-
CiteScore
-
Impact Factor
Volume 2, Issue 3, ICCK Transactions on Sensing, Communication, and Control
Volume 2, Issue 3, 2025
Submit Manuscript Edit a Special Issue
Academic Editor
Saleh Mobayen
Saleh Mobayen
National Yunlin University of Science and Technology, Taiwan
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Transactions on Sensing, Communication, and Control, Volume 2, Issue 3, 2025: 147-167

Research Article | 23 July 2025
Optimizing Collaborative Task Allocation in Internet of Vehicles (IoV) through Blockchain-Enabled Incentive Mechanisms
1 Department of Computer Science, Qurtuba University of Science & Information Technology, Peshawar 25000, Pakistan
2 IMT Atlantique, Brest Campus, 655 Avenue du Technopôle, Plouzané 29280, France
3 Faculty of Electrical Engineering, West Pomeranian University of Technology, Szczecin 70-313, Poland
4 Department of Computer Science, University of Bari Aldo Moro, Bari 70125, Italy
* Corresponding Author: Zeeshan Ali Haider, [email protected]
Received: 29 April 2025, Accepted: 24 May 2025, Published: 23 July 2025  
Abstract
The Internet of Vehicles (IoV) is a core component of smart transportation systems, making it feasible to exchange information among vehicles, infrastructure, and central systems in real time. However, the effective use of resources and the efficient distribution of tasks in these dynamic environments is a challenging task. This paper presents a blockchain-based collaborative task allocation framework method that can solve these problems by using a greedy algorithm for general task allocation and adopting a dynamic collaboration scheduling algorithm for emergent tasks. Employing the blockchain-based reward mechanism, the transparency, fairness, and security in dynamic mobile crowdsensing (MCS) tasks encourage vehicle participation. Our experimental results show that our framework outperforms traditional task allocation methods in terms of resource optimization and task completion time, particularly for emergent tasks with real-time demand for multisite collaborative vehicles. Further results reveal that the blockchain mechanism can ensure fair rewards allocation and increase system scalability. Future work will focus on improving energy efficiency and scalability, as well as on how to apply privacy-preserving techniques to the IoV environment in the future.

Graphical Abstract
Optimizing Collaborative Task Allocation in Internet of Vehicles (IoV) through Blockchain-Enabled Incentive Mechanisms

Keywords
internet of vehicles (IoV)
blockchain
collaborative task allocation
incentive mechanism
general task
emergent tasks
task scheduling

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Zhao, F., Yang, B., Su, Z., Li, C., & Ding, Y. (2025). A blockchain-enabled privacy-preserving and incentive mechanism-driven federated learning scheme for IoV. Computer Networks, 264, 111262.
    [CrossRef]   [Google Scholar]
  2. Ullah, I., Khalil, I., Bai, X., Garg, S., Kaddoum, G., & Shamim, M. (2025). An ensemble-based hybrid model for the detection of attacks in the Internet of Vehicular Things. IEEE Transactions on Intelligent Transportation Systems.
    [CrossRef]   [Google Scholar]
  3. Hu, Z., Liu, B., Shen, A., & Luo, J. (2024). Blockchain-Based Resource Allocation Mechanism for the Internet of Vehicles: Balancing Efficiency and Security. IEEE Transactions on Network and Service Management.
    [CrossRef]   [Google Scholar]
  4. Chang, H., Liu, Y., & Sheng, Z. (2023). Distributed multi-agent reinforcement learning for collaborative path planning and scheduling in blockchain-based cognitive internet of vehicles. IEEE Transactions on Vehicular Technology, 73(5), 6301-6317.
    [CrossRef]   [Google Scholar]
  5. Fu, Y., Dong, M., Zhou, L., Li, C., Yu, F. R., & Cheng, N. (2024). A distributed incentive mechanism to balance demand and communication overhead for multiple federated learning tasks in IoV. IEEE Internet of Things Journal.
    [CrossRef]   [Google Scholar]
  6. Naeem, H. M. Y., Bhatti, A. I., Butt, Y. A., Ahmed, Q., & Bai, X. (2024). Energy efficient solution for connected electric vehicle and battery health management using eco-driving under uncertain environmental conditions. IEEE Transactions on Intelligent Vehicles.
    [CrossRef]   [Google Scholar]
  7. Xie, Y., Li, P., Zhang, J., Attar, R. W., Arya, V., & Gupta, B. B. (2025). An Incentive Mechanism Considering Privacy Metric for Personalized Application. IEEE Transactions on Consumer Electronics.
    [CrossRef]   [Google Scholar]
  8. Hazarika, B., Singh, K., Biswas, S., & Li, C. P. (2022). DRL-based resource allocation for computation offloading in IoV networks. IEEE Transactions on Industrial Informatics, 18(11), 8027-8038.
    [CrossRef]   [Google Scholar]
  9. Abishu, H. N., Seid, A. M., Jhaveri, R. H., Gadekallu, T. R., Erbad, A., & Guizani, M. (2024). Blockchain-empowered resource allocation in haps-assisted iov digital twin networks: A federated drl approach. IEEE Transactions on Intelligent Vehicles.
    [CrossRef]   [Google Scholar]
  10. Liu, P., Zhang, Z., Ren, C., & You, H. (2025). A blockchain-based resource sharing incentivization mechanism for multi-to-multi in compute first networking. Computer Networks, 111318.
    [CrossRef]   [Google Scholar]
  11. Zhang, J., Lou, W., Sun, H., Su, Q., & Li, W. (2022). Truthful auction mechanisms for resource allocation in the Internet of Vehicles with public blockchain networks. Future Generation Computer Systems, 132, 11-24.
    [CrossRef]   [Google Scholar]
  12. Li, C., Zhao, P., Yu, F. R., & Fu, Y. (2025). Incentivizing Cooperative Sensing Sharing Ecosystem for Connected and Autonomous Vehicles. IEEE Transactions on Intelligent Transportation Systems.
    [CrossRef]   [Google Scholar]
  13. Devi, A., Rathee, G., & Saini, H. (2022). Secure blockchain-Internet of Vehicles (B-IoV) mechanism using DPSO and M-ITA algorithms. Journal of Information Security and Applications, 64, 103094.
    [CrossRef]   [Google Scholar]
  14. Gosain, I., Gupta, A., Mongia, A., Wahi, P., & Jha, V. (2023, June). A Survey of Incentive Mechanism in MCS: Types and Characteristics. In 2023 IEEE World AI IoT Congress (AIIoT) (pp. 0613-0619). IEEE.
    [CrossRef]   [Google Scholar]
  15. Jaimes, L. G., Vergara-Laurens, I. J., & Raij, A. (2015). A survey of incentive techniques for mobile crowd sensing. IEEE Internet of Things journal, 2(5), 370-380.
    [CrossRef]   [Google Scholar]
  16. Billah, M., Mehedi, S. T., Anwar, A., Rahman, Z., & Islam, R. (2022). A systematic literature review on blockchain enabled federated learning framework for internet of vehicles. arXiv preprint arXiv:2203.05192.
    [CrossRef]   [Google Scholar]
  17. Hussain, S., Tahir, S., Masood, A., & Tahir, H. (2024). Blockchain-enabled secure communication framework for enhancing trust and access control in the internet of vehicles (IoV). IEEE Access.
    [CrossRef]   [Google Scholar]
  18. Zhang, C., Shan, G., & Roh, B. H. (2025). FMD-IoV: Security and Robust Enhancement for Federated Multi-Domain Learning–Based IoV. IEEE Transactions on Intelligent Transportation Systems.
    [CrossRef]   [Google Scholar]
  19. Xu, Y., Zhang, H., Li, X., Yu, F. R., Ji, H., & Leung, V. C. (2023). Blockchain-based edge collaboration with incentive mechanism for MEC-enabled VR systems. IEEE Transactions on Wireless Communications, 23(4), 3706-3720.
    [CrossRef]   [Google Scholar]
  20. Zamanirafe, M., Mansourian, P., & Zhang, N. (2023). Blockchain and Machine Learning in Internet of Vehicles: Applications, Challenges, and Opportunities. IEEE Internet of Things Magazine, 6(3), 98-103.
    [CrossRef]   [Google Scholar]
  21. Ullah, I., Ali, F., Khan, H., Khan, F., & Bai, X. (2024). Ubiquitous computation in internet of vehicles for human-centric transport systems. Computers in Human Behavior, 161, 108394.
    [CrossRef]   [Google Scholar]
  22. Aslam, M. S., & Bilal, H. (2024). Modeling a Takagi-Sugeno (TS) fuzzy for unmanned aircraft vehicle using fuzzy controller. Ain Shams Engineering Journal, 15(10), 102984.
    [CrossRef]   [Google Scholar]
  23. Xing, R., Su, Z., & Wang, Y. (2024). Collaborative Intrusion Detection Approach Based on Blockchain in Internet of Vehicles. IEEE Internet of Things Journal.
    [CrossRef]   [Google Scholar]
  24. Xu, C., Zhang, P., Xia, X., Kong, L., Zeng, P., & Yu, H. (2024). Digital twin-assisted intelligent secure task offloading and caching in blockchain-based vehicular edge computing networks. IEEE Internet of Things Journal.
    [CrossRef]   [Google Scholar]
  25. Maddikunta, P. K. R., Pham, Q. V., Nguyen, D. C., Huynh-The, T., Aouedi, O., Yenduri, G., ... & Gadekallu, T. R. (2022). Incentive techniques for the internet of things: a survey. Journal of Network and Computer Applications, 206, 103464.
    [CrossRef]   [Google Scholar]
  26. Tu, S., Yu, H., Badshah, A., Waqas, M., Halim, Z., & Ahmad, I. (2023). Secure Internet of Vehicles (IoV) with decentralized consensus blockchain mechanism. IEEE Transactions on Vehicular Technology, 72(9), 11227-11236.
    [CrossRef]   [Google Scholar]
  27. Xu, Q., Jin, J., Su, Z., Li, R., Wang, Y., Fang, D., & Wu, Y. (2024). Blockchain-Based Layered Secure Edge Content Delivery in UAV-Assisted Vehicular Networks. IEEE Transactions on Vehicular Technology.
    [CrossRef]   [Google Scholar]
  28. Singh, P., Hazarika, B., Singh, K., Li, C. P., & Duong, T. Q. (2024, December). Dynamic Multi-Incentive Framework for Edge Vehicular Crowdsensing in IoV Networks. In GLOBECOM 2024-2024 IEEE Global Communications Conference (pp. 5435-5440). IEEE.
    [CrossRef]   [Google Scholar]
  29. Liu, Y., & Zhao, Y. (2024). A blockchain-enabled Framework for Vehicular Data sensing: enhancing information freshness. IEEE Transactions on Vehicular Technology.
    [CrossRef]   [Google Scholar]
  30. Chen, H., Fu, X., Yuan, Q., Zhuang, Z., Kang, J., Liu, Z., ... & Niyato, D. (2025). Trust model-based consensus optimization for vehicle platooning networks: A novel deep reinforcement learning approach with genai. IEEE Transactions on Intelligent Transportation Systems.
    [CrossRef]   [Google Scholar]
  31. Alioua, A., Bouchemal, N., Mati, R., & Messai, M. L. (2024, October). Blockchain-inspired Incentive Mechanism for Trust-aware Offloading in Mobile Edge Computing. In 2024 IEEE 49th Conference on Local Computer Networks (LCN) (pp. 1-8). IEEE.
    [CrossRef]   [Google Scholar]
  32. Zheng, X., Li, M., Chen, Y., Guo, J., Alam, M., & Hu, W. (2020). Blockchain-based secure computation offloading in vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 22(7), 4073-4087.
    [CrossRef]   [Google Scholar]
  33. Fan, W. (2023). Blockchain-secured task offloading and resource allocation for cloud-edge-end cooperative networks. IEEE Transactions on Mobile Computing, 23(8), 8092-8110.
    [CrossRef]   [Google Scholar]
  34. Liu, L., Fu, J., Feng, J., Wang, G., Pei, Q., & Dustdar, S. (2023). Blockchain-based distributed collaborative computing for vehicular digital twin network. IEEE Network, 38(2), 164-170.
    [CrossRef]   [Google Scholar]
  35. Singh, P., Hazarika, B., Singh, K., Huang, W. J., & Li, C. P. (2024). Augmented multi-agent DRL for multi-incentive task prioritization in vehicular crowdsensing. IEEE Internet of Things Journal.
    [CrossRef]   [Google Scholar]
  36. Fardad, M., Muntean, G. M., & Tal, I. (2024). A blockchain-enabled vehicular edge computing framework for secure performance-oriented V2X service delivery. IEEE Transactions on Vehicular Technology.
    [CrossRef]   [Google Scholar]
  37. Wang, B., Tian, Z., Tang, F., Pan, H., She, W., & Liu, W. (2025). Blockchain-Empowered Asynchronous Federated Reinforcement Learning for IoT-Based Traffic Trajectory Prediction. IEEE Internet of Things Journal.
    [CrossRef]   [Google Scholar]
  38. Mali, S., Zeng, F., Adhikari, D., Ullah, I., Al-Khasawneh, M. A., Alfarraj, O., & Alblehai, F. (2025). Federated Reinforcement Learning-Based Dynamic Resource Allocation and Task Scheduling in Edge for IoT Applications. Sensors (Basel, Switzerland), 25(7), 2197.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Haider, Z. A., Rahman, M. M., Khan, M. A., & Sohail, Q. (2025). Optimizing Collaborative Task Allocation in Internet of Vehicles (IoV) through Blockchain-Enabled Incentive Mechanisms. ICCK Transactions on Sensing, Communication, and Control, 2(3), 147–167. https://doi.org/10.62762/TSCC.2025.962030

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 41
PDF Downloads: 0

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
Institute of Central Computation and Knowledge (ICCK) or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ICCK Transactions on Sensing, Communication, and Control

ICCK Transactions on Sensing, Communication, and Control

ISSN: pending (Online) | ISSN: pending (Print)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/