experience. IEEE Access, 8, 53223-53231.
    [CrossRef]   [Google Scholar]
  31. Xu, Y., Wang, Y., Yuan, J., Cheng, Q., Wang, X., & Carson, P. L. (2019). Medical breast ultrasound image segmentation by machine learning. Ultrasonics, 91, 1-9.
    [CrossRef]   [Google Scholar]
  32. Shah, S. M., Khan, R. A., Arif, S., & Sajid, U. (2022). Artificial intelligence for breast cancer analysis: Trends & directions. Computers in Biology and Medicine, 142, 105221.
    [CrossRef]   [Google Scholar]
  33. Celik, Y., Talo, M., Yildirim, O., Karabatak, M., & Acharya, U. R. (2020). Automated invasive ductal carcinoma detection based using deep transfer learning with whole-slide images. Pattern Recognition Letters, 133, 232-239.
    [CrossRef]   [Google Scholar]
  34. Altaf, M. M. (2021). A hybrid deep learning model for breast cancer diagnosis based on transfer learning and pulse-coupled neural networks. Mathematical Biosciences and Engineering, 18(5), 5029-5046.
    [CrossRef]   [Google Scholar]
  35. Salahuddin, Z., Woodruff, H. C., Chatterjee, A., & Lambin, P. (2022). Transparency of deep neural networks for medical image analysis: A review of interpretability methods. Computers in biology and medicine, 140, 105111.
    [CrossRef]   [Google Scholar]
  36. Choi, E., Schuetz, A., Stewart, W. F., & Sun, J. (2017). Using recurrent neural network models for early detection of heart failure onset. Journal of the American Medical Informatics Association, 24(2), 361-370.
    [CrossRef]   [Google Scholar]
  37. Bilal, A., Sun, G., & Mazhar, S. (2021). Finger-vein recognition using a novel enhancement method with convolutional neural network. Journal of the Chinese Institute of Engineers, 44(5), 407-417.
    [CrossRef]   [Google Scholar]
  38. Bilal, A., Imran, A., Baig, T. I., Liu, X., Long, H., Alzahrani, A., & Shafiq, M. (2024). Improved Support Vector Machine based on CNN-SVD for vision-threatening diabetic retinopathy detection and classification. Plos one, 19(1), e0295951.
    [CrossRef]   [Google Scholar]
  39. Bilal, A., Liu, X., Shafiq, M., Ahmed, Z., & Long, H. (2024). NIMEQ-SACNet: A novel self-attention precision medicine model for vision-threatening diabetic retinopathy using image data. Computers in Biology and Medicine, 171, 108099.
    [CrossRef]   [Google Scholar]
  40. Grzybowski, A., Brona, P., Lim, G., Ruamviboonsuk, P., Tan, G. S., Abramoff, M., & Ting, D. S. (2020). Artificial intelligence for diabetic retinopathy screening: a review. Eye, 34(3), 451-460.
    [CrossRef]   [Google Scholar]
  41. Bilal, A., Zhu, L., Deng, A., Lu, H., & Wu, N. (2022). AI-based automatic detection and classification of diabetic retinopathy using U-Net and deep learning. Symmetry, 14(7), 1427.
    [CrossRef]   [Google Scholar]
  42. Bilal, A., Sun, G., Li, Y., Mazhar, S., & Khan, A. Q. (2021). Diabetic retinopathy detection and classification using mixed models for a disease grading database. IEEE Access, 9, 23544-23553.
    [CrossRef]   [Google Scholar]
  43. Khan, A. Q., Sun, G., Khalid, M., Farrash, M., & Bilal, A. (2024). Multi‐Deep Learning Approach With Transfer Learning for 7‐Stages Diabetic Retinopathy Classification. International Journal of Imaging Systems and Technology, 34(6), e23213.
    [CrossRef]   [Google Scholar]
  44. Yu, X., Ren, J., Long, H. et al. (2024). iDNA-OpenPrompt: OpenPrompt learning model for identifying DNA methylation. Frontiers in Genetics, 15, 1377285.
    [CrossRef]   [Google Scholar]
  45. Feng, X., Xiu, Y. H., Long, H. X. et al. (2023). Advancing single-cell RNA-seq data analysis through the fusion of multi-layer perceptron and graph neural network. Briefings in Bioinformatics, 25(1).
    [CrossRef]   [Google Scholar]
  46. Saw, P. E., & Song, E. (2025). Utilization of AI in Designing RNA Therapeutics. In RNA Therapeutics in Human Diseases (pp. 709-738). Singapore: Springer Nature Singapore.
    [CrossRef]   [Google Scholar]
  47. Bilal, A., Imran, A., Liu, X., Liu, X., Ahmad, Z., Shafiq, M., ... & Long, H. (2024). BC-QNet: A quantum-infused ELM model for breast cancer diagnosis. Computers in Biology and Medicine, 175, 108483.
    [CrossRef]   [Google Scholar]
  48. Huang, S., Yang, J., Fong, S., & Zhao, Q. (2020). Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer letters, 471, 61-71.
    [CrossRef]   [Google Scholar]
  49. Elemento, O., Leslie, C., Lundin, J., & Tourassi, G. (2021). Artificial intelligence in cancer research, diagnosis and therapy. Nature Reviews Cancer, 21(12), 747-752.
    [CrossRef]   [Google Scholar]
  50. Shastry, K. A., & Sanjay, H. A. (2022). Cancer diagnosis using artificial intelligence: a review. Artificial Intelligence Review, 55(4), 2641-2673.
    [CrossRef]   [Google Scholar]
  51. Bilal, A., Alzahrani, A., Almuhaimeed, A., Khan, A. H., Ahmad, Z., & Long, H. (2024). Advanced CKD detection through optimized metaheuristic modeling in healthcare informatics. Scientific Reports, 14(1), 12601.
    [CrossRef]   [Google Scholar]
  52. Bilal, A., Khan, A. H., Almohammadi, K., Al Ghamdi, S. A., Long, H., & Malik, H. (2024). PDCNET: Deep convolutional neural network for classification of periodontal disease using dental radiographs. IEEE Access, 12, 150147-150168.
    [CrossRef]   [Google Scholar]
  53. Loizidou, K., Elia, R., & Pitris, C. (2023). Computer-aided breast cancer detection and classification in mammography: A comprehensive review. Computers in Biology and Medicine, 153, 106554.
    [CrossRef]   [Google Scholar]
  54. Dense breasts. (2023, May 10). Yale Medicine. Retrieved from https://www.yalemedicine.org/conditions/dense-breasts
    [Google Scholar]
  55. Spak, D. A., Plaxco, J. S., Santiago, L., Dryden, M. J., & Dogan, B. E. (2017). BI-RADS® fifth edition: A summary of changes. Diagnostic and interventional imaging, 98(3), 179-190.
    [CrossRef]   [Google Scholar]
  56. Chen, W., Giger, M. L., Bick, U., & Newstead, G. M. (2006). Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE‐MRI. Medical physics, 33(8), 2878-2887.
    [CrossRef]   [Google Scholar]
  57. Lee, H., & Chen, Y. P. P. (2015). Image based computer aided diagnosis system for cancer detection. Expert Systems with Applications, 42(12), 5356-5365.
    [CrossRef]   [Google Scholar]
  58. Wang, D., Khosla, A., Gargeya, R., Irshad, H., & Beck, A. H. (2016). Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:1606.05718.
    [Google Scholar]
  59. Shen, D., Wu, G., & Suk, H. I. (2017). Deep learning in medical image analysis. Annual review of biomedical engineering, 19(1), 221-248.
    [CrossRef]   [Google Scholar]
  60. Liu, T., Huang, J., Liao, T., Pu, R., Liu, S., & Peng, Y. (2022). A hybrid deep learning model for predicting molecular subtypes of human breast cancer using multimodal data. Irbm, 43(1), 62-74.
    [CrossRef]   [Google Scholar]
  61. He, K., Zhang, X., Ren, S., & Sun, J. (2016, June). Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770-778). IEEE.
    [Google Scholar]
  62. Kooi, T., Litjens, G., Van Ginneken, B., Gubern-Mérida, A., Sánchez, C. I., Mann, R., ... & Karssemeijer, N. (2017). Large scale deep learning for computer aided detection of mammographic lesions. Medical image analysis, 35, 303-312.
    [CrossRef]   [Google Scholar]
  63. Wang, L., Wang, H., Huang, Y., Yan, B., Chang, Z., Liu, Z., ... & Li, F. (2022). Trends in the application of deep learning networks in medical image analysis: Evolution between 2012 and 2020. European journal of radiology, 146, 110069.
    [CrossRef]   [Google Scholar]
  64. Abdelrahman, L., Al Ghamdi, M., Collado-Mesa, F., & Abdel-Mottaleb, M. (2021). Convolutional neural networks for breast cancer detection in mammography: A survey. Computers in biology and medicine, 131, 104248.
    [CrossRef]   [Google Scholar]
  65. Hassan, N. M., Hamad, S., & Mahar, K. (2022). Mammogram breast cancer CAD systems for mass detection and classification: a review. Multimedia Tools and Applications, 81(14), 20043-20075.
    [CrossRef]   [Google Scholar]
  66. Phenix, C. P., Togtema, M., Pichardo, S., Zehbe, I., & Curiel, L. (2014). High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery. Journal of Pharmacy & Pharmaceutical Sciences, 17(1), 136-153.
    [CrossRef]   [Google Scholar]
  67. Yassin, N. I., Omran, S., El Houby, E. M., & Allam, H. (2018). Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review. Computer methods and programs in biomedicine, 156, 25-45.
    [CrossRef]   [Google Scholar]
  68. Grabbe, E., Fischer, U., Funke, M., Hermann, K. P., Obenauer, S., & Baum, F. (2001). Value and significance of digital full-field mammography within the scope of mammography screening. Der Radiologe, 41(4), 359-365.
    [CrossRef]   [Google Scholar]
  69. Rondinoni, C., Magnun, C., da Silva, A. V., Heinsen, H. M., & Amaro Jr, E. (2021). Epilepsy under the scope of ultra-high field MRI. Epilepsy & Behavior, 121, 106366.
    [CrossRef]   [Google Scholar]
  70. Dahabreh, I. J., Hadar, N., & Chung, M. (2011). Emerging magnetic resonance imaging technologies for musculoskeletal imaging under loading stress: scope of the literature. Annals of internal medicine, 155(9), 616-624.
    [CrossRef]   [Google Scholar]
  71. Xu, J., Reh, D. D., Carey, J. P., Mahesh, M., & Siewerdsen, J. H. (2012). Technical assessment of a cone‐beam CT scanner for otolaryngology imaging: image quality, dose, and technique protocols. Medical physics, 39(8), 4932-4942.
    [CrossRef]   [Google Scholar]
  72. Saraf, S., & Bera, A. (2021). A review on pore-scale modeling and CT scan technique to characterize the trapped carbon dioxide in impermeable reservoir rocks during sequestration. Renewable and Sustainable Energy Reviews, 144, 110986.
    [CrossRef]   [Google Scholar]
  73. Sendrowicz, A., Myhre, A. O., Wierdak, S. W., & Vinogradov, A. (2021). Challenges and accomplishments in mechanical testing instrumented by in situ techniques: Infrared thermography, digital image correlation, and acoustic emission. Applied Sciences, 11(15), 6718.
    [CrossRef]   [Google Scholar]
  74. Steinberger, R., Leitão, T. V., Ladstätter, E., Pinter, G., Billinger, W., & Lang, R. W. (2006). Infrared thermographic techniques for non-destructive damage characterization of carbon fibre reinforced polymers during tensile fatigue testing. International Journal of Fatigue, 28(10), 1340-1347.
    [CrossRef]   [Google Scholar]
  75. Ghadially, F. N. (1979). Invited review. The technique and scope of electron-probe X-ray analysis in pathology. Pathology, 11(1), 95-110.
    [CrossRef]   [Google Scholar]
  76. Hoffmann, J., Dammann, F., Troitzsch, D., Krimmel, M., Gülicher, D., & Reinert, S. (2002). Intraoperative computer tomography control within the scope of maxillofacial traumatology using a mobile scanner. Biomedizinische Technik. Biomedical Engineering, 47(6), 155-158.
    [CrossRef]   [Google Scholar]
  77. Aglan, I., Jodocy, D., Hiehs, S., Soegner, P., Frank, R., Haberfellner, B., ... & Feuchtner, G. M. (2010). Clinical relevance and scope of accidental extracoronary findings in coronary computed tomography angiography: a cardiac versus thoracic FOV study. European journal of radiology, 74(1), 166-174.
    [CrossRef]   [Google Scholar]
  78. Zhang, Y., Liu, Y. L., Nie, K., Zhou, J., Chen, Z., Chen, J. H., ... & Su, M. Y. (2023). Deep learning-based automatic diagnosis of breast cancer on MRI using mask R-CNN for detection followed by ResNet50 for classification. Academic radiology, 30, S161-S171.
    [CrossRef]   [Google Scholar]
  79. Islam, M. M., Huang, S., Ajwad, R., Chi, C., Wang, Y., & Hu, P. (2020). An integrative deep learning framework for classifying molecular subtypes of breast cancer. Computational and structural biotechnology journal, 18, 2185-2199.
    [CrossRef]   [Google Scholar]
  80. Kim, S. Y., Choi, Y., Kim, E. K., Han, B. K., Yoon, J. H., Choi, J. S., & Chang, J. M. (2021). Deep learning-based computer-aided diagnosis in screening breast ultrasound to reduce false-positive diagnoses. Scientific Reports, 11(1), 395.
    [CrossRef]   [Google Scholar]
  81. McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., ... & Shetty, S. (2020). Addendum: International evaluation of an AI system for breast cancer screening. Nature, 586(7829), E19-E19.
    [CrossRef]   [Google Scholar]
  82. Issa, N. T., Stathias, V., Schürer, S., & Dakshanamurthy, S. (2021, January). Machine and deep learning approaches for cancer drug repurposing. In Seminars in cancer biology (Vol. 68, pp. 132-142). Academic Press.
    [CrossRef]   [Google Scholar]
  83. Xiao, T., Xia, T., Yang, Y., Huang, C., & Wang, X. (2015, June). Learning from massive noisy labeled data for image classification. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 2691-2699). IEEE.
    [CrossRef]   [Google Scholar]
  84. Tung, F., Wong, A., & Clausi, D. A. (2010). Enabling scalable spectral clustering for image segmentation. Pattern Recognition, 43(12), 4069-4076.
    [CrossRef]   [Google Scholar]
  85. Wu, C., Wu, F., Wu, S., Yuan, Z., Liu, J., & Huang, Y. (2019). Semi-supervised dimensional sentiment analysis with variational autoencoder. Knowledge-Based Systems, 165, 30-39.
    [CrossRef]   [Google Scholar]
  86. Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. nature, 529(7587), 484-489.
    [CrossRef]   [Google Scholar]
  87. Chao, C. M., Yu, Y. W., Cheng, B. W., & Kuo, Y. L. (2014). Construction the model on the breast cancer survival analysis use support vector machine, logistic regression and decision tree. Journal of medical systems, 38(10), 106.
    [CrossRef]   [Google Scholar]
  88. Elkorany, A. S., Marey, M., Almustafa, K. M., & Elsharkawy, Z. F. (2022). Breast cancer diagnosis using support vector machines optimized by whale optimization and dragonfly algorithms. IEEE Access, 10, 69688-69699.
    [CrossRef]   [Google Scholar]
  89. Islam, M. M., Iqbal, H., Haque, M. R., & Hasan, M. K. (2017, December). Prediction of breast cancer using support vector machine and K-Nearest neighbors. In 2017 IEEE region 10 humanitarian technology conference (R10-HTC) (pp. 226-229). IEEE.
    [CrossRef]   [Google Scholar]
  90. MurtiRawat, R., Panchal, S., Singh, V. K., & Panchal, Y. (2020, July). Breast Cancer detection using K-nearest neighbors, logistic regression and ensemble learning. In 2020 international conference on electronics and sustainable communication systems (ICESC) (pp. 534-540). IEEE.
    [CrossRef]   [Google Scholar]
  91. Huang, Z., & Chen, D. (2021). A breast cancer diagnosis method based on VIM feature selection and hierarchical clustering random forest algorithm. IEEE Access, 10, 3284-3293.
    [CrossRef]   [Google Scholar]
  92. Wang, H., Zheng, B., Yoon, S. W., & Ko, H. S. (2018). A support vector machine-based ensemble algorithm for breast cancer diagnosis. European Journal of Operational Research, 267(2), 687-699.
    [CrossRef]   [Google Scholar]
  93. Zhang, T., Lin, W., Vogelmann, A. M., Zhang, M., Xie, S., Qin, Y., & Golaz, J. C. (2021). Improving convection trigger functions in deep convective parameterization schemes using machine learning. Journal of Advances in Modeling Earth Systems, 13(5), e2020MS002365.
    [CrossRef]   [Google Scholar]
  94. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with applications in R (Vol. 103). New York: springer.
    [CrossRef]   [Google Scholar]
  95. Zahoor, S., Lali, I. U., Khan, M. A., Javed, K., & Mehmood, W. (2020). Breast cancer detection and classification using traditional computer vision techniques: a comprehensive review. Current Medical Imaging Reviews, 16(10), 1187-1200.
    [CrossRef]   [Google Scholar]
  96. Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression. John Wiley & Sons.
    [Google Scholar]
  97. Maaten, L. V. D., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(Nov), 2579-2605.
    [Google Scholar]
  98. Loh, W. Y. (2011). Classification and regression trees. Wiley interdisciplinary reviews: data mining and knowledge discovery, 1(1), 14-23.
    [CrossRef]   [Google Scholar]
  99. Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
    [CrossRef]   [Google Scholar]
  100. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
    [CrossRef]   [Google Scholar]
  101. Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 18-22.
    [Google Scholar]
  102. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
    [CrossRef]   [Google Scholar]
  103. Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM transactions on intelligent systems and technology (TIST), 2(3), 1-27.
    [CrossRef]   [Google Scholar]
  104. Foord, A., Gültekin, K., Reynolds, M. T., Hodges-Kluck, E., Cackett, E. M., Comerford, J. M., ... & Runnoe, J. C. (2019). A bayesian analysis of SDSS J0914+ 0853, a low-mass dual AGN candidate. The Astrophysical Journal, 877(1), 17.
    [CrossRef]   [Google Scholar]
  105. McCallum, A., & Nigam, K. (1998, July). A comparison of event models for naive bayes text classification. In AAAI-98 workshop on learning for text categorization (Vol. 752, No. 1, pp. 41-48).
    [Google Scholar]
  106. Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1), 21-27.
    [CrossRef]   [Google Scholar]
  107. Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 2(11), 559-572.
    [CrossRef]   [Google Scholar]
  108. Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2(4), 433-459.
    [CrossRef]   [Google Scholar]
  109. Kherif, F., & Latypova, A. (2020). Principal component analysis. In Machine learning (pp. 209-225). Academic Press.
    [CrossRef]   [Google Scholar]
  110. Tang, J., Yu, W., Chai, T., & Zhao, L. (2012). On-line principal component analysis with application to process modeling. Neurocomputing, 82, 167-178.
    [CrossRef]   [Google Scholar]
  111. Kumar, M., Raghuwanshi, N. S., & Singh, R. (2011). Artificial neural networks approach in evapotranspiration modeling: a review. Irrigation science, 29(1), 11-25.
    [CrossRef]   [Google Scholar]
  112. Zhang, Z., Beck, M. W., Winkler, D. A., Huang, B., Sibanda, W., & Goyal, H. (2018). Opening the black box of neural networks: methods for interpreting neural network models in clinical applications. Annals of translational medicine, 6(11), 216.
    [CrossRef]   [Google Scholar]
  113. Han, X. (2017). MR‐based synthetic CT generation using a deep convolutional neural network method. Medical physics, 44(4), 1408-1419.
    [CrossRef]   [Google Scholar]
  114. Jabbar, R., Shinoy, M., Kharbeche, M., Al-Khalifa, K., Krichen, M., & Barkaoui, K. (2020, February). Driver drowsiness detection model using convolutional neural networks techniques for android application. In 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT) (pp. 237-242). IEEE.
    [CrossRef]   [Google Scholar]
  115. Han, X. (2017). Automatic liver lesion segmentation using a deep convolutional neural network method. arXiv preprint arXiv:1704.07239.
    [Google Scholar]
  116. Medsker, L., & Jain, L. C. (Eds.). (1999). Recurrent neural networks: design and applications. CRC press.
    [Google Scholar]
  117. Tian, Z., & Zuo, M. J. (2010). Health condition prediction of gears using a recurrent neural network approach. IEEE transactions on reliability, 59(4), 700-705.
    [CrossRef]   [Google Scholar]
  118. Van Houdt, G., Mosquera, C., & Nápoles, G. (2020). A review on the long short-term memory model. Artificial intelligence review, 53(8), 5929-5955.
    [CrossRef]   [Google Scholar]
  119. Yuan, X., Li, L., & Wang, Y. (2019). Nonlinear dynamic soft sensor modeling with supervised long short-term memory network. IEEE transactions on industrial informatics, 16(5), 3168-3176.
    [CrossRef]   [Google Scholar]
  120. Pinaya, W. H. L., Vieira, S., Garcia-Dias, R., & Mechelli, A. (2020). Autoencoders. In Machine learning (pp. 193-208). Academic Press.
    [CrossRef]   [Google Scholar]
  121. Holden, D., Saito, J., Komura, T., & Joyce, T. (2015). Learning motion manifolds with convolutional autoencoders. In SIGGRAPH Asia 2015 technical briefs (pp. 1-4).
    [CrossRef]   [Google Scholar]
  122. Shankar, V., & Parsana, S. (2022). An overview and empirical comparison of natural language processing (NLP) models and an introduction to and empirical application of autoencoder models in marketing. Journal of the Academy of Marketing Science, 50(6), 1324-1350.
    [CrossRef]   [Google Scholar]
  123. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., & Bharath, A. A. (2018). Generative adversarial networks: An overview. IEEE signal processing magazine, 35(1), 53-65.
    [CrossRef]   [Google Scholar]
  124. Aggarwal, A., Mittal, M., & Battineni, G. (2021). Generative adversarial network: An overview of theory and applications. International Journal of Information Management Data Insights, 1(1), 100004.
    [CrossRef]   [Google Scholar]
  125. Eckerli, F., & Osterrieder, J. (2021). Generative adversarial networks in finance: an overview. arXiv preprint arXiv:2106.06364.
    [Google Scholar]
  126. Oyelade, O. J., Oladipupo, O. O., & Obagbuwa, I. C. (2010). Application of k Means Clustering algorithm for prediction of Students Academic Performance. arXiv preprint arXiv:1002.2425.
    [Google Scholar]
  127. Anitha, P., & Patil, M. M. (2022). RFM model for customer purchase behavior using K-Means algorithm. Journal of King Saud University-Computer and Information Sciences, 34(5), 1785-1792.
    [CrossRef]   [Google Scholar]
  128. Pham, D. T., Dimov, S. S., & Nguyen, C. D. (2005). Selection of K in K-means clustering. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 219(1), 103-119.
    [CrossRef]   [Google Scholar]
  129. Murtagh, F., & Contreras, P. (2012). Algorithms for hierarchical clustering: an overview. Wiley interdisciplinary reviews: data mining and knowledge discovery, 2(1), 86-97.
    [CrossRef]   [Google Scholar]
  130. Li, T., Rezaeipanah, A., & El Din, E. M. T. (2022). An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement. Journal of King Saud University-Computer and Information Sciences, 34(6), 3828-3842.
    [CrossRef]   [Google Scholar]
  131. Babur, Ö., Cleophas, L., & van den Brand, M. (2016, June). Hierarchical clustering of metamodels for comparative analysis and visualization. In European conference on modelling foundations and applications (pp. 3-18). Cham: Springer International Publishing.
    [CrossRef]   [Google Scholar]
  132. Bouguila, N., & Fan, W. (Eds.). (2020). Mixture models and applications (Vol. 530). Berlin/Heidelberg, Germany: Springer.
    [CrossRef]   [Google Scholar]
  133. Allili, M. S., Bouguila, N., & Ziou, D. (2007, May). Finite Generalized Gaussian Mixture Modeling and Applications to Image and Video Foreground Segmentation. In Fourth Canadian Conference on Computer and Robot Vision (CRV'07) (pp. 183-190). IEEE.
    [CrossRef]   [Google Scholar]
  134. Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008, December). Isolation forest. In 2008 eighth ieee international conference on data mining (pp. 413-422). IEEE.
    [CrossRef]   [Google Scholar]
  135. Togbe, M. U., Barry, M., Boly, A., Chabchoub, Y., Chiky, R., Montiel, J., & Tran, V. T. (2020, July). Anomaly detection for data streams based on isolation forest using scikit-multiflow. In International conference on computational science and its applications (pp. 15-30). Cham: Springer International Publishing.
    [CrossRef]   [Google Scholar]
  136. Tokovarov, M., & Karczmarek, P. (2022). A probabilistic generalization of isolation forest. Information Sciences, 584, 433-449.
    [CrossRef]   [Google Scholar]
  137. Xiao, Y., Wang, H., Zhang, L., & Xu, W. (2014). Two methods of selecting Gaussian kernel parameters for one-class SVM and their application to fault detection. Knowledge-Based Systems, 59, 75-84.
    [CrossRef]   [Google Scholar]
  138. Devi, D., Biswas, S. K., & Purkayastha, B. (2019). Learning in presence of class imbalance and class overlapping by using one-class SVM and undersampling technique. Connection Science, 31(2), 105-142.
    [CrossRef]   [Google Scholar]
  139. Amer, M., Goldstein, M., & Abdennadher, S. (2013, August). Enhancing one-class support vector machines for unsupervised anomaly detection. In Proceedings of the ACM SIGKDD workshop on outlier detection and description (pp. 8-15).
    [CrossRef]   [Google Scholar]
  140. Smiti, A. (2020). A critical overview of outlier detection methods. Computer Science Review, 38, 100306.
    [CrossRef]   [Google Scholar]
  141. Behera, S., & Rani, R. (2016, August). Comparative analysis of density based outlier detection techniques on breast cancer data using hadoop and map reduce. In 2016 International Conference on Inventive Computation Technologies (ICICT) (Vol. 2, pp. 1-4). IEEE.
    [CrossRef]   [Google Scholar]
  142. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90.
    [CrossRef]   [Google Scholar]
  143. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
    [CrossRef]   [Google Scholar]
  144. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144.
    [CrossRef]   [Google Scholar]
  145. Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850.
    [Google Scholar]
  146. Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in neural information processing systems, 27.
    [Google Scholar]
  147. Brock, A., Donahue, J., & Simonyan, K. (2018). Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096.
    [Google Scholar]
  148. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, D. (2015). Human-level control through deep reinforcement learning. nature, 518(7540), 529-533.
    [CrossRef]   [Google Scholar]
  149. Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., ... & Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.
    [Google Scholar]
  150. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
    [CrossRef]   [Google Scholar]
  151. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). IEEE.
    [CrossRef]   [Google Scholar]
  152. Montavon, G., Samek, W., & Müller, K. R. (2018). Methods for interpreting and understanding deep neural networks. Digital signal processing, 73, 1-15.
    [CrossRef]   [Google Scholar]
  153. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., & Mané, D. (2016). Concrete problems in AI safety. arXiv preprint arXiv:1606.06565.
    [Google Scholar]
  154. Ashish, V. (2017). Attention is all you need. Advances in neural information processing systems, 30, I.
    [Google Scholar]
  155. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
    [Google Scholar]
  156. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2020). A comprehensive survey on graph neural networks. IEEE transactions on neural networks and learning systems, 32(1), 4-24.
    [CrossRef]   [Google Scholar]
  157. Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10), 1345-1359.
    [CrossRef]   [Google Scholar]
  158. Finn, C., Abbeel, P., & Levine, S. (2017, July). Model-agnostic meta-learning for fast adaptation of deep networks. In International conference on machine learning (pp. 1126-1135). PMLR.
    [Google Scholar]
  159. Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov, A. D., & Van De Weijer, J. (2022). Class-incremental learning: survey and performance evaluation on image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5), 5513-5533.
    [CrossRef]   [Google Scholar]
  160. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature medicine, 25(1), 24-29.
    [CrossRef]   [Google Scholar]
  161. Grigorescu, S., Trasnea, B., Cocias, T., & Macesanu, G. (2020). A survey of deep learning techniques for autonomous driving. Journal of field robotics, 37(3), 362-386.
    [CrossRef]   [Google Scholar]
  162. Hino, M., Benami, E., & Brooks, N. (2018). Machine learning for environmental monitoring. Nature Sustainability, 1(10), 583-588.
    [CrossRef]   [Google Scholar]
  163. Kattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021). Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS journal of photogrammetry and remote sensing, 173, 24-49.
    [CrossRef]   [Google Scholar]
  164. Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306.
    [CrossRef]   [Google Scholar]
  165. Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F., & Zheng, Y. (2019). Recent progress on generative adversarial networks (GANs): A survey. IEEE access, 7, 36322-36333.
    [CrossRef]   [Google Scholar]
  166. Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural computation, 18(7), 1527-1554.
    [CrossRef]   [Google Scholar]
  167. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., & Pineau, J. (2018). An introduction to deep reinforcement learning. Foundations and Trends® in Machine Learning, 11(3-4), 219-354. http://dx.doi.org/10.1561/2200000071
    [Google Scholar]
  168. Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. Foundations and Trends® in Machine Learning, 12(4), 307-392. http://dx.doi.org/10.1561/2200000056
    [Google Scholar]
  169. Huang, Y. (2020). Deep Q-networks. In Deep reinforcement learning: fundamentals, research and applications (pp. 135-160). Singapore: Springer Singapore.
    [CrossRef]   [Google Scholar]
  170. Cheng, J., Dong, L., & Lapata, M. (2016). Long short-term memory-networks for machine reading. arXiv preprint arXiv:1601.06733.
    [Google Scholar]
  171. Kulkarni, T. D., Whitney, W. F., Kohli, P., & Tenenbaum, J. B. (2015, December). Deep convolutional inverse graphics network. In Proceedings of the 29th International Conference on Neural Information Processing Systems-Volume 2 (pp. 2539-2547).
    [CrossRef]   [Google Scholar]
  172. Patrick, M. K., Adekoya, A. F., Mighty, A. A., & Edward, B. Y. (2022). Capsule networks–a survey. Journal of King Saud University-computer and information sciences, 34(1), 1295-1310.
    [CrossRef]   [Google Scholar]
  173. Paoletti, M. E., Haut, J. M., Fernandez-Beltran, R., Plaza, J., Plaza, A., Li, J., & Pla, F. (2018). Capsule networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 57(4), 2145-2160.
    [CrossRef]   [Google Scholar]
  174. Hu, C., Sun, X., Yuan, Z., & Wu, Y. (2021). Classification of breast cancer histopathological image with deep residual learning. International Journal of Imaging Systems and Technology, 31(3), 1583-1594.
    [CrossRef]   [Google Scholar]
  175. Ozanich, E., Gerstoft, P., & Niu, H. (2020). A feedforward neural network for direction-of-arrival estimation. J. Acoust. Soc. Am., 147(3), 2035-2048.
    [CrossRef]   [Google Scholar]
  176. Mirjalili, S. Z., Saremi, S., & Mirjalili, S. M. (2015). Designing evolutionary feedforward neural networks using social spider optimization algorithm. Neural Computing and Applications, 26(8), 1919-1928.
    [CrossRef]   [Google Scholar]
  177. Sakib, S., Ahmed, N., Kabir, A. J., & Ahmed, H. (2019). An overview of convolutional neural network: Its architecture and applications.
    [CrossRef]   [Google Scholar]
  178. Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2021). A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems, 33(12), 6999-7019.
    [CrossRef]   [Google Scholar]
  179. Pinaya, W. H. L., Vieira, S., Garcia-Dias, R., & Mechelli, A. (2020). Convolutional neural networks. In Machine learning (pp. 173-191). Academic Press.
    [CrossRef]   [Google Scholar]
  180. Yao, H., Zhang, X., Zhou, X., & Liu, S. (2019). Parallel structure deep neural network using CNN and RNN with an attention mechanism for breast cancer histology image classification. cancers, 11(12), 1901.
    [CrossRef]   [Google Scholar]
  181. Zheng, Y., Yang, C., & Wang, H. (2020, April). Enhancing breast cancer detection with recurrent neural network. In Mobile Multimedia/Image Processing, Security, and Applications 2020 (Vol. 11399, pp. 64-75). SPIE.
    [CrossRef]   [Google Scholar]
  182. Yan, R., Ren, F., Wang, Z., Wang, L., Zhang, T., Liu, Y., ... & Zhang, F. (2020). Breast cancer histopathological image classification using a hybrid deep neural network. Methods, 173, 52-60.
    [CrossRef]   [Google Scholar]
  183. Zhang, F., Zhang, Y., Zhu, X., Chen, X., Du, H., & Zhang, X. (2022). PregGAN: A prognosis prediction model for breast cancer based on conditional generative adversarial networks. Computer Methods and programs in Biomedicine, 224, 107026.
    [CrossRef]   [Google Scholar]
  184. Oyelade, O. N., Ezugwu, A. E., Almutairi, M. S., Saha, A. K., Abualigah, L., & Chiroma, H. (2022). A generative adversarial network for synthetization of regions of interest based on digital mammograms. Scientific Reports, 12(1), 6166.
    [CrossRef]   [Google Scholar]
  185. Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., & Madabhushi, A. (2015). Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE transactions on medical imaging, 35(1), 119-130.
    [CrossRef]   [Google Scholar]
  186. Toğaçar, M., Ergen, B., & Cömert, Z. (2020). Application of breast cancer diagnosis based on a combination of convolutional neural networks, ridge regression and linear discriminant analysis using invasive breast cancer images processed with autoencoders. Medical hypotheses, 135, 109503.
    [CrossRef]   [Google Scholar]
  187. Houssein, E. H., Emam, M. M., Ali, A. A., & Suganthan, P. N. (2021). Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review. Expert Systems with Applications, 167, 114161.
    [CrossRef]   [Google Scholar]
  188. Allugunti, V. R. (2022). Breast cancer detection based on thermographic images using machine learning and deep learning algorithms. International Journal of Engineering in Computer Science, 4(1), 49-56.
    [Google Scholar]
  189. Deniz, E., Şengür, A., Kadiroğlu, Z., Guo, Y., Bajaj, V., & Budak, Ü. (2018). Transfer learning based histopathologic image classification for breast cancer detection. Health information science and systems, 6(1), 18.
    [CrossRef]   [Google Scholar]
  190. Thuy, M. B. H., & Hoang, V. T. (2019, December). Fusing of deep learning, transfer learning and gan for breast cancer histopathological image classification. In International conference on computer science, Applied Mathematics and Applications (pp. 255-266). Cham: Springer International Publishing.
    [CrossRef]   [Google Scholar]
  191. Soulami, K. B., Kaabouch, N., & Saidi, M. N. (2022). Breast cancer: Classification of suspicious regions in digital mammograms based on capsule network. Biomedical Signal Processing and Control, 76, 103696.
    [CrossRef]   [Google Scholar]
  192. Anupama, M. A., Sowmya, V., & Soman, K. P. (2019, April). Breast cancer classification using capsule network with preprocessed histology images. In 2019 International conference on communication and signal processing (ICCSP) (pp. 0143-0147). IEEE.
    [CrossRef]   [Google Scholar]
  193. Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H. R., Albarqouni, S., ... & Cardoso, M. J. (2020). The future of digital health with federated learning. NPJ digital medicine, 3(1), 119.
    [CrossRef]   [Google Scholar]
  194. Ogier du Terrail, J., Leopold, A., Joly, C., Béguier, C., Andreux, M., Maussion, C., ... & Heudel, P. E. (2023). Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer. Nature medicine, 29(1), 135-146.
    [CrossRef]   [Google Scholar]
  195. Bell, J. (2022). What is machine learning?. Machine learning and the city: applications in architecture and urban design, 207-216.
    [CrossRef]   [Google Scholar]
  196. Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). Cambridge: MIT press.
    [Google Scholar]
  197. Goltz, N. S., & Dowdeswell, T. (2023). Real world AI ethics for data scientists: Practical case studies. Chapman and Hall/CRC.
    [CrossRef]   [Google Scholar]
  198. Ng, A. (2018). Machine learning yearning. deeplearning.ai. Retrieved from https://www.deeplearning.ai, https://github.com/ajaymache/machine-learning-yearning
    [Google Scholar]
  199. Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: springer.
    [Google Scholar]
  200. Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. " O'Reilly Media, Inc.".
    [Google Scholar]
  201. Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., & Bengio, Y. (2013, May). Maxout networks. In International conference on machine learning (pp. 1319-1327). PMLR.
    [Google Scholar]
  202. LeCun, Y. (1998). The MNIST database of handwritten digits. Retrieved from http://yann.lecun.com/exdb/mnist/.
    [Google Scholar]
  203. Chollet, F. (2021). Deep learning with Python. simon and schuster.
    [Google Scholar]
  204. Shukla, V., & Choudhary, S. (2022). Deep learning in neural networks: an overview. deep learning in visual computing and signal processing, 29-53.
    [Google Scholar]
  205. Shanmugamani, R. (2018). Deep Learning for Computer Vision: Expert techniques to train advanced neural networks using TensorFlow and Keras. Packt Publishing Ltd.
    [Google Scholar]
  206. Hechtlinger, Y. (2016). Interpretation of prediction models using the input gradient. arXiv preprint arXiv:1611.07634.
    [Google Scholar]
  207. Molnar, C. (2020). Interpretable machine learning. Lulu.com.
    [Google Scholar]
  208. Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.
    [Google Scholar]
  209. Lee, W. M. (2019). Python machine learning. John Wiley & Sons.
    [Google Scholar]
  210. Ramadan, S. Z. (2020). Methods Used in Computer‐Aided Diagnosis for Breast Cancer Detection Using Mammograms: A Review. Journal of healthcare engineering, 2020(1), 9162464.
    [CrossRef]   [Google Scholar]
  211. Baker, S., & Xiang, W. (2023). Artificial intelligence of things for smarter healthcare: A survey of advancements, challenges, and opportunities. IEEE Communications Surveys & Tutorials, 25(2), 1261-1293.
    [CrossRef]   [Google Scholar]
  212. Ghiasi, M. M., & Zendehboudi, S. (2021). Application of decision tree-based ensemble learning in the classification of breast cancer. Computers in biology and medicine, 128, 104089.
    [CrossRef]   [Google Scholar]
  213. Afolayan, J. O., Adebiyi, M. O., Arowolo, M. O., Chakraborty, C., & Adebiyi, A. A. (2022). Breast cancer detection using particle swarm optimization and decision tree machine learning technique. In Intelligent Healthcare: Infrastructure, Algorithms and Management (pp. 61-83). Singapore: Springer Nature Singapore.
    [CrossRef]   [Google Scholar]
  214. Dai, B., Chen, R. C., Zhu, S. Z., & Zhang, W. W. (2018, December). Using random forest algorithm for breast cancer diagnosis. In 2018 International symposium on computer, consumer and control (IS3C) (pp. 449-452). IEEE.
    [CrossRef]   [Google Scholar]
  215. Wang, S., Wang, Y., Wang, D., Yin, Y., Wang, Y., & Jin, Y. (2020). An improved random forest-based rule extraction method for breast cancer diagnosis. Applied Soft Computing, 86, 105941.
    [CrossRef]   [Google Scholar]
  216. Wang, Y., Liu, Q., Yang, Y., Wang, L., Song, X., & Zhao, X. (2023). Prognostic staging of esophageal cancer based on prognosis index and cuckoo search algorithm-support vector machine. Biomedical Signal Processing and Control, 79, 104207.
    [CrossRef]   [Google Scholar]
  217. Priscila, S. S., & Kumar, C. S. (2022, November). Classification of medical datasets using optimal feature selection method with multi-support vector machine. In International Conference on Advancements in Smart Computing and Information Security (pp. 220-232). Cham: Springer Nature Switzerland.
    [CrossRef]   [Google Scholar]
  218. Srikanth, V. S., & Krithiga, S. (2023). Pre-Trained Deep Neural Network-Based Computer-Aided Breast Tumor Diagnosis Using ROI Structures. Intelligent Automation & Soft Computing, 35(1).
    [CrossRef]   [Google Scholar]
  219. Aslan, M. F. (2023). A hybrid end-to-end learning approach for breast cancer diagnosis: convolutional recurrent network. Computers and Electrical Engineering, 105, 108562.
    [CrossRef]   [Google Scholar]
  220. Sahu, A., Das, P. K., & Meher, S. (2023). High accuracy hybrid CNN classifiers for breast cancer detection using mammogram and ultrasound datasets. Biomedical Signal Processing and Control, 80, 104292.
    [CrossRef]   [Google Scholar]
  221. Aidossov, N., Zarikas, V., Mashekova, A., Zhao, Y., Ng, E. Y. K., Midlenko, A., & Mukhmetov, O. (2023). Evaluation of integrated CNN, transfer learning, and BN with thermography for breast cancer detection. Applied Sciences, 13(1), 600.
    [CrossRef]   [Google Scholar]
  222. Boudouh, S. S., & Bouakkaz, M. (2023). Breast cancer: toward an accurate breast tumor detection model in mammography using transfer learning techniques. Multimedia Tools and Applications, 82(22), 34913-34936.
    [CrossRef]   [Google Scholar]
  223. Dubey, A., Singh, S. K., & Jiang, X. (2022, December). Leveraging CNN and transfer learning for classification of histopathology images. In International Conference on Machine Learning, Image Processing, Network Security and Data Sciences (pp. 3-13). Cham: Springer Nature Switzerland.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Tahir, A., & Khan, A. Q. (2025). Exploring the Potential of Machine Learning and Deep Learning for Predictive Breast Cancer Analytics. ICCK Transactions on Radiology and Imaging, 1(1), 11–42. https://doi.org/10.62762/TRI.2025.234235

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 943
PDF Downloads: 66

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
Institute of Central Computation and Knowledge (ICCK) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ICCK Transactions on Radiology and Imaging

ICCK Transactions on Radiology and Imaging

ISSN: request pending (Online) | ISSN: request pending (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/