-
CiteScore
-
Impact Factor
Volume 1, Issue 1, Digital Intelligence in Agriculture
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
Digital Intelligence in Agriculture, Volume 1, Issue 1, 2025: 35-46

Open Access | Research Article | 29 August 2025
Projecting the Potential Distribution of Pinus Taiwanensis Under Climate Change Using Ensemble Modeling in Biomod2
1 College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
2 Henan Yuanzhi Forestry Planning and Design Co., Ltd, Zhengzhou 450003, China
3 College of Environment and Resources Sciences and College of Carbon Neutrality, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
4 College of Forestry, Beijing Forestry University, Beijing 100083, China
* Corresponding Author: Fang Guo, [email protected]
Received: 14 August 2025, Accepted: 22 August 2025, Published: 29 August 2025  
Abstract
The continuous rise in global atmospheric carbon dioxide has profoundly altered climate patterns and the spatiotemporal balance of hydrothermal conditions at regional scales. Understanding species’ responses to climatic factors is thus critical for biodiversity conservation. This study focuses on Pinus taiwanensis, analyzing changes in its suitable habitat using distribution data and environmental variables. Employing the biomod2 ensemble model, potential habitats were predicted under three climate scenarios (SSPs126, SSPs370, SSPs585) for the present, 2050, and 2090. Results show: (1) Model performance is excellent (AUC > 0.9, TSS > 0.8). (2) Temperature-related factors (isothermality, diurnal range) play dominant roles, followed by precipitation. (3) Future climate changes may lead to moderate habitat expansion. (4) The centroid of suitable habitat is projected to shift northeastward, with higher probability of a northwestward shift. (5) The SSPs585 scenario shows the greatest deviation from the current climate, with diurnal range as the least similar variable in 2050 and isothermality in 2090. In conclusion, climate change will reshape the potential distribution of Pinus taiwanensis, with habitat dynamics driven by the combined effects of dominant and secondary environmental factors.

Graphical Abstract
Projecting the Potential Distribution of Pinus Taiwanensis Under Climate Change Using Ensemble Modeling in Biomod2

Keywords
biomod2 model
pinus taiwanensis
climate change
potential habitat suitability

Data Availability Statement
Data will be made available on request.

Funding
This work was supported by the Henan Provincial Key Research, Development, and Promotion Special Project (Science and Technology Tackling) under Grant 242102320245 and 2025 Henan Provincial Natural Science Foundation Project (Youth Science Fund Project) under Grant 252300420682.

Conflicts of Interest
Ning Zhang is an employee of Henan Yuanzhi Forestry Planning and Design Co., Ltd, Zhengzhou 450003, China.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Trumbore, S., Brando, P., & Hartmann, H. (2015). Forest health and global change. Science, 349(6250), 814–818.
    [CrossRef]   [Google Scholar]
  2. Dyderski, M. K., Paź, S., Frelich, L. E., & Jagodziński, A. M. (2018). How much does climate change threaten European forest tree species distributions? Global Change Biology, 24(3), 1150–1163.
    [CrossRef]   [Google Scholar]
  3. Liu, J., Li, D., Fernández, J. E., Coleman, M., Hu, W., Di, N., ... & Clothier, B. (2022). Variations in water-balance components and carbon stocks in poplar plantations with differing water inputs over a whole rotation: Implications for sustainable forest management under climate change. Agricultural and Forest Meteorology, 320, 108958.
    [CrossRef]   [Google Scholar]
  4. McLachlan, J. S., Clark, J. S., & Manos, P. S. (2005). Molecular indicators of tree migration capacity under rapid climate change. Ecology, 86(8), 2088–2098.
    [CrossRef]   [Google Scholar]
  5. Román-Palacios, C., & Wiens, J. J. (2020). Recent responses to climate change reveal the drivers of species extinction and survival. Proceedings of the National Academy of Sciences of the United States of America, 117(8), 4211–4217.
    [CrossRef]   [Google Scholar]
  6. Schleuning, M., Neuschulz, E. L., Albrecht, J., Bender, I. M. A., Bowler, D. E., Dehling, D. M., & Hof, C. (2019). Trait-based assessments of climate-change impacts on interacting species. Trends in Ecology & Evolution, 35(4), 319–328.
    [CrossRef]   [Google Scholar]
  7. Liang, Q. L., Xu, X. T., Mao, K. S., Wang, M. C., Wang, K., Xi, Z. X., & Liu, J. Q. (2018). Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. Journal of Biogeography, 45(6), 1334–1344.
    [CrossRef]   [Google Scholar]
  8. Booth, T. H. (2018). Species distribution modelling tools and databases to assist managing forests under climate change. Forest Ecology and Management, 430, 196–203.
    [CrossRef]   [Google Scholar]
  9. Casazza, G., Abeli, T., Bacchetta, G., D’Agostino, M., Fenu, G., Gargano, D., & Orsenigo, S. (2020). Combining conservation status and species distribution models for planning assisted colonisation under climate change. Journal of Ecology, 109(6), 2284–2295.
    [CrossRef]   [Google Scholar]
  10. Zhao, G. H., Gui, X. Y., Sun, J. J., Wang, M., & Li, Y. F. (2021). Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecological Indicators, 132, 108256.
    [CrossRef]   [Google Scholar]
  11. Tang, J. H., Li, J. H., Lu, H., & Lu, F. (2019). Potential distribution of an invasive pest, Euplatypus parallelus, in China as predicted by Maxent. Pest Management Science, 75(6), 1630–1637.
    [CrossRef]   [Google Scholar]
  12. Wang, Y. Q., Ma, J. F., Li, X. Q., & Hou, M. L. (2017). The distribution of Athetis lepigone and prediction of its potential distribution based on GARP and MaxEnt. Journal of Applied Entomology, 141(6), 431–440.
    [CrossRef]   [Google Scholar]
  13. Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773–785.
    [CrossRef]   [Google Scholar]
  14. Gu, R., Wei, S. P., Li, J. R., Li, Y. Q., & Zhang, H. (2024). Predicting the impacts of climate change on the geographic distribution of Moso bamboo in China based on biomod2 model. European Journal of Forest Research, 143(5), 1499–1512.
    [CrossRef]   [Google Scholar]
  15. Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD – A platform for ensemble forecasting of species distributions. Ecography, 32(3), 369–373.
    [CrossRef]   [Google Scholar]
  16. Dormann, C. F., Calabrese, J. M., Guillera-Arroita, G., Matechou, E., Bahn, V., Bartoń, K., & Hartig, F. (2018). Model averaging in ecology: A review of Bayesian, information-theoretic, and tactical approaches for predictive inference. Ecological Monographs, 88(4), 485–504.
    [CrossRef]   [Google Scholar]
  17. Thuiller, W. (2003). BIOMOD – Optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology, 9(10), 1353–1362.
    [CrossRef]   [Google Scholar]
  18. Wang, H. R., Zhi, F. Y., Zhang, G., & Wang, X. R. (2024). Predicting impacts of climate change on suitable distribution of critically endangered tree species Yulania zenii (W. C. Cheng) D. L. Fu in China. Forests, 15(5), 883.
    [CrossRef]   [Google Scholar]
  19. Zhang, H. Y., Wei, Y. N., Yue, J. J., & Wang, T. (2024). Prediction of potential suitable areas and priority protection for Cupressus gigantea on the Tibetan plateau. Plants, 13(6), 896.
    [CrossRef]   [Google Scholar]
  20. Fan, Y. H., Zhang, X. M., Zhou, Y. T., & Zong, S. X. (2024). Prediction of the global distribution of Arhopalus rusticus under future climate change scenarios of the CMIP6. Forests, 15(6), 955.
    [CrossRef]   [Google Scholar]
  21. Liu, Y. H., Zhang, X. M., & Zong, S. X. (2024). Prediction of the potential distribution of Teinopalpus aureus Mell, 1923 (Lepidoptera, Papilionidae) in China using habitat suitability models. Forests, 15(5), 828.
    [CrossRef]   [Google Scholar]
  22. Su, S. J., Liu, J. F., Lan, S. R., He, Z. S., & Hong, W. (2015). A review of Pinus taiwanensis studies (1960–2014) and the knowledge domain analysis. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 44(5), 478–486.
    [Google Scholar]
  23. Descombes, P., Wisz, M. S., Leprieur, F., Parravicini, V., Heine, C., Olsen, S. M., & Pellissier, L. (2015). Forecasted coral reef decline in marine biodiversity hotspots under climate change. Global Change Biology, 21(7), 2479–2487.
    [CrossRef]   [Google Scholar]
  24. Liu, J. F., Su, S. J., He, Z. S., & Hong, W. (2020). Relationship between Pinus taiwanensis seedling regeneration and the spatial heterogeneity of soil nitrogen in Daiyun Mountain, southeast China. Ecological Indicators, 115, 106398.
    [CrossRef]   [Google Scholar]
  25. Wen, L. S., Peng, Y., Deng, W. P., & He, Z. S. (2022). Variation in Water Uptake Dynamics of Dominant Wood Plants of Pinus taiwanensis Hayata Communities Based on Stable Isotopes. Forests, 13(8), 1336.
    [CrossRef]   [Google Scholar]
  26. Xing, G., Jiang, L., He, Z., & Hong, W. (2019). Height class structure of a Pinus taiwanensis community growing at different elevations on Daiyun Mountain. Journal of Forest and Environment, 39(4), 380–385.
    [Google Scholar]
  27. Chen, F. M., Shi, Y. M., Wang, S. Y., & Hong, Y. (2010). Pathogenicity of Different Isolates of Bursaphelenchus mucronatus to Pinus taiwanensis and P. thunbergii Seedlings. Scientia Sylvae Sinicae, 46(12), 86–90.
    [Google Scholar]
  28. Lin, L., He, J., Xie, L., & Cui, G. (2020). Prediction of the suitable area of the Chinese white pines (Pinus subsect. strobus) under climate changes and implications for their conservation. Forests, 11(9), 996.
    [CrossRef]   [Google Scholar]
  29. Chen, B., Zou, H., Zhang, B., Zhang, X., Jin, X., Wang, C., & Zhang, X. (2022). Distribution pattern and change prediction of Saposhnikovia divaricata suitable area in China under climate change. Ecological Indicators, 143, 109311.
    [CrossRef]   [Google Scholar]
  30. Tang, M., Chen, J., Yang, L. Y., & Wang, G. Y. (2023). Distribution and Change of Major Biofuel Tree Species in China under Climate Change. Acta Ecologica Sinica, 43(24), 10156–10170.
    [Google Scholar]
  31. Liu, T., Cao, J. H., Qi, R., & Wang, Y. (2022). Analysis of Potential Distribution Area of Picea purpurea under Climate Change Based on GIS and MaxEnt Model. Acta Botanica Boreali-Occidentalia Sinica, 42(3), 481–491.
    [Google Scholar]
  32. Kang, Y., Lin, F., Yin, J., Han, Y., Zhu, M., Guo, Y., ... & Li, Y. (2025). Projected distribution patterns of Alpinia officinarum in China under future climate scenarios: Insights from optimized Maxent and Biomod2 models. Frontiers in Plant Science, 16, 1517060.
    [CrossRef]   [Google Scholar]
  33. Canxia, S. U., Wenwen, C. H. U., PIELIZHATI, B., Xiaoheng, J. I. A. N. G., Yanqiu, C. H. E. N., Wenpu, H. U. A. N. G., ... & Hongjun, C. H. U. (2024). Potential distribution changes of Castor fiber birulai under climate changes in the upper reaches of the Ulungur River, Xinjiang. Arid Zone Research, 41(3), 509-520.
    [CrossRef]   [Google Scholar]
  34. Jiang, R., Zou, M., Qin, Y., Tan, G., Huang, S., Quan, H., ... & Liao, H. (2022). Modeling of the potential geographical distribution of three Fritillaria species under climate change. Frontiers in Plant Science, 12, 749838.
    [CrossRef]   [Google Scholar]
  35. Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution, 1(4), 330–342.
    [CrossRef]   [Google Scholar]
  36. Wen, X., Fang, G., Chai, S., He, C., Sun, S., Zhao, G., & Lin, X. (2024). Can ecological niche models be used to accurately predict the distribution of invasive insects? A case study of Hyphantria cunea in China. Ecology and Evolution, 14(3), e11159.
    [CrossRef]   [Google Scholar]
  37. Wang, Z., Zhuo, Z., Liu, B., Peng, Y., & Xu, D. (2025). Predicting the Future Geographic Distribution of the Traditional Chinese Medicinal Plant Epimedium acuminatum Franch. in China Using Ensemble Models Based on Biomod2. Plants, 14(7), 1065.
    [CrossRef]   [Google Scholar]
  38. Guo, J., Zhang, M., Bi, Y., Zhao, Z., Wang, R., & Li, M. (2024). Spatiotemporal distribution prediction of the relict and endangered plant Tetraena mongolica in inner Mongolia, China under climate change. Scientific Reports, 14(1), 28478.
    [CrossRef]   [Google Scholar]
  39. Zhang, F. G., Liang, F., Wu, K., Xie, L., Zhao, G., & Wang, Y. (2024). The potential habitat of Angelica dahurica in China under climate change scenario predicted by Maxent model. Frontiers in plant science, 15, 1388099.
    [CrossRef]   [Google Scholar]
  40. Deb, J. C., Phinn, S., Butt, N., & McAlpine, C. A. (2017). The impact of climate change on the distribution of two threatened Dipterocarp trees. Ecology and evolution, 7(7), 2238-2248.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Zhou, M., Zhang, Y., Zhang, N., Guo, H., Fang, C., Yan, D., & Guo, F. (2025). Projecting the Potential Distribution of Pinus Taiwanensis Under Climate Change Using Ensemble Modeling in Biomod2. Digital Intelligence in Agriculture, 1(1), 35–46. https://doi.org/10.62762/DIA.2025.271459

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 96
PDF Downloads: 52

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Digital Intelligence in Agriculture

Digital Intelligence in Agriculture

ISSN: pending (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/