-
CiteScore
-
Impact Factor
Volume 1, Issue 1, ICCK Journal of Applied Mathematics
Volume 1, Issue 1, 2025
Submit Manuscript Edit a Special Issue
Article QR Code
Article QR Code
Scan the QR code for reading
Popular articles
ICCK Journal of Applied Mathematics, Volume 1, Issue 1, 2025: 25-31

Open Access | Research Article | 25 June 2025
Homotopic Computations for Non-Darcian Modified EyringPowell Incompressible Liquid Configured by Varying Thickened Surface
1 School of Qilu Transportation, Shandong University, Jinan 250061, China
2 NUTECH School of Applied Sciences and Humanities, National University of Technology, Islamabad 44000, Pakistan
3 Department of Mathematics, Namal University, Mianwali 42250, Pakistan
* Corresponding Author: Muhammad Zubair, [email protected]
Received: 23 April 2025, Accepted: 25 May 2025, Published: 25 June 2025  
Abstract
The simulations for non-Fourier heat transfer model has been performed for modified Eyring-Powell fluid, comprising the vairbale visocity. The interia outcomes for thermal problem are evaluated by interpreating the Darcy-Forchheimer features. The investigation for visualzing the heat transfer aspects is subject to variable thermal conductivty. The induction of flow is nonlinear moving surface. After developing the governing expressions, analytical treamtnet of problem is presented. The results are graphically presented to endorse physical aspects of current model.

Graphical Abstract
Homotopic Computations for Non-Darcian Modified EyringPowell Incompressible Liquid Configured by Varying Thickened Surface

Keywords
variable sheet thickness
non-linear stretching sheet
non-Fourier heat flux
modified eyring powell liquid
variable thermal conductivity

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
  1. Fourier, J. B. J. (1822). Théorie analytique de la chaleur. Paris: Firmin Didot.
    [Google Scholar]
  2. Cattaneo, C. (1948). Sulla conduzione del calore [On heat conduction]. Atti del Seminario Matematico e Fisico dell'Università di Modena e Reggio Emilia, 3, 83–101.
    [Google Scholar]
  3. Christov, C. I. (2009). On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics Research Communications, 36(4), 481–486.
    [CrossRef]   [Google Scholar]
  4. Straughan, B. (2010). Thermal convection with the Cattaneo-Christov model. International Journal of Heat and Mass Transfer, 53(1–3), 95–98.
    [CrossRef]   [Google Scholar]
  5. Abbasi, F. M., Alsaedi, A., & Hayat, T. (2014). Peristaltic transport of Eyring-Powell fluid in a curved channel. Journal of Aerospace Engineering, 27(6), 04014037.
    [CrossRef]   [Google Scholar]
  6. Rahimi, J., Ganji, D. D., Khaki, M., & Hosseinzadeh, K. (2017). Solution of the boundary layer flow of an Eyring-Powell non-Newtonian fluid over a linear stretching sheet by collocation method. Alexandria Engineering Journal, 56(4), 621-627.
    [CrossRef]   [Google Scholar]
  7. Hayat, T., Zubair, M., Waqas, M., Alsaedi, A., & Ayub, M. (2017). On doubly stratified chemically reactive flow of Powell–Eyring liquid subject to non-Fourier heat flux theory. Results in Physics, 7, 99–106.
    [CrossRef]   [Google Scholar]
  8. Zubair, M., Ijaz, M., Abbas, T., & Riaz, A. (2019). Analysis of modified Fourier law in flow of ferromagnetic Powell–Eyring fluid considering two equal magnetic dipoles. Canadian Journal of Physics, 97(8), 772–776.
    [CrossRef]   [Google Scholar]
  9. Saif, R. S., Haneef, M., Nawaz, M., & Muhammad, T. (2023). Transport mechanism under temperature and concentration gradient for nano-sized species in Maxwell viscoelastic fluid over cylindrical object moving with non-uniform velocity. Chemical Physics Letters, 813, 140293.
    [CrossRef]   [Google Scholar]
  10. Shahid, A., Wei, W., Bhatti, M. M., Bég, O. A., & Bég, T. A. (2023). Mixed convection Casson polymeric flow from a nonlinear stretching surface with radiative flux and non‐Fourier thermal relaxation effects: Computation with CSNIS. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 103(10), e202200519.
    [CrossRef]   [Google Scholar]
  11. Usman, M., Khan, M. I., Shah, F., Khan, S. U., Ghaffari, A., & Chu, Y.-M. (2022). Heat and mass transfer analysis for bioconvective flow of Eyring Powell nanofluid over a Riga surface with nonlinear thermal features. Numerical Methods for Partial Differential Equations, 38(4), 777–793.
    [CrossRef]   [Google Scholar]
  12. Kodi, R., Ravuri, M. R., Veeranna, V., Khan, M. I., Abdullaev, S., & Tamam, N. (2023). Hall current and thermal radiation effects of 3D rotating hybrid nanofluid reactive flow via stretched plate with internal heat absorption. Results in Physics, 53, 106915.
    [CrossRef]   [Google Scholar]
  13. Rubbab, Q., Nazeer, M., Ahmad, F., Chu, Y.-M., Khan, M. I., & Kadry, S. (2021). Numerical simulation of advection–diffusion equation with Caputo-Fabrizio time fractional derivative in cylindrical domains: Applications of pseudo-spectral collocation method. Alexandria Engineering Journal, 60(1), 1731–1738.
    [CrossRef]   [Google Scholar]
  14. Abbasi, A., Khan, S. U., Farooq, W., Mughal, F. M., Khan, M. I., Prasannakumara, B. C., ... & Galal, A. M. (2023). Peristaltic flow of chemically reactive Ellis fluid through an asymmetric channel: Heat and mass transfer analysis. Ain Shams Engineering Journal, 14(1), 101832.
    [CrossRef]   [Google Scholar]
  15. Li, Y. X., Alqsair, U. F., Ramesh, K., Khan, S. U., & Khan, M. I. (2022). Nonlinear heat source/sink and activation energy assessment in double diffusion flow of micropolar (non-Newtonian) nanofluid with convective conditions. Arabian Journal for Science and Engineering, 47(1), 859–866.
    [CrossRef]   [Google Scholar]
  16. Zahid, M., Ali, F., Souayeh, B., & Khan, M. T. (2024). Influence of variable viscosity on existing sheet thickness in the calendering of non-isothermal viscoelastic materials. Open Physics, 22(1), 20240023.
    [CrossRef]   [Google Scholar]
  17. Anwar, M. S., Irfan, M., & Muhammad, T. (2024). Non‐Newtonian fluid flow over a stretching sheet in a porous medium with variable thermal conductivity under magnetohydrodynamics influence. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 104(12), e202301048.
    [CrossRef]   [Google Scholar]
  18. Abbas, M. S., Shaheen, A., Abbas, N., & Shatanawi, W. (2024). Dynamic analysis of radiative chemical species with non-Newtonian fluid flow over an exponentially curved stretching sheet. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089241271866.
    [CrossRef]   [Google Scholar]
  19. Ghosh, S., Chatterjee, S., & Mondal, H. (2025). Entropy generation over nonlinear thermally radiative and mixed convective nanofluid flow. In EPJ Web of Conferences (Vol. 325, p. 01016). EDP Sciences.
    [CrossRef]   [Google Scholar]
  20. Kumar, R. M., Raju, R. S., Mebarek-Oudina, F., Kumar, M. A., & Narla, V. K. (2024). Cross-diffusion effects on an MHD Williamson nanofluid flow past a nonlinear stretching sheet immersed in a permeable medium. Frontiers in Heat and Mass Transfer, 22(1), 15-34.
    [CrossRef]   [Google Scholar]
  21. Nagendra, V. B., Narasimhamurthy, S., Shankar, S., & Munivenkatappa, U. (2024). Mixed Convection of Heat and Mass Transfer of Casson Fluid Flow Over a Moving Horizontal Plate with Convective Boundary Conditions.
    [Google Scholar]
  22. Ram Sharma, K., & Jain, S. (2024). A numerical study of MHD nonlinear mixed convection flow over a nonlinear vertical stretching sheet with the buoyancy and suction/injection effects. Numerical Heat Transfer, Part B: Fundamentals, 1-30.
    [CrossRef]   [Google Scholar]
  23. Akolade, M. T., Idowu, A. S., Oyekunle, T. L., Agunbiade, S. A., Momoh, H. O., Dada, M. S., & Olotu, O. T. (2025). Preserving the rheological equation of Eyring-Powell fluid through non-similar approach: A numerical analysis by BSCM. The European Physical Journal Plus, 140(2), 1–12.
    [CrossRef]   [Google Scholar]
  24. Peter, F., Sambath, P., & Dhanasekaran, S. (2024). Analyzing the MHD bioconvective Eyring–Powell fluid flow over an upright cone/plate surface in a porous medium with activation energy and viscous dissipation. Computation, 12(3), 48.
    [CrossRef]   [Google Scholar]
  25. Gundagani, M., Babu, N. V. N., Gadially, D., Bhati, S. M., Ch, S., & Nirmala Kasturi, V. (2024). Study of Nano-Powell-Erying fluid flow past a porous stretching sheet by the effects of MHD, thermal and mass convective boundary conditions. Journal of Umm Al-Qura University for Engineering and Architecture, 15(3), 271-281.
    [CrossRef]   [Google Scholar]
  26. Turkyilmazoglu, M. (2013). The analytical solution of mixed convection heat transfer and fluid flow of a MHD viscoelastic fluid over a permeable stretching surface. International Journal of Mechanical Sciences, 77, 263–268.
    [CrossRef]   [Google Scholar]

Cite This Article
APA Style
Zubair, M., Waqas, M., Zeshan, M., & Khan, S. U. (2025). Homotopic Computations for Non-Darcian Modified EyringPowell Incompressible Liquid Configured by Varying Thickened Surface. ICCK Journal of Applied Mathematics, 1(1), 25–31. https://doi.org/10.62762/JAM.2025.152881

Article Metrics
Citations:

Crossref

0

Scopus

0

Web of Science

0
Article Access Statistics:
Views: 105
PDF Downloads: 33

Publisher's Note
ICCK stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and Permissions
CC BY Copyright © 2025 by the Author(s). Published by Institute of Central Computation and Knowledge. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
ICCK Journal of Applied Mathematics

ICCK Journal of Applied Mathematics

ISSN: 3068-5656 (Online)

Email: [email protected]

Portico

Portico

All published articles are preserved here permanently:
https://www.portico.org/publishers/icck/